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ABSTRACT: 
 
Labeling 3D point cloud data with traditional supervised learning methods requires considerable labelled samples, the collection of 
which is cost and time expensive. This work focuses on adopting domain adaption concept to transfer existing trained random forest 
classifiers (based on source domain) to new data scenes (target domain), which aims at reducing the dependence of accurate 3D 
semantic labeling in point clouds on training samples from the new data scene. Firstly, two random forest classifiers were firstly 
trained with existing samples previously collected for other data. They were different from each other by using two different 
decision tree construction algorithms: C4.5 with information gain ratio and CART with Gini index. Secondly, four random forest 
classifiers adapted to the target domain are derived through transferring each tree in the source random forest models with two types 
of operations: structure expansion and reduction-SER and structure transfer-STRUT. Finally, points in target domain are labelled by 
fusing the four newly derived random forest classifiers using weights of evidence based fusion model. To validate our method, 
experimental analysis was conducted using 3 datasets: one is used as the source domain data (Vaihingen data for 3D Semantic 
Labelling); another two are used as the target domain data from two cities in China (Jinmen city and Dunhuang city). Overall 
accuracies of 85.5% and 83.3% for 3D labelling were achieved for Jinmen city and Dunhuang city data respectively, with only 1/3 
newly labelled samples compared to the cases without domain adaption. 
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1. INTRODUCTION 

Assigning each airborne laser scanning (ALS) point with 
correct object class - 3D semantic labelling of ALS data, is still 
a challenging and complicated task in both computer vision and 
remote sensing community. It is the basic step of much 
application processing such as highly accurate mapping, object 
extraction, building modelling and so on. Sufficient and large 
volume labelled samples are always essential to accurately 
classifying 3D point cloud with supervised learning methods. 
While for traditional semantic labelling tasks of ALS point 
clouds, the labelled samples are data and scene dependent. It 
needs to spend a lot of efforts and time to re-collect training 
samples for new data. Therefore, how to exploit existing 
labelled LiDAR points and the derived models to mitigate the 
needs of large volume of samples has been attracting more and 
more concerns from geospatial computer vision community. 
Transfer learning is an important sub-branches of machine 
learning, which aims to improve the learning of the target 
prediction function using the knowledge in source domain DS 

and source learning task TS (Pan and Yang, 2010). Knowledge 

in source domain DS can be labelled samples or derived models. 

Thus, in both computer vison (Gong et al., 2014) and remote 
sensing community (Tuia et al., 2016), transfer learning 
methods have been researched to reuse collected samples and 
existing models to mitigate the needs of large volume of 
samples for supervised classification. 

There are three kinds of transfer learning methods in terms of 
detailed implementation techniques: instances transfer, feature 
transformation and model adaption (Pan and Yang, 2010). 
While according to the different settings, transfer learning 
includes inductive transfer learning, transductive transfer 
learning and unsupervised transfer learning. Domain adaption 
(DA) has been attracting lots of attention from remote sensing 
community (Persello and Bruzzone, 2016; Tuia et al., 2016), 
which belongs to transductive transfer learning. In general, DA 
aims to adapt models trained to solve a specific task to a new 
yet related task, for which the knowledge of the initial model is 
sufficient, although not perfect (Tuia et al., 2016). 
  
Existing methods are mainly applied on image classification; 
thus it is very interesting to investigate whether domain 
adaption methods apply to 3D point cloud labelling. This paper 
studied a model transfer method by (Segev et al., 2015) with 
domain adaption concept, which adapts the learned random 
forest model in source domain to target domain with fewer 
samples for semantic labelling of ALS data. As non-linear 
models, decision trees (DTs) can excel in learning non-linear 
decision rules and their hierarchical structure enables detection 
and accommodation of non-linear transformations from source 
to target. On the other hand, local adjustment of the tree 
structure can solve the domain shift to some extent. A single 
classifier can describe two identical domains. Therefore, as one 
domain drifts, the changes can be captured via small 
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modifications to the tree structure. Thus, through transferring 
all the tree models to target domain, newly adapted random 
forest models are derived. To enhance final labelling accuracy, 
the weights of evidence based fusion model is adopted and 
discussed. The remainder of this paper is organized as follows. 
Section 2 describes the method. Experiment and results are 
shown in section 3. Finally, it concludes and proposes the future 
work in section 4. 
 

