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Abstract Data assimilation using the ensemble Kalman filter (EnKF) has been increasingly recognized as
a promising tool for probabilistic hydrologic predictions. However, little effort has been made to conduct
the pre- and post-processing of assimilation experiments, posing a significant challenge in achieving the
best performance of hydrologic predictions. This paper presents a unified data assimilation framework for
improving the robustness of hydrologic ensemble predictions. Statistical pre-processing of assimilation
experiments is conducted through the factorial design and analysis to identify the best EnKF settings with
maximized performance. After the data assimilation operation, statistical post-processing analysis is also
performed through the factorial polynomial chaos expansion to efficiently address uncertainties in hydro-
logic predictions, as well as to explicitly reveal potential interactions among model parameters and their
contributions to the predictive accuracy. In addition, the Gaussian anamorphosis is used to establish a
seamless bridge between data assimilation and uncertainty quantification of hydrologic predictions. Both
synthetic and real data assimilation experiments are carried out to demonstrate feasibility and applicability
of the proposed methodology in the Guadalupe River basin, Texas. Results suggest that statistical pre- and
post-processing of data assimilation experiments provide meaningful insights into the dynamic behavior of
hydrologic systems and enhance robustness of hydrologic ensemble predictions.

Plain Language Summary Data assimilation techniques are recognized as a promising tool for
probabilistic hydrologic predictions. And the pre- and post-processing of assimilation experiments play a
crucial role in advancing our understanding of the nonlinear dynamic behavior of hydrologic prediction sys-
tems. This paper presents a unified computational framework that enables a systematic integration of data
assimilation using the ensemble Kalman filter (EnKF) as well as statistical pre- and post-processing techni-
ques, strengthening our capability in providing probabilistic streamflow predictions. Both synthetic and real
data assimilation experiments are conducted to demonstrate applicability of the proposed computational
framework in the Guadalupe River basin, Texas. Results verify that the pre- and post-processing of assimila-
tion experiments provide meaningful insights into the potential interactions among the EnKF error parame-
ters and those among hydrologic model parameters. In addition, the Gaussian anamorphosis establishes a
seamless bridge between data assimilation and uncertainty quantification. Therefore, such a unified
computational framework has significant potential for performing robust hydrologic forecasting.

1. Introduction

Hydrologic models are simplified representations of spatially and temporally varying hydrologic processes.
As a result, uncertainty originates from various sources, including the errors in model structures and param-
eters, boundary and initial conditions, and hydrometeorological forcing (Ajami et al., 2007). It is thus neces-
sary to characterize and communicate inevitable uncertainties in hydrologic predictions in order to provide
reliable hydrologic data and information for sound planning and management of water resources.

Over the past decade, data assimilation techniques that combine observations with model forecasts to esti-
mate the state of a physical system have been recognized as a useful means to quantify uncertainty and
improve predictive accuracy (Gharamti et al., 2013; Khan & Valeo, 2016; Panzeri et al., 2014; Randrianasolo
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et al., 2014; Ryu et al., 2009; Wang et al., 2017). The ensemble Kalman filter (EnKF) introduced by Evensen
(1994) is a sequential data assimilation technique, which has been extensively used for state and parameter
estimation of hydrologic models (Cammalleri & Ciraolo, 2012; DeChant & Moradkhani, 2012; Gharamti et al.,
2015; Liu et al., 2016; Pathiraja et al., 2016b; Rafieeinasab et al., 2014; Xie & Zhang, 2010). For instance, Mor-
adkhani et al. (2005) proposed the dual state-parameter estimation of hydrologic models using the EnKF.
Wang et al. (2009) developed a constrained EnKF framework for state and parameter estimation in hydro-
logic modeling, in which the naive method, the projection and accept/reject methods were used to deal
with inequality constraints. Samuel et al. (2014) evaluated the variations and forecasts of streamflow and
soil moisture by using the EnKF with dual state-parameter estimation. Pathiraja et al. (2016a) investigated
the potential for data assimilation by using the EnKF to detect known temporal patterns in model parame-
ters from streamflow observations.

The EnKF has been increasingly applied in hydrologic modeling, which generates an ensemble of model
states and parameters by adding stochastic perturbations (errors) to the forcing data and observations.
Thus, properly tuning the EnKF error parameters plays a crucial role in hydrologic data assimilation, and has
received considerable attention in the hydrologic modeling community over the past decade (De Lannoy
et al., 2009; McMillan et al., 2013; Pauwels et al., 2013; Raleigh et al., 2015; Rasmussen et al., 2015, 2016;
Zhang et al., 2016). For instance, Pauwels and De Lannoy (2009) performed the EnKF assimilation of dis-
charge into conceptual rainfall-runoff models by adding Gaussian random errors to the meteorological forc-
ings including precipitation and potential evapotranspiration, model parameters, and observations. De
Lannoy and Reichle (2016) examined the random error parameters in the EnKF, and argued that the skill of
land surface data assimilation systems can be improved through the optimal calibration of model and
observation error parameters. Zhang et al. (2017) evaluated four different data assimilation methods for
joint parameter and state estimation of the Variable Infiltration Capacity Model and the Community Land
Model, and revealed that the errors in the forcing data and observations had a considerable contribution to
the temporal fluctuations of the estimated parameter values. As a result, sensitivity experiments are often
carried out for identifying error parameters and estimating the ensemble size (Clark et al., 2008; McMillan
et al., 2013; Rasmussen et al., 2015; Sun et al., 2009; Yin et al., 2015). Nevertheless, univariate sensitivity anal-
ysis experiments are limited in determining the optimal settings of the EnKF. This is because the EnKF
design parameters including error parameters and the ensemble size actually interact with each other in
the data assimilation process, and their interactions have a considerable influence on the behavior of non-
linear dynamic systems. For instance, many of the highly sensitive parameters may provide redundant and
misleading information regarding the variability of response variables because their sensitivities may be cor-
related with those of the other factors. As a result, failure to account for potential interactions among the
EnKF design parameters can degrade the performance of the EnKF system (Crow & Loon, 2006; Thiboult &
Anctil, 2015). It is thus necessary to perform a pre-processing of assimilation experiments for identifying the
best EnKF settings so as to maximize the predictive performance. The variance-based global sensitivity anal-
ysis techniques such as the Sobol’ method and the Fourier Amplitude Sensitivity Test are commonly used
to estimate the key parameters and their interactions in hydrologic models (Dai & Ye, 2015; Pianosi & Wage-
ner, 2016; Raleigh et al., 2015; Song et al., 2015). However, the variance-based sensitivity analysis can only
indicate an overall interaction of each individual parameter through the total-order sensitivity index, and
can hardly reveal the pairwise interactions between parameters. It is thus desired to further explore parame-
ter interactions in order to advance our understanding of the model behavior in the parameter space.

