
 International Journal of 

Molecular Sciences

Review

Alternative mRNA Splicing in the Pathogenesis
of Obesity

Chi-Ming Wong 1,2,*, Lu Xu 2 and Mabel Yin-Chun Yau 3

1 Department of Health Technology and Informatics, The Hong Kong Polytechnic University,
Hong Kong, China

2 The State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine,
Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; irisxu@hku.hk

3 School of Medical and Health Sciences, Tung Wah College, Hong Kong, China; mabelyau@twc.edu.hk
* Correspondence: chi-ming.cm.wong@polyu.edu.hk; Tel.: +852-3400-8564

Received: 5 January 2018; Accepted: 21 February 2018; Published: 23 February 2018

Abstract: Alternative mRNA splicing is an important mechanism in expansion of proteome diversity
by production of multiple protein isoforms. However, emerging evidence indicates that only a limited
number of annotated protein isoforms by alternative splicing are detected, and the coding sequence
of alternative splice variants usually is only slightly different from that of the canonical sequence.
Nevertheless, mis-splicing is associated with a large array of human diseases. Previous reviews mainly
focused on hereditary and somatic mutations in cis-acting RNA sequence elements and trans-acting
splicing factors. The importance of environmental perturbations contributed to mis-splicing is
not assessed. As significant changes in exon skipping and splicing factors expression levels are
observed with diet-induced obesity, this review focuses on several well-known alternatively spliced
metabolic factors and discusses recent advances in the regulation of the expressions of splice variants
under the pathophysiological conditions of obesity. The potential of targeting the alternative mRNA
mis-splicing for obesity-associated diseases therapies will also be discussed.
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1. Introduction

Alternative mRNA splicing plays a key role in enhancing protein diversity [1]. Based on a recent
analysis of the statistics for annotated human nuclear genes in GeneBase 1.1, nearly 80% of human
protein-coding genes produce more than one transcript [2]. On average, human protein-coding genes
contain ~11 exons per transcript and produce 5.4 mRNAs per gene. The longest exon in human is exon
5 of the zinc finger and BTB domain containing 20 (ZBTB20) gene which has 24927 nucleotides (nt),
and the shortest human exon is exon 2 of septin 7 (SEPT7) gene with only two nt [2]. Most mammalian
pre-mRNAs contain short exonic sequences separated by longer intronic stretches.

Ninety-four percent of mammalian protein-coding exons exceed 51 nucleotides (nt) in length [3].
It was a greater challenge to recognize the micro-exons (≤51 nt) than for the longer exons by the process
of splicing machinery [3]. The size of human introns also varies considerably from 30 nt [intron 9 of
macrophage stimulating one like (MST1L) gene] to ~1,160,000 nt [intron 2 of roundabout guidance
receptor 2 (ROBO2) gene] [2]. Minimal length of intron is required for maintaining efficient splicing [4].
However, unlike the exons, short introns (>100 nt) are common in human transcriptome [5,6]. It is
noted that short introns promote the generation of protein isoforms and they are often alternatively
spliced [6].
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Existence of introns is still one of the biggest mysteries in biology. Huge energy is spent on
the production of introns and maintenance of the highly accurate cleavage/ligation mechanism.
It is a heavy burden on cells. It is generally accepted that alternative mRNA splicing of exons is
mainly for the production of multiple protein isoforms from the same gene [1]. The development of
high-throughput array and sequencing technologies entirely revolutionized the analysis of alternative
splicing events by allowing an unbiased assessment [7]. Remarkably, only a limited number of
annotated alternative isoforms are detected in proteomics studies [8]. In other words, despite multiple
alternative mRNA transcripts per gene are detected, most genes encode only one protein isoform
under most circumstances [9]. The phenomenon may be attributed to the rare expression of alternative
mRNA transcripts that express only in particular tissues and developmental stages [10,11].

It is also hypothesized that alternative mRNA splicing increases the chance of removal of the
important domains for modulating the protein-protein interactions. About 70% of the expressed
alternative isoforms lost more than 60 amino acid residues [8]. Surprisingly, recent transcriptome
analysis demonstrated highly alternative mRNA transcripts have similar coding sequences to that
of the canonical isoforms, and the sites for protein-protein interaction are usually protected from
alternative splicing-mediated removals [12]. Although further functional verification is required to
confirm the bioinformatics study, the findings strongly suggested that, the main function of generating
multiple protein isoforms by alternative mRNA splicing is not only for generating protein isoforms.
Possibilities of putative functions such as mRNA transport, nonsense mediated decay, regulation of
gene expression as well as mutational buffering are proposed [13].