2. METHOD 

2.1 Main workflow 

The main steps of the proposed method are as following: 

1. Training two initial random forest models (Breiman, 2001) 
using labelled samples in source domain based on Gini index 
(Breiman, 1984) and information gain ratio(Quinlan,1993), 
respectively; 
2. Adapting learned random forest models of source domain to 
target domain using some labelled samples from the target 
domain: 

a. updating each classification tree in the initial models 
through structure  expansion  and  reduction-SER (Segev et al., 

2015); 
b. adapting the structure of each tree in the initial model 

through modifying the splitting node’s threshold based on 
maximizing Gini index and information gain ratio, which is 
equal to tree structure transfer-STRUT (Segev et al., 2015); 

3. Fusing the four adapted random forest models by weight-
based evidence fusion to label each point in the target domain 
accurately.  
 
2.2 Structure Expansion and Reduction(SER) for Tree 
Model Adaption  

In the construction process of decision tree, node splitting and 
leaf pruning are the two main important operations. Thus, tree 
structure expansion and reduction are naturally an approach to 
adapt the source domain model to target domain using labelled 
samples from target domain. The derailed steps of SER for each 
tree in the random forest classifier are as following (Segev et 
al., 2015): 

1. For each node V, calculating the set DT
v  of all labelled points 

in the target data DT  that reaches V; 

2. Tree structure expanding: for every leaf node Vlf in the tree, 
expanding its structure to a full tree based on its corresponding 

reached sample set DT
v ; 

3. Tree structure reduction: this step is similar to leaf pruning 
working in the bottom-up pattern. Here, for each node V, it 
relates to two types of error: one is defined as SubTreeError 
(V)- corresponding to the error when node V is not pruned and 
taken as the root of a non-empty subtree; the other is called as 
LeafError (V),which is the error when V is pruned and together 
with all its child nodes become as the direct child of V’s parent 
node. When the error LeafError(V) is smaller than 
SubTreeError(V), the internal node V is pruned to be a leaf node. 
It should be noted that structure expanding operation should be 
performed before structure reduction. Following this operation 

order, the original structure can be retained better when 
adapting the decision tree’s structure, which equals to transfer 
the source domain information better. After SER operation, the 
new decision rule at each leaf node in modified tree will depend 
more on the target domain distribution. 
 
2.3 Structure Transfer (STRUT) Method for Tree Model 
Adaption 

For classification of two similar scenes, their data classification 
trees should also be with similar structures. Motivated by such 
observation, the decision tree can be modified just through tree 
structure transfer operation: adjusting each node’s decision 
value (threshold of the selected numeric feature) to be adapted 
to target domain (Segev et al., 2015). The correctness of 
decision value determines decision tree’s accuracy. When using 
target domain samples to optimize the numeric feature’s 
threshold of the source domain’s tree, it tends to cause the 
model to be negative or over-transferred without constraints. 
STRUT works in top-down pattern. For a decision tree trained 
with source domain data, its structure is modified by STRUT 
through modifying the node’s decision value meanwhile with 
the samples from target domain when traversing the decision 
tree from root to each node: 
1. For the node with reached target domain samples, its decision 
value is optimized as following: 

' '

Maximize InformationGainRatio(D , ,x) or Ginindex(D , ,x)

     s.t.                

              max(differ(Q ,Q ),differ(Q ,Q ))< .min(|Q |,|Q |)

                 

T T
v v

L L R R L R
v v v v v v

 


  (1) 

where InformationGainRatio(D , ,x) or Ginindex(D , ,x)T T
v v  cal-

culate the information gain ratio or Gini index when adjust the 

threshold( x ) of decision feature  at current reached node V ; 
'

Q ,QL L
v v is the target sample distribution of V’s left subtree 

before and after adjusting the decision value; similar to 
'

Q ,QL L
v v ,

'

Q ,QR R
v v is for  V’s right subtree ;

'

differ(Q ,Q )L L
v v counts 

the number of different samples between  
'

Q  and QL L
v v ; |Q |L

v is 

the sample size in QL
v ,  is a parameter to control how much 

the decision value can be adjusted in fact. 
2. While for those nodes without reached target domain samples, 
they should be pruned. 
 
2.4 Decision Level Fusion of Adapted Random Forest 
Classifiers based on Weights of Evidence Model  

WofE model adopts the prior and conditional probability to 
generate a logit posterior odds, which is used to examine the 
support for a given hypothesis (Good, 1985). Given N 
independently trained classifiers f1, f2… fi … fN of data D with C 
classes, for each predicted sample in D, the weight of evidence  

W( : )j iw f  for the jth class (wj) with the ith classifier fi can be 

expressed as follows( Song  and Li, 2014): 
 

               
( | )

W( : ) log
1 ( | )

j i
j i e

j i

P w f
w f

P w f



                                (2) 
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where, the conditional probability that one sample is classified 

as wj or not with classifier fi is denoted as ( | )j iP w f and  

1 ( | )j iP w f  respectively. 