Data assimilation using the EnKF can be performed to recursively derive the posterior distributions of model
parameters; however, it can hardly explicitly characterize parameter interactions and their contributions to
the predictive accuracy. To perform a robust parameter estimation and hydrologic prediction, it is necessary
to perform a post-processing of assimilation experiments for revealing meaningful insights into the behav-
ior of hydrologic prediction systems. Polynomial chaos expansion (PCE) is a well-known technique used to
represent the evolution of uncertainty in stochastic dynamic systems, and has attracted great attention of
hydrologists in recent years (Ciriello et al., 2013; Dai et al., 2016; M€uller et al., 2011; Sochala & Le Mâıtre,
2013). For instance, Fajraoui et al. (2011) investigated the effects of uncertain parameters on the output of a
chosen interpretive solute transport model by using global sensitivity analysis together with the PCE meth-
odology. Rajabi et al. (2015) performed a moment independent sensitivity analysis of seawater intrusion
simulations by using the non-intrusive PCE. Wang et al. (2015a) proposed a two-stage factorial PCE
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framework for quantifying interactive uncertainties in hydrologic predictions. Consequently, the PCE can be
used as a promising post-processing tool for improving the robustness of hydrologic ensemble predictions
through data assimilation.

In this work, we develop a unified data assimilation framework for enhancing the robustness of hydrologic
ensemble predictions. Statistical pre-processing of assimilation experiments will be performed through the
factorial design and analysis (FDA) to identify the best settings of the EnKF design parameters with maxi-
mized performance. When the posterior distributions of hydrologic model parameters are estimated, statis-
tical post-processing experiments will also be conducted to explicitly reveal parameter interactions and to
efficiently characterize predictive uncertainties. Both synthetic and real data assimilation experiments will
be carried out to demonstrate feasibility and applicability of the proposed methodology in the Guadalupe
River basin, Texas.

This paper is organized as follows. Section 2 describes the unified data assimilation framework for achieving
robust hydrologic ensemble predictions. Section 3 provides details on the setup of synthetic and real data
assimilation experiments as well as on the design of pre- and post-processing experiments. Section 4
presents a thorough analysis and discussion based on the results obtained from pre-processing, data assim-
ilation, and post-processing experiments with both synthetic and real data. Finally, conclusions drawn from
this study are summarized in section 5.

2. Development of a Unified Data Assimilation Framework

The unified data assimilation framework consists of three major parts (as shown in Figure 1), including sta-
tistical pre-processing, data assimilation with the EnKF, and statistical post-processing experiments. An over-
view of the steps involved in the unified computational framework is provided as follows: 1) selection of the
EnKF design parameters, 2) design of the EnKF experiments, 3) execution of data assimilation experiments,
4) examination of sensitivities of the EnKF design parameters and their interactions, 5) identification of the
best EnKF settings, 6) inference of posterior distributions of hydrologic model parameters, 7) transformation
of posterior parameter distributions into normal distributions, 8) quantification of predictive uncertainties,
and 9) investigation of dynamic sensitivities of parameter interactions affecting the predictive accuracy.
Such a unified computational framework improves the robustness and effectiveness of hydrological ensem-
ble predictions through probabilistic pre- and post-processing in the EnKF data assimilation.

2.1. Ensemble Kalman Filter
The basic idea of data assimilation is to merge information from models and observations so as to reduce
and quantify uncertainty in model predictions. The EnKF is a sophisticated data assimilation technique that
can be used for recursive estimation of hydrologic model parameters and state variables. In contrast to the
extended Kalman filter (EKF), the EnKF makes use of Monte Carlo integration methods to approximate the
error covariance matrix through a stochastic ensemble of model realizations instead of an explicit mathe-
matical expression (Evensen, 2003). Thus, the EnKF is particularly useful for nonlinear dynamic models. By
using the EnKF, the ensemble of model states is integrated forward in time to predict error statistics, and
the model forecast can be made as follows:

x2
i;t115f x1

i;t ; ui;t11; h
2
i;t11

� �
1xi;t11; (1)

where x2
i;t11 is predicted model state of ensemble number i at the current time step t 1 1, x1

i;t is the posterior
model state of ensemble number i at the previous time step t, ui,t11 and hi,t11 are model inputs and parame-
ters, respectively. f is the forward model that propagates state variables from time t to t 1 1, and xi,t11 is the
model error that follows a Gaussian distribution with zero mean and covariance

Pm
t11. Since the model error

is caused by uncertainties in model inputs, model structure and parameter values, it can be assumed to be a
Gaussian random perturbation with zero mean and standard deviation of 0.1. As for the recursive parameter
estimation by using the EnKF, it is assumed that model parameters are perturbed by a small random noise:

h2
i;t115h1

i;t1sSðh2
i;tÞ; (2)

where s is a small tuning parameter (0.01 is used in this study), and Sðh2
i;tÞ is the standard deviation of the

prior parameter distribution in such a way that the parameter estimation at the current time step always
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takes into account the prior parameter information estimated at the previous time step as the model pro-
gresses forward in time (DeChant & Moradkhani, 2012).