Nevertheless, according to Human Gene Mutation Database, it was estimated that about
60% of disease-causing mutations are disturbing proper mRNA splicing [14]. Recent reviews have
provided extensive information on splicing mechanisms [15–17], and the pathological consequences of
mis-splicing that mutations in cis-acting RNA sequence elements and trans-acting splicing factors are
described [18–20]. However, as splicing dysregulation needs not be directly linked with any genetic
mutation, the number of splicing-related diseases shall be substantially underestimated. For example,
spontaneous gene mutations in obese subjects with insulin resistance are found but the incidences are
rare. Environmental factors play significant roles in their metabolic dysregulation [21,22], potentially by
extensive changes in alternative RNA processing [23]. The number and extent of diseases related to
splicing dysregulation, which have not been covered by the mutation databases, remain to be explored.

Obesity is a significant leading cause for metabolic diseases, especially for diabetes and
cardiovascular problems. The major changes associated with obesity include positive energy balance
and activation of immune system [24]. As alternative mRNA splicing is tightly regulated by signaling
pathway to cope with the physiological changes [23], diet-induced obesity model can be applied in
the investigations of the significance of alternative mRNA splicing in the pathogenesis of obesity.
Indeed, significant changes in the expression level of splice variants and splicing factors in association
with age and metabolic dysregulation in animal models, as well as in human populations, had already
been reported [25–30]. Dysregulation of alternative mRNA splicing may stipulate an important driver
of ageing process and metabolic diseases.

This review summarizes recent advances on a number of well-known alternative splicing
regulated metabolic factors as examples to illustrate the contribution of alternative mRNA mis-splicing
in metabolic dysregulation. The potential regulatory mechanism by various splicing factors altering the
expression of those splice variants under pathophysiological conditions are included. The possibility
by modulation of the expression level and activity of those splicing factors as potential therapeutic
targets for obesity-associated metabolic complications will also be discussed.
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2. Mis-Splicing of Metabolic Factors in Obesity

2.1. Insulin Receptor

Insulin receptor belongs to a subfamily of receptor tyrosine kinases and plays an important role
as regulators of cell growth, differentiation, and metabolism [31]. The human insulin receptor exists in
two isoforms differing by the presence of exon 11 (Figure 1) [32]. Exon 11, encodes 12 amino acids in
the C terminal of insulin receptor and is skipped in a developmental and tissue-specific manner [33].
In brief, insulin receptor type A (IR-A) lacking exon 11 is predominantly expressed during prenatal life
for growth and fetal development, and IR-B is predominantly expressed in well-differentiated adult
tissues such as the liver for metabolic insulin action [33]. IR-A and IR-B have similar binding affinity
for insulin, but different affinity for insulin-like growth factor (IGF)-2 and proinsulin (Figure 1) [34].
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Figure 1. Schematic figure representing insulin receptor (IR) splice variants. Exons 10–12 are
represented by boxes. Alternative splicing sites are depicted by connections with dashed lines.
The insulin receptor isoform A (IR-A) lacks exon 11 which codes for a 12-amino acid segment present
at the C terminal of the alpha chain of the isoform B (IR-B). The ligand binding affinity of human IR-A
and IR-B is expressed as IC50 values in picomol [35].

Based on the information above, it was hypothesized that insulin sensitivity might be associated
with the alteration of insulin receptor isoform expression. Many subsequent studies were performed to
explore the correlation between the expression of insulin receptor variants and insulin resistance [36–39].
As sequence analysis revealed that the region of exons 9 through 12 of rhesus insulin receptor gene is
very similar to that of humans, diabetic monkeys were used to explore the potential association between
hyperinsulinemia and alternations in the insulin receptor mRNA splicing in 1994 [40]. This study
provided the first direct evidence demonstrating that the hyperinsulinemic monkeys have higher levels
of IR-A in muscle than those non-hyperinsulinemic controls [40]. The same team further studied the
alternative splicing of insulin receptor in liver of normal, prediabetic, and diabetic monkeys. Increase of
IR-A level was also observed in the liver of a diabetic monkey, which was significantly correlated with
fasting plasma glucose and intravenous glucose disappearance rate [41].