Given P(wj) as the prior probability for class wj, then the log 
posterior odds for classifier fi can be calculated as: 
 
              log ( | ) log ( ) ( : )e j i e j j iO w f O w W w f               (3) 

In equation (3), ( ) P( ) / (1 P( ))j j jO w w w  is an odds operation, 

P(wj) is determined based on the average result of N classifiers’ 
results (in this paper, N=4 and the classification model is 
random forest). Considering the different contributions of the N 
independent classifiers, the log posterior odds for classification 
fusion can be calculated as: 

1

log ( | ) log ( ) ( : )
N

e j e j i j i
i

O w f O w W w f


            (4) 

where, the weight i represents the classification reliability. 

Lastly, the final label for a sample can be determined as class wj, 
which is obtained with the maximal logit posterior odds: 

1,2..
Class( ) arg max log ( | )e j

j C
j O w f


                   (5) 

Through using different classification rule (Gini index and 
information gain ratio) and tree model adaption methods (SER 
and STRUT), we obtain four independent classifiers based on 
standard random forest. Given the fact that the probability 
output of the classifiers is used as input, final decision level 
fusion is performed with WofE model. The main workflow for 
combining the four different random forest classifiers to label 
point cloud data in target domain is depicted as following 
(Figure 1): 

Semantic features of  
point cloud data in 

target domain  

WofE fusion 
of class C

Maximal logit
posterior odds rule

WofE fusion 
of class 1

Final fusion of classification 
results For point clouds

 
Classification 

based on 
adapted 
random 

forest model 
using 

information 
gain ratio and 

STRUT

 
Classification 

based on 
adapted 
random 

forest model 
using 

information 
gain ratio and 

SER 

 
Classification 

based on 
adapted 
random 

forest model 
using Gini 
index and 
STRUT

 
Classification 

based on 
adapted 
random 

forest model 
using Gini 
index and 

SER 

... ... ...

 
Figure 1. Workflow for point cloud data classification based on 

WofE fusion 

3. EXPERIMENT AND RESULTS 

3.1 Data material 

Three ALS point cloud data sets were used in this experiment: 
one was exploited as source domain data to train the initial 
random forest models; the other two data sets were used as 
target domain data to validate the proposed complete approach 
based on model transfer and decision fusion for point cloud data 
labelling. The source data is from one of the 3D semantic 
labelling benchmark training data-the labelled Vaihingen data 
set (Niemeyer et al., 2014), which consists of 9 classes: 
powerline, low vegetation, impervious surfaces, car, fence, roof, 
facade, shrub and tree. Two test data of target domain are 
acquired from Jinmen city (China) and Dunhuang city (China), 
collected by Leica ALS 50-II and ALS 60 respectively. The 
point density of about 2~3 points/m2 (area size: 1600m*500m) 
and 1~2 points/m2 (area size: 1400m*600m) can be obtained for 
the Jinmen and Dunhuang data, respectively.  The main object 
classes in the target domain data comprise buildings, bare 
grounds, vegetation and some vehicles.  

 
3.2 Experiments and Results 

In this experiment, only 4 classes were labeled considering the 
point density: ground, low vegetation, tree and building. To 
make source domain has same classes with the target domain, in 
the initial random forest models’ training in source domain, the 
labelled impervious surfaces points were used as the training 
samples for ground and roof points as building points. For the 
Jinmen data, the classes’ ratio is about: ground (44.1%),low 
vegetation(8.41%), tree(13.3%), building(25.69%);while for the 
Dunhuang data, the classes’ ratio is about: ground (32.8%),low 
vegetation(6.41%), tree(10.9%), building(44.74%). 
 
3.2.1 Features used. To label the point cloud, features 
including some semantic features were extracted and used, 
which included (Wei et al., 2012):  
 
- I: Intensity, which is provided by the LiDAR system for each 
point; 
- ∆I: Intensity difference between points having the highest and 
lowest intensities within the cuboid neighbourhood; 
- σI: Standard deviation of intensity of points within the cuboid 
neighbourhood; 
- ∆Z: Height difference between the highest and lowest points 
within the cuboid neighbourhood; 
- σZ: height standard deviation of points within the cuboid 
neighbourhood; 
- Two eigenvalue-based features: the planarity λ and 
omnivariance λ.  
 