The ensemble members of model states and parameters can then be updated as follows:

x1
i;t115x2

i;t111K x
t11 yt112Hx2

i;t11

� �
; (3)

Figure 1. Flowchart for the unified data assimilation framework. T and C represent the assimilation window and the facto-
rial combination, respectively.
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h1
i;t115h2

i;t111Kh
t11 yt112Hx2

i;t11

� �
; (4)

where yt11 is the observation vector, H is the observation operator that converts model states to the obser-
vation space, and K x

t11 and Kh
t11 are the Kalman gain matrices for model states and parameters, respectively.

K x
t11 and Kh

t11 can be written by:

K x
t115Px

t11HT
t11 Ht11Px

t11HT
t111Rt11

� �21
; (5)

Kh
t115Ph

t11HT
t11 Ht11Ph

t11HT
t111Rt11

� �21
; (6)

where Px
t11 and Ph

t11 are the state error covariance and the parameter error covariance, respectively. Rt11 is
the observation error covariance, and superscript T denotes the matrix transpose. Px

t11 and Ph
t11 can be com-

puted by:

Px
t115E x2

i;t112�x 2
t11

� �
x2

i;t112�x 2
t11

� �T
� �

; (7)

Ph
t115E h2

i;t112�h
2

t11

� �
h2

i;t112�h
2

t11

� �T
� �

: (8)

where �x 2
t11 and �h

2

t11 represent the state ensemble mean and the parameter ensemble mean, respectively. E
is the expectation operator.

As for hydrologic data assimilation using the EnKF, the ensemble of model trajectories is produced by sto-
chastically perturbing the forcing data, leading to the uncertainty in model outputs. Thus, specifying the
error parameters (magnitude of perturbations) and the ensemble size plays a crucial role in the perfor-
mance of the EnKF.

2.2. Factorial Design and Analysis
Factorial design and analysis (FDA) is a powerful statistical method for examining the effects of multiple fac-
tors on response variables through experimental design and data analysis (Montgomery & Runger, 2013). In
a factorial experiment, all possible combinations of the levels of factors are examined in order to reveal
potential interactions among multiple factors.

In this study, the FDA can be applied to data assimilation experiments for examining the effects of the EnKF
design parameters on the predictive performance. As a result, the levels of experimental factors correspond
to the scenarios of the EnKF design parameters including the ensemble size, the precipitation error, the
potential evapotranspiration error and the observation error. The response variable represents the predic-
tive accuracy in terms of root mean square error (RMSE). For instance, if there are a scenarios of the precipi-
tation error, b scenarios of the potential evapotranspiration error, and c scenarios of the observation error,
there will be a total of abc estimations of the RMSE values derived through hydrologic data assimilation in a
complete factorial experiment. The effects model for such a factorial experiment with three parameters can
be described by:

wijkl5l1mi1bj1ck1ðmbÞij1ðmcÞik1ðbcÞjk1ðmbcÞijk1Eijkl

i51; 2; . . . a

j51; 2; . . . b

k51; 2; . . . c

l51; 2; . . . n

;

8>>>>><
>>>>>:

(9)

where wijkl is the total variability in the RMSE values, l is the overall mean effect for all error parameters, mi is
the effect of the precipitation error under the ith scenario, bj is the effect of the potential evapotranspiration
error under the jth scenario, ck is the effect of the observation error under the kth scenario, (mb)ij is the effect
of the interaction between the precipitation error and the potential evapotranspiration error, (mc)ik is the
effect of the interaction between the precipitation error and the observation error, (bc)jk is the effect of the
interaction between the potential evapotranspiration error and the observation error, (mbc)ijk is the effect of
the interaction among the precipitation error, the potential evapotranspiration error, and the observation
error, and Eijkl is the random error component which is normally distributed with mean 0 and variance r2.
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The effects model contains three main parameter effects, three two-parameter interaction effects, a three-
parameter interaction effect, and an error term. These effects can be defined as deviations from the overall
mean, so

Pa
i51 mi5 0,

Pb
j51 bi5 0,

Pc
k51 ck5 0,

Pa
i51 ðmbÞij 5

Pb
j51 ðmbÞij5 0,

Pa
i51 ðmcÞik 5

Pc
k51 ðmcÞik5 0,Pb

j51 ðbcÞjk 5
Pc

k51 ðbcÞjk5 0, and
Pa

i51 ðmbcÞijk 5
Pb

j51 ðmbcÞijk5
Pc

k51 ðmbcÞijk5 0 (Montgomery, 2000).