Interestingly, in agreement with the findings in diabetic rhesus monkeys as mentioned above,
two recent studies demonstrated that IR-B mRNA variant increased in response to weight loss by either
low calorie diet [42] or bariatric surgery in human [43]. They demonstrated that the expression of
adipose IR-B is negatively correlated with fasting insulin levels [42,43]. Although conflicting data was
reported by other group [44] and the role of insulin receptor isoforms in noninsulin-dependent diabetes
mellitus remained elusive, the studies raised the possibility of cellular metabolic status alters the ratio
of splice variants. As splicing enhancer and silencer elements are responsible for the alternatively
spliced insulin receptor intron 10 and exon 11 [45], several splicing factors (namely hnRNPA1, SF3A,
and SFRS7) are proposed to have regulatory role in the exon inclusion of insulin receptor [42].
However, the findings were based on the correlation between the alternative splicing of insulin
receptor and the expression of those splicing factors. The detailed molecular mechanism remains to
be explored.
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Further investigation revealed that Serine and Arginine Rich Splicing Factor 3 (SRSF3; also known
as SRP20) play an important role in regulating the insulin receptor exon 11 skipping [45].
Overexpression of SFSR3 results in the inclusion of exon 11, and knockdown of SRSF3 leads to
exon 11 skipping in hepatoma cells [45]. In addition, as identified by genomic analysis identified many
genes are critical regulators for glucose and lipid homeostasis were mis-spliced in SRSF3HKO liver of
SRSF3 liver specific knockout (SRSF3HKO) mice [46]. However, information for the expression level
and activity of SRSF3 in obese and diabetes subjects is scarce. Further studies on the regulatory roles
of SFSR3 in hepatic glucose and lipid homeostasis under the pathological condition of obese subjects
are required.

2.2. Leptin Receptor

Leptin receptor (also known as obesity receptor, Ob-R) is expressed in several isoforms by
alternative mRNA splicing (Figure 2) [47]. According to the structural differences, the isoforms are
grouped into three classes: namely long, short, and secretory leptin receptors. All Ob-R isoforms
have similar N-terminal extracellular ligand-binding domain. The long isoform (named as OB-Rb) is
the full-length isoform, which is mainly expressed in the hypothalamus and immune cells and play
important roles in energy homeostasis and immunity, respectively [48]. OB-Rb is the only isoform that
can fully activate signal transduction. The development of the early obesity phenotype in db/db mice
is due to the lacking of Ob-Rb [49].

The short leptin isoforms include Ob-Ra, Ob-Rc, and Ob-Rd. Ob-Ra is the most common isoform
which can be found in various tissues (e.g., lung and kidneys) [48]. Although the short leptin isoforms
have also the transmembrane domain and a constant box 1 motif at the cytoplasmic domain which
binds JAK kinases to activate signal transduction, the main functions of the short isoforms are for
internalization and degradation of leptin [50]. Ob-Ra is significantly increased in db/db mice and
accounts for their inability to respond to leptin signals [51].

The soluble isoform (Ob-Re or sOB-R) lacks the intracellular and cytoplasmic domains. Ob-Re is
suggested to serve as a carrier protein that regulates serum leptin concentration by delaying the
clearance of leptin and competitor with membrane receptors for the ligand binding [47]. dbPas/dbPas
mice are grossly obese and exhibit hypercholesterolemia and hyperinsulinemia because soluble leptin
receptor is absent [52,53]. The leptin and soluble leptin receptor levels in obese and weight-losing
individuals are examined by soluble leptin receptor specific ELISA assay [54]. The expression level of
soluble leptin receptor is inversely correlated with body mass index (BMI). After weight loss due to
gastric restrictive surgery, the expression level of soluble leptin receptor slowly increased to normal
level a year after surgery [54]. In contrast to mice, the human soluble OB-R is exclusively generated
through proteolytic cleavage of the extracellular domain of membrane-anchored OB-R isoforms [55].
Mutations of leptin receptor gene are rare in humans [56], but polymorphisms in leptin receptor are
reported [57]. It solicits further studies in the detailed mechanism on the generation of OB-R isoform
and a fully evaluation of its physiological relevance in human [58].
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2.3. Nuclear Receptor Corepressor

Nuclear Receptor Corepressor (NCoR) is one of the most extensively characterized transcriptional
corepressors. NCoR mediates repression of nuclear receptors [thyroid hormone receptor, Liver X
receptor (LXR), and peroxisome proliferator activated receptor (PPAR)] by recruitment of
chromatin-modifying enzymes (e.g., histone deacetylase 3) [60]. A diverse series of corepressor protein
variants of NCoR is generated by alternative mRNA splicing, and different splice variants can exert
opposing transcriptional effects [61]. The difference betweenω and δ splice variants is by the presence
of exon 37, which encodes a third receptor interaction domain (RID) (Figure 3). NCoRω incorporates
the exon 37 and has three RIDs [61]. The expression of NCoRω predominates in the preadipocyte,
and overexpression of NCoRω inhibits adipose differentiation. In contrast, NCoRδ lacks exon 37 and
has only two RIDs [61]. The expression of NCoRδ predominates in the mature adipocyte while its
overexpression enhances adipose differentiation [61]. The number of RIDs regulates distinct panels of
target genes.