To derive the above features, a 3D cuboid neighbourhood is 
defined with help of a 2D square with radius of 2m in 
horizontal dimension. For the calculation of eigenvalue-based 
features, the 3D covariance matrix  ∈ℝ3×3 is calculated for a 
given point and its neighbours. Since  is a symmetric, its three 
eigenvalues exist. The three eigenvalues λ1, λ2, λ3∈ℝ, with λ1

≥λ 2 ≥λ 3 ≥ 0 represent the extent of a 3D covariance 
ellipsoid along its main axes and are thus suitable for describing 
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the local 3D structure. Then, the planarity λ can be calculated 
as equation (6): 
 
                                         λ= (λ2-λ3)/λ1                                   (6) 

omnivariance λ can be calculated as equation (7): 

3

3

1

= i
i

O 

                                   (7) 

3.2.2 Experiment process. Using the 7 features defined in 
section 3.2.1 and labelled samples of the source domain data, 
two initial classifiers based on random forest were generated 
based on the Gini index and information gain ratio respectively. 
Both random forest models were trained with 200 trees and four 
classes’ samples as described in section 3.1: ground, low 
vegetation, tree and building.Then, each tree in the two source 
models were adpted with some labelled samples in the target 
domain using the two methods: SER and STRUT. Thus, four 
new random forest models adapted with target domain sampels 
were derived. To avoid negative transfer or over-transfer to 
some extent, in the experimet of STRUT, we constrained that 
the adjusted threshold should cause not more than 20% 
samples’ label results changed and achieved maximal gain in 
inforation gain ratio or gini index at the same time. Finally, 
each point in the target domian was labelled through fusing 
outputs of the four new random forest models with WofE model. 
 
3.2.3 Results and discussion. The final classification results 
with our approach are shown in Figure 2(b) and Figure 3(b) in 
the following: 

 

Figure 2(a). Jinmen data coloured by height 

 

Figure 2(b). Jinmen data classification result, with:  ground, 
 low vegetation, tree,  building 

 

 

Figure 3(a). Dunhuang data coloured by height 

 

Figure 3(b). Dunhuang data classification result, with:  
ground,  low vegetation, tree,  building 

The overall accuracies for labelling Jinmen city and Dunhuang 
city data sets are 85.5% and 83.3%, respectively. As with more 
similar point density with the source domain training data and 
lower building ratio in the data, the Jinmen city data achieved 
better results. As class facade, class car and class shrub were 
not trained in the source domain, the facade points were always 
mislabelled as low vegetation or tree points, while the car and 
shrub points were usually mislabelled as points of low 
vegetation. Since only 7 types of ALS features were used and 
the neighbourhood size was fixed, the classification could be 
improved further if more diverse semantic features were 
exploited and the local neighbourhood size for each point was 
optimized adaptively (Weinmann, 2015).  

If only target domain labels were used without the trained 
models from the source domain, more labelled samples are 
needed. In this experiment, only 1/3 samples from target 
domain were essential to achieve similar accuracy compared to 
the cases without adopting domain adaption processing. 

 

4. CONCLUSION AND FUTURE WORK 

This paper developed and studied a method to transfer source 
domain information to target domain for the semantic labelling 
of 3D point cloud data, which was implemented through 
knowledge transfer modelling by adapting decision tree 
structure of source domain into target domain of labelled 
samples. Using some labelled samples in target domain, the 
SER and STRUT methods were adopted to adjust decision tree 
structure by expanding or pruning tree and re-optimizing new 
feature threshold for each tree internal node. Besides, a decision 
fusion approach based on WofE model was exploited to 
enhance the final classification accuracy. To validate the 
complete approach, an initial experiment was conducted. In the 
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experiment, overall accuracies of 85.5% and 83.3% for point 
labelling were achieved in two urban scenes. More importantly, 
it reduced 2/3 samples needed to be collected in the target 
domain, which demonstrated that the method could exploited 
the source domain information to some extent and reduce the 
number of samples needed to be labeled in target domain. 
However, there are needs for more experiments to test the 
method in following aspects: 

1. In this paper, only 4 classes objects were labeled, test work 
on point labelling with more classes should be conducted in 
further; 
2. More diverse semantic features can be derived and local 
neighbourhood optimization for feature extraction should be 
adopted to enhance the feature space representation. 

 
For the future work, the ability of model transfer for this 
method with regard to classification scenes, data characteristics 
(point density, point attributes like intensity, echo and colour 
information) and object types, and how much the fusion 
processing can improve point labelling accuracy in the context 
of domain adaption will be evaluated and researched. 
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