In factorial experiments, the main effect is estimated as the difference between the average values of RMSE
derived from different parameter scenarios. For instance, suppose that the precipitation error is given two
scenarios, the main effect of the precipitation error can be computed by:

PE5 �mP1 2 �mP2 ; (10)

where PE represents the main effect of the precipitation error, and �mP1 and �mP2 represent the average values of
RMSE derived under scenarios 1 and 2, respectively. Since an interaction occurs when the effect of one error
parameter on the value of RMSE changes depending on the scenario of another error parameter, the effect of
the pairwise interaction between the precipitation error and the observation error can be computed by:

PE3OE5
1
2

�m P2jO2ð Þ1 �m P1jO1ð Þ½ �2 �m P2jO1ð Þ1 �m P1jO2ð Þ½ �f g: (11)

where PE 3 OE represents the pairwise interaction between the precipitation error and the observation error,
�m P1jO1ð Þ represents the conditional value of RMSE derived under scenario 1 of the precipitation error when
the observation error is given under scenario 1, �m P2jO2ð Þ represents the conditional value of RMSE derived
under scenario 2 of the precipitation error when the observation error is given under scenario 2, �m P2jO1ð Þ
represents the conditional value of RMSE derived under scenario 2 of the precipitation error when the obser-
vation error is given under scenario 1, and �m P1jO2ð Þ represents the conditional value of RMSE derived under
scenario 1 of the precipitation error when the observation error is given under scenario 2. All the other main
and interaction effects for error and model parameters can be estimated accordingly. The half-normal proba-
bility plot can then be used as a powerful graphic tool to identify the important parameter effects. In this plot,
the half-normal distribution is created in the same way as the standard normal distribution with mean zero,
except that only the positive half of the normal curve is considered. Thus, a positive normal value drawn from
the half-normal distribution is given as the expected half-normal value for each value of parameter effects,
ranked by increasing values. In other words, each parameter effect has an expected half-normal value in the
half-normal probability plot where the important parameters are those whose effects are far away from zero
while the unimportant parameters are those that have near-zero effects.

The FDA can be used as a promising pre-processing tool to identify the best EnKF settings with maximized
performance. The EnKF can then be used to derive the posterior distributions of hydrologic model parameters.
To further characterize predictive uncertainties, it is necessary to explore the forward propagation and evolu-
tion of parameter uncertainties in order to advance our understanding of the behavior of hydrologic systems.

2.3. Factorial Polynomial Chaos Expansion With Gaussian Anamorphosis
The polynomial chaos expansion (PCE), first introduced by Wiener (1938), can be used as a powerful tool to
characterize the evolution of uncertainty in hydrologic modeling systems through a series expansion of
orthogonal polynomials. By using the PCE, the probabilistic model output can be represented by:

y5a01
X1
i151

ai1 C1ðni1Þ1
X1
i151

Xi1

i251

ai1 i2 C2ðni1 ; ni2Þ1
X1

i1

Xi1

i251

Xi2

i351

ai1 i2 i3 C3ðni1 ; ni2 ; ni3Þ1 � � �; (12)

where y is the predicted streamflow, ni is the model parameter expressed in the form of the standard nor-
mal random variable, a0 and ai1 i2 ;...;id are the PCE coefficients, and Cdðni1 ; . . . ; nidÞ are the multivariate
Hermite polynomials of order d, which are the functions of random model parameters (Xiu & Karniadakis,
2002). The general expression of Hermite polynomials is given by:

Cdðni1 ; . . . ; nid
Þ5ð21Þd e

1
2n

T n @d

@ni1 . . . @nid

e21
2n

T n: (13)

The PCE coefficients are obtained by using the probabilistic collocation method that equates the PCE and
the corresponding model outputs at a set of selected collocation points (Li & Zhang, 2007). And the colloca-
tion points are selected from the roots of the Hermite polynomial of one degree higher than the order of
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the given PCE (Tatang et al., 1997). To improve the robustness of PCE, Wang et al. (2015b) proposed a facto-
rial polynomial chaos expansion (FPCE) which merged the strengths of the multi-factorial design and analy-
sis as well as the probabilistic collocation method for characterizing the forward propagation of parameter
uncertainties through hydrologic models. Thus, the FPCE can serve as an efficient approximation of a sto-
chastic system to represent the uncertainties in model outputs by orthogonal polynomials. Moreover, the
FPCE can explicitly reveal the pairwise interactions between model parameters affecting the predictive

Figure 2. Geographical location and topographic characteristics of the Guadalupe River basin.

Table 1
Initial Uncertainty Ranges of Model Parameters and Their ‘‘True’’ Values

Parameter Description Initial range True value

Cmax (mm) Maximum storage capacity of watershed [10, 1000] 635
bexp (2) Degree of spatial variability of soil moisture capacity [0.0, 10.0] 1.65
b (2) Factor distributing flow to the quick-flow tank [0.0, 1.0] 0.3
Rs (days21) Residence time of the slow-flow tank [0.0, 0.2] 0.1
Rq (days21) Residence time of the quick-flow tank [0.1, 1.0] 0.4
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performance, as well as the temporal variation in the parameter sensitivity during the period of hydrologic
predictions. Thus, the FPCE can provide meaningful insights into the complex dynamics and chaos in hydro-
logic prediction systems.