As many NCoR interacting nuclear receptors are playing key roles in the regulation of both
glucose and lipid metabolism [61], it was hypothesized that hormonal and nutritive events may
regulate the alternative mRNA splicing of NCoR [62,63]. Dexamethasone, a synthetic derivative of a
natural hormone that regulates glucose and lipid metabolism, was used to modulate the alternative
mRNA splicing of NCoR in both cultured cells and mice [63]. Elevated dietary carbohydrates alter
alternative NCoR mRNA splicing. In brief, fructose induced a shift from NCoRω to NCoRδ isoform
at the mRNA level in Hepa1-6 hepatocytes, and a shift from NCoRδ to NCoRω was observed in
liver tissue of high sucrose fed mice [63]. Although the data is relatively preliminary, the finding
strongly supports the idea that hormonal and nutritive events can modulate alternative NCoR mRNA
splicing. The precise mechanisms of the upstream nutrient-sensitive signaling pathways that regulate
the alternative splicing of NCoR1 shall be further clarified.
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Figure 3. Schematic figure representing nuclear receptor corepressor splice variants NCoRω and
NCoRδ. Generation of NCoRω and NCoRδ splice variants are by alternatively splicing at two different
5′ splice donor sites on exon 37. The relative positions of receptor interaction domains (RIDs) coded by
exon 37 and 38 are highlighted.

To examine the role of switching between NCoRω and NCoRδ in mice, NCoRω splice-specific
knockout (NCoRω−/−) mice was generated [62]. NCoRω−/− Mice exhibit greatly improved glucose
sensitivity that is refractory to diet induced diabetes [62]. It is interesting to note that, as compared
with other NCoR1 mouse model listed at Table 1, NCoRω−/− Mice display less severe and distinct
phenotypes. Splice-specific knockout mice convincingly indicate that the NCoR variants regulate
distinct target genes and hence different phenotypes. These results raise an important concern in
determining the roles of genes that encode several variants by alternative splicing in vivo, the particular
functions of the alternatively spliced variants could be overlooked by commonly-used whole-gene
knockout strategy.
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Table 1. Summary of the different Nuclear Receptor Corepressor 1 (NCoR1) mouse model.

Mouse Model Key Metabolic Phenotypes Proposed Mechanism Reference

DADm: single amino acid substitution
(Y478A) in the Ncor1 DAD domain that is
unable to associate with or activate Hdac3

Reduced weight and whole-body fat, Increased oxygen consumption
and heat production
Increased insulin sensitivity

Increased lipid consumption and obesity-resistant
metabolic phenotype [64]

NCoR ID : contains only 1 RID–N1 and thus
would be unable to interact with the thyroid
hormone receptor

Reduced body weight with a tendency for lower body fat content
Increased oxygen consumption Increased peripheral sensitivity to thyroid hormone [65]

Muscle-specific KO

Increased of both muscle mass and of mitochondrial number and
activity
Reduced LDL cholesterol
Improved insulin sensitivity
Decreased in the respiratory exchange ratio

Increased muscle quantity and oxidative profile [66]

Adipocyte-specific KO

Increased adipocyte hyperplasia
Reduced inflammation in adipose tissue
Increased insulin sensitivity in major metabolic organs (liver, fat and
muscle)

Decreased inflammation contributing to the
enhancement of insulin sensitivity [67]

NCoRω−/−: NCoRω splice-specific knockout

Increased glucose tolerance
Enhanced insulin resistance
Increased the size of adipocytes
Enhanced liver steatosis
Elevated total serum cholesterol level and LDL complexes
Reduced in the levels of circulating triglycerides and free fatty acids

Retention of the NCoRω splice variant counteracts
prodiabetic physiology in the animals on the HFD [62]
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2.4. LMNA

LMNA pre-mRNA produces three main isoforms (namely lamin A, progerin and lamin C) by
alternative mRNA splicing (Figure 3). Lamins A and C are two major proteins produced from LMNA
gene. The LMNA gene has 12 exons and generates lamins A and C by alternative splicing of exon
10 [68]. Both lamins A and C are nuclear intermediate-filament proteins. Progerin is an abnormal
truncated version of lamin A protein with deletion of 50 amino acids near the C terminal by mutation
(Figure 4). Progerin has also been found in cells and tissues from apparently healthy cells, although
its expression is very low [69]. Continuous expression of progerin is suggested contributing to aging
associated diseases [69]. Mutations in LMNA gene lead to several diseases called laminphathies
(e.g., Emery-Dreifuss Muscular dystrophy and Hutchison-Gilford progeria syndrome) [70]. It was
proposed that abnormalities in nuclear structure caused increased susceptibility to cellular damage by
the “Mechanical-stress” hypothesis as well as the inappropriate interaction between nuclear envelop
and chromatin components as explained the “Gene expression” hypothesis, respectively [71].
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Interestingly, lamin C mRNA level was dramatically increased in subcutaneous adipose tissue
of obese and type 2 diabetes patients [72]. Given that alternative mRNA splicing of LMNA is highly
conserved throughout mammalian evolution, mouse model was used to explore the