Since the convergence rate of the Hermite polynomials is optimal for Gaussian processes, data transforma-
tion techniques are needed when the posterior parameter distributions derived through data assimilation

Figure 3. Convergence of model parameters to ‘‘true’’ values. Shaded areas and solid lines represent 90% confidence
intervals and mean values, respectively. Crosses denote ‘‘true’’ parameter values.
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are not well characterized by normal Gaussian probability density functions. The Gaussian anamorphosis is
a powerful data transformation technique that can be used to establish a link between an arbitrarily distrib-
uted variable u and its Gaussian transform variable z:

z5G21 FðuÞð Þ; (14)

where G is the theoretical standard normal cumulative distribution function (CDF) of z, F(u) is the empirical
CDF of u, and can be obtained by (Johnson & Wichern, 1988; Sch€oniger et al., 2012):

Fj5
j20:5

N
; (15)

where N is the sample size, and j is the rank of the sample data. According to the empirical CDF Fj, the range
of the sample data can be determined by:

zmin 5G21 ð120:5Þ=Nð Þ; (16)

zmax 5G21 ðN20:5Þ=Nð Þ: (17)

When the data values lie outside the range from zmin to zmax, the anamorphosis function can be extrapo-
lated with a straight line that connects the lowest and the highest original data values and their respective
transformed values (Sch€oniger et al., 2012). The Gaussian anamorphosis is useful for transforming the poste-
rior parameter distributions into Gaussian distributions. The FPCE can then be applied as a statistical post-
processing tool to explore parameter interactions and to characterize predictive uncertainties. Such a sys-
tematic computational framework enhances the robustness of hydrologic prediction systems.

3. Experimental Setup

The unified data assimilation framework was applied to predict daily streamflow in the Guadalupe River
basin, south-central Texas. The Guadalupe River originates in Kerr County, and flows into the Guadalupe

Figure 4. Estimate of standardized effects including main and interaction effects for the EnKF design parameters. EnSize,
PreError, EvaError, and ObsError represent ensemble size, precipitation error, potential evapotranspiration error, and
streamflow observation error, respectively. (L) and (Q) denote linear and quadratic effects, respectively.
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Estuary with a mean daily discharge of 53 m3/s. The river has a drainage area of about 15,500 km2. Annual
precipitation ranges from 770 mm near the headwaters to 1,000 mm near the Gulf of Mexico (Sharif et al.,
2010). As shown in Figure 2, the Guadalupe River and its tributaries are a vital source of water for a number
of populous cities, including Kerrville, New Braunfels, San Marcos, Seguin, Lockhart, Gonzales, Cuero, Luling,
and Victoria. Streamflow conditions in the Guadalupe River basin are mainly affected by spring discharge,
rainfall-runoff processes, evapotranspiration, withdrawals for water supply, reservoir operations, and losses
to aquifer recharge (Ockerman & Slattery, 2008). The study area has a subtropical subhumid climate charac-
terized by hot summers and dry winters. Heaviest rainfall often occurs in spring and early summer, but can
occur anytime during the year. Thus, high and low rainfall periods are common, resulting in recurring floods
and droughts.

3.1. Data and Model
In this study, the meteorological and hydrological data for the Guadalupe River basin were collected from
the Model Parameter Estimation Experiment (MOPEX) data set (Duan et al., 2006). A total of four years of
data from January 1980 to December 1983 were used to assimilate daily streamflow such that the first year
was used as a spin-up period to reduce sensitivity to state-value initialization. Both synthetic and real data
assimilation experiments were conducted to demonstrate feasibility and applicability of the proposed
methodology. A synthetic experiment with predefined model parameters was first performed to generate
the ‘‘true’’ model states, and then the EnKF data assimilation was conducted using the synthetic data set

Figure 5. Desirability of model response for pairwise interactions between the EnKF design parameters. Desirability values range from 0.0 for an undesirable
response to 1.0 for a highly desirable response.
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such that the convergence of model parameters could be evaluated based on the predefined parameter
values. The assimilation experiment with real streamflow data was then performed when the performance
of the EnKF was validated.

Data assimilation experiments were conducted by using the HYMOD which is a widely used rainfall-runoff
model for probabilistic hydrologic predictions (Bulygina & Gupta, 2011; Sadegh & Vrugt, 2013; Young, 2013).
In the HYMOD, the runoff generation process partitions excess rainfall into surface storage characterized by
three quick-flow tanks and subsurface storage represented by a single slow-flow tank through a partitioning
factor (Moore, 2007). Thus, the total discharge from both quick- and slow-flow tanks is the generated
streamflow in the river basin.

The HYMOD has five parameters, including the maximum soil moisture storage capacity Cmax, the degree of spa-
tial variability in the storage capacity bexp, the factor to distribute flow between the quick- and slow-flow routing
b, the residence time of the slow-flow tank Rs, and the residence time of quick-flow tanks Rq. The initial ranges
of model parameters and their ‘‘true’’ values are given in Table 1. In addition, daily precipitation and potential
evapotranspiration are the forcing input data used to drive the HYMOD model. To account for various sources
of uncertainty through data assimilation using the EnKF, stochastic perturbations (representing errors) were
applied to precipitation and potential evapotranspiration data as well as streamflow observations, leading to an
ensemble of state variables. In this study, the precipitation error was assumed to have a log-normal distribution
while the potential evapotranspiration and the streamflow observation errors were assumed to have normal dis-
tributions. As a result, the specification of error parameters and the ensemble size is a key feature of the EnKF,
which plays an important role in the performance of hydrologic ensemble predictions.

3.2. Design of Statistical Pre- and Post-Processing Experiments
In this study, statistical pre-processing of data assimilation experiments was performed to identify the best
settings of the EnKF design parameters including the ensemble size, the precipitation error, the potential

Figure 6. Three-way interactions among the EnKF error parameters.
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evapotranspiration error, and the streamflow observation error. Three scenarios were given on the strength
of perturbations (error standard deviations), including 0.1 mm/day, 0.3 mm/day, and 0.5 mm/day. In addi-
tion, the ensemble sizes of 30, 60, and 100 were used in combination with various error parameters in the
pre-processing experiment. The FDA was performed to explicitly examine sensitivities of the EnKF design
parameters affecting the predictive accuracy, which provides meaningful information for achieving the best
performance of hydrologic data assimilation using the EnKF.

Figure 7. Temporal evolution of model parameters with 90% confidence intervals under the real data assimilation
scenario.
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When the posterior distributions of hydrologic model parameters were estimated, a statistical post-
processing experiment was also performed to further reveal the dynamics of parameter interactions
and sensitivities. Since the derived posterior parameter distributions can hardly be characterized by cer-
tain distributions such as normal and gamma distributions, the Gaussian anamorphosis can be used to
transform posterior parameter distributions into normal distributions. The normally distributed parame-
ters can then be propagated through the FPCE to efficiently produce probabilistic hydrologic
predictions.

Figure 8. Temporal evolution of model parameters with 90% confidence intervals by using a weighted parameter
sampling approach.
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We took into account various sources of uncertainty in hydrologic predictions, including the EnKF design
parameters, the forcing data and model parameters. However, the model structural error was not addressed

in this study, which might lead to biased hydrologic predictions
(Renard et al., 2010; Xu et al., 2017). Since both the EnKF design
parameters and model parameters may be adjusted to compensate
for the model structural error inherent in hydrologic predictions, it is
desired to explicitly characterize the model structural error in future
studies through a joint inference of model parameters and the struc-
tural error, enhancing the robustness of hydrologic predictions.

4. Results and Discussion

4.1. Assimilation of Synthetic Streamflow Data
A synthetic experiment was performed to examine the ability of the
EnKF algorithm to estimate the predefined model parameters. Figure
3 depicts the convergence of model parameters over a three-year
period. In terms of parameter identifiability, the first two parameters
relating to the soil moisture storage capacity, denoted by Cmax and
bexp, are easily identifiable, and they rapidly converge to the posterior
target distributions at the early stage of the streamflow assimilation
process. However, the uncertainty in the parameter estimation can be
underestimated when the parameter ensemble spreads shrink too
rapidly with a limited sample size, it is thus necessary to reduce the
potential risk of sample depletion with a sufficient ensemble size. In
comparison, the other three parameters including b, Rs and Rq are less
identifiable with larger uncertainty bounds. It is thus desired to further
analyze and characterize the uncertainty in streamflow predictions.

As the streamflow assimilation proceeds, the mean values of posterior
parameter distributions converge toward the ‘‘true’’ values predefined
as: Cmax 5 635 mm, bexp 5 1.65, b 5 0.3, Rs 5 0.1 days21, and Rq 5 0.4
days21. Furthermore, the ‘‘true’’ values of all parameters are covered
by the posterior confidence intervals derived through data assimila-
tion. Results verify that the EnKF algorithm is able to properly estimate
the ‘‘true’’ posterior parameters, and can thus be used for uncertainty
assessment of hydrologic model parameters and predictions in the
real data assimilation experiment.

4.2. Assimilation of Real Streamflow Data
When the performance of the EnKF algorithm was validated through
the synthetic experiment, a real data assimilation experiment was
conducted to predict daily streamflow in the Guadalupe River basin
over the same period of three years. To optimize the predictive perfor-
mance, the FDA was performed to identify the best settings of the
EnKF by examining potential interactions among the EnKF design
parameters. As shown in Figure 4, the precipitation error parameter
has the most significant impact on the predictive accuracy. This indi-
cates that any change in the precipitation error parameter could lead
to the largest variation of the RMSE value. In addition, the streamflow
observation error parameter, the ensemble size, and their interaction
have relatively large contributions to the predictive performance.

Figure 5 explicitly depicts all pairwise interactions between the EnKF
design parameters that affect the predictive performance using the
RMSE value. The response surface of desirability is produced by fitting
the predicted values of RMSE using a function based on differentFigure 9. Posterior distributions of model parameters.
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scenarios of the EnKF design parameters. In this study, the continuous
response surface is created by using the spline function that is defined
as a piecewise polynomial for interpolating discrete data points. The
desirability scores range from 0.0 representing an undesirable
response (i.e., largest RMSE value) to 1.0 representing a highly desir-
able response (i.e., smallest RMSE value). The pairwise interactions
between the potential evapotranspiration error parameter and the
other design parameters produce highly desirable response, especially
for the interaction between the potential evapotranspiration error and
the precipitation error parameters. In addition, when the ensemble
size increases gradually, its interactions with other parameters tend to
increase the desirability values accordingly.

Figure 6 shows the three-way interactions among the EnKF error
parameters, and reveals their contributions to the predictive accuracy.
The magnitude and direction of the interaction between the precipita-
tion error and the streamflow observation error parameters vary
dynamically depending on the settings of the potential evapotranspi-
ration error parameter. Such a three-way interaction analysis reveals
that the minimum value of RMSE would be obtained when the set-
tings of the precipitation error, the evapotranspiration error, and the
observation error parameters are 0.3 mm/day, 0.3 mm/day, and
0.1 mm/day, respectively. It is thus necessary to identify the best
parameter settings through exploring dynamic interactions among
the EnKF design parameters, which provides meaningful information
for advancing our understanding of the EnKF data assimilation system
and for maximizing the predictive performance. By using the FDA, the
best EnKF settings can be identified as: the precipitation
error 5 0.3 mm/day, the evapotranspiration error 5 0.3 mm/day, the
observation error 5 0.1 mm/day, and the ensemble size 5 100.

Figure 7 shows the temporal evolution of hydrologic model parame-
ters derived through the real streamflow assimilation using the EnKF
algorithm with the best parameter settings. In this real data assimila-
tion scenario, the patterns of parameter convergence to the posterior
distributions are similar to those generated in the synthetic experi-
ment, but the derived posterior parameter distributions vary greatly
from the synthetic experiment due to the assimilation of different
streamflow data. The first two parameters relating to the soil moisture
storage capacity rapidly converge to the posterior distributions; in
comparison, the other three parameters are less identifiable. This is
because the parameter evolution in the EnKF follows a random walk
by adding a small random perturbation at each time step, such a
parameter sampling scheme may result in an over-dispersion of
parameter samples.

To address the potential issue of the random walk parameter sam-
pling scheme, we also used an alternative parameter sampling
approach that estimated the posterior importance weight for each
parameter ensemble member based on the corresponding distance
from the observation in the state space, leading to a weighted param-
eter sample. Such a weighted parameter sampling approach is able to
reduce the parameter uncertainty by facilitating the parameter con-
vergence to posterior distributions in comparison with the random
walk parameter sampling. Figure 8 shows the evolution of model
parameters by using the weighted parameter sampling approach.

Figure 10. Estimation of the non-Gaussian characteristics of posterior distributions.
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Figure 11. Comparison of probabilistic streamflow time series generated through HYMOD and FPCE.

Figure 12. Probability plot of the 10 most significant effects.
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Results indicate that all parameters rapidly converge to their posterior distributions with a significant reduc-
tion of uncertainty. Thus, the weighted parameter sampling approach can be used as a potential extension
of the random walk approach to enhance the identifiability and to reduce the uncertainty in the parameter
estimation by using the EnKF.

4.3. Quantification of Predictive Uncertainty
The FPCE was used in this study to efficiently produce probabilistic streamflow predictions through a for-
ward propagation of parameter uncertainties. Figure 9 explicitly presents the posterior parameter distribu-
tions by assimilating streamflow observations. The Kolmogorov-Smirnov goodness-of-fit statistic was used
to perform a hypothesis testing for normality of posterior parameter distributions with a sample size of 100.
The derived p-values for model parameters Cmax, bexp, b, Rs, and Rq are 0.20, 0.20, 0.02, 0.03, and 0.20,
respectively. The test rejects the hypothesis of normality for the posterior distributions of parameters b and
Rs since their p-values are less than the significance level of 0.05. In fact, when more observations are assim-
ilated with Gaussian errors as time passes, the posterior parameter distributions derived through data
assimilation may become closer to Gaussian distributions, but not well approximated by normal Gaussian
probability density functions (Zhou et al., 2011).

To examine the robustness in the assessment of the posterior distributions of model parameters, the
impacts of sampling fluctuations on the estimation of the non-Gaussian characteristics of the posterior dis-
tributions were investigated by performing repeated simulation runs. As shown in Figure 10, the derived

Figure 13. Desirability of predicted response for pairwise parameter interactions.
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posterior distributions of model parameters are different from those shown in Figure 9, indicating that the
non-Gaussian characteristics of posterior parameter distributions vary due to the sampling fluctuations. Never-
theless, the characteristics of the high-frequency parameter values are similar while performing repeated simu-

lation runs. For instance, the parameter b always has the value of
approximately 0.35 with the highest frequency although its non-
Gaussian characteristics of the posterior distributions are different under
repeated simulation runs. These findings reveal that the sampling
fluctuations have a considerable influence on the estimation of the non-
Gaussian characteristics of the posterior distributions but have little
effect on the identification of the high-frequency parameter values.

Gaussian anamorphosis was used to transform the posterior parame-
ter distributions into normal distributions in order to quantify the
uncertainty in streamflow predictions through the FPCE. A five-
dimensional second-order FPCE was used in this study to characterize
predictive uncertainties because the HYMOD consists of five random
parameters. As shown in Figure 11, the probabilistic streamflow time
series derived from the FPCE agree well with the HYMOD simulation
results. This verifies that the FPCE can be used as an efficient alterna-
tive to the HYMOD for producing probabilistic streamflow predictions.

4.4. Sensitivities of Model Parameters and Their Interactions
The FPCE is capable not only of quantifying predictive uncertainties,
but also of examining the sensitivities of model parameters and their

Figure 14. Fitted surfaces of RMSE for the most significant interaction. Rq and Rs represent the quick- and slow-flow tank
parameters, respectively. The blue circles represent the samples of RMSE derived under nine parameter combinations.

Figure 15. Temporal variation in parameter sensitivity derived by using the
FPCE with time-varying coefficients.
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interactions. As shown in Figure 12, the residence time of the quick-flow tank, denoted as Rq, has the
greatest effect on the predictive accuracy. This indicates that the predicted daily streamflow is highly sen-
sitive to the variation of the residence time of the quick-flow tank, and thus the quick-flow tank parame-
ter plays a crucial role in streamflow predictions in the Guadalupe River basin. In addition, the interaction
between the quick- and slow-flow tank parameters has the most significant contribution to the predictive
performance.

Figure 13 presents all pairwise parameter interactions and the resulting desirability of predicted
response by using RMSE. Results reveal that the pairwise interactions between the quick-flow tank
parameter Rq and the other model parameters tend to produce highly desirable response values, espe-
cially when interacting with the degree of spatial variability of soil moisture capacity and with the resi-
dence time of the slow-flow tank. To further examine complex parameter interactions affecting the
predictive accuracy, Figure 14 depicts the fitted surface of RMSE derived from the most significant inter-
action between the quick- and slow-flow tank parameters. Since the second-order FPCE was used to
represent the uncertainty in streamflow predictions, a three-level FDA was performed to examine the

pairwise interactions between model parameters affecting the pre-
dictive accuracy. As a result, a set of the RMSE values were gener-
ated through streamflow predictions under all combinations (i.e.,
3 3 3 5 9) of two parameters with each having three scenarios,
leading to a fitted surface of RMSE for the pairwise parameter inter-
actions. As shown in Figure 14, the blue circles represent the sam-
ples of RMSE derived under nine parameter combinations
accordingly. It is indicated that the pairwise interaction would
achieve better predictive accuracy with smaller RMSE values while
increasing the values of the quick-flow tank parameter and
decreasing the values of the slow-flow tank parameter simulta-
neously. These findings provide insights into the parameter interac-
tions that affect model performance.

In this study, parameter sensitivities are calculated as the absolute val-
ues of the FPCE coefficients. The larger the FPCE coefficient, the more
sensitive the corresponding model parameter. Thus, the FPCE with
time-varying coefficients can be used to reveal the temporal variation
in the parameter sensitivity. As shown in Figure 15, parameter sensi-
tivities vary over time due to the changing hydrologic conditions. The
predictive performance is more sensitive to the variation in the quick-
flow tank parameter and the spatial variability of soil moisture

Figure 16. Temporal variation in parameter sensitivity derived by using the variance-based sensitivity analysis.

Figure 17. Total effects of model parameters derived by using the variance-
based sensitivity analysis.
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capacity when heavy rainfall occurs on days 167 (44.77 mm), 279 (93.23 mm), 286 (29.58 mm), 498 (41.57
mm), 695 (48.18 mm), 870 (28.06 mm), and 871 (26.27 mm).

To examine the robustness of the results obtained from the FPCE, the Sobol’ method was also used to per-
form the variance-based measures of parameter sensitivities. As shown in Figure 16, the parameters relating
to the residence time of the quick-flow tank Rq, the degree of spatial variability of soil moisture capacity
bexp, and the residence time of the slow-flow tank Rs have considerable impacts on the performance of
streamflow predictions, and their sensitivities vary continuously at a daily time step. These results are in
good agreement with those reported in Figure 12, indicating that the results derived from the FPCE are
robust and reliable in comparison with the variance-based global sensitivity analysis. In terms of the detec-
tion of parameter interactions, the variance-based sensitivity analysis method can only be used to provide a
total interaction effect of model parameters, as shown in Figure 17. In comparison, the FPCE has the advan-
tage of revealing the pairwise parameter interactions affecting the performance of streamflow predictions,
which provides meaningful insights into the exploration of the parameter space and reveals spatial varia-
tions in the predictive accuracy.

5. Conclusions

In this study, we developed a unified data assimilation framework for improving the robustness in
ensemble streamflow predictions. Statistical pre-processing of assimilation experiments was conducted
through the FDA to identify the best EnKF settings with maximized predictive performance. When the
posterior distributions of hydrologic model parameters were estimated through the EnKF data assimila-
tion experiment, statistical post-processing analysis was then performed through the FPCE to efficiently
quantify parameter interactions and predictive uncertainties. In addition, the Gaussian anamorphosis
was performed to build a seamless bridge between data assimilation and uncertainty quantification
through transforming posterior parameter distributions into normal distributions. Such a unified com-
putational framework improves the robustness of sequential data assimilation by using statistical pre-
and post-processing techniques, and strengthens our capability in providing probabilistic streamflow
predictions.

Both synthetic and real data assimilation experiments were conducted to demonstrate feasibility and appli-
cability of the proposed computational framework in the Guadalupe River basin, Texas. Results obtained
from the synthetic experiment verify the ability of the EnKF to properly estimate the posterior distributions
of model parameters. In comparison, the maximum soil moisture storage capacity parameter Cmax and the
degree of spatial variability of soil moisture capacity bexp are more identifiable, and they rapidly converge
to the posterior target distributions in the streamflow assimilation process. The EnKF can thus be applied to
the real data assimilation experiment for estimating model parameters and state variables. According to the
results obtained from the statistical pre-processing of assimilation experiments with real streamflow obser-
vations, the precipitation error parameter has the most significant impact on the predictive accuracy, and
its interaction with the streamflow observation error parameter varies dynamically depending on the set-
tings of the potential evapotranspiration error parameter. Such an interaction analysis reveals meaningful
information for advancing our understanding of the EnKF data assimilation system and for maximizing the
predictive performance.

Since the posterior parameter distributions derived through data assimilation can hardly be character-
ized by certain probability distributions, the Gaussian anamorphosis was used to transform posterior
parameter distributions into normal distributions for revealing predictive uncertainties and parameter
sensitivities. Our findings reveal that the quick-flow tank parameter Rq has the largest effect on the pre-
dictive performance, and its interactions with the other parameters tend to achieve better predictive
accuracy. In addition, parameter sensitivities vary over time due to the changing hydrologic characteris-
tics. The predictive performance is more sensitive to parameter variations for the days when heavy rain-
fall occurs.

The proposed statistical pre- and post-processing of data assimilation experiments are necessary to
enhance the robustness of hydrologic ensemble predictions. Thus, the unified data assimilation framework
has significant potential for performing robust hydroclimatic forecasting. The effectiveness and efficiency of
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the proposed methodology will be examined by using highly parameterized and complex hydroclimatic
models in future studies.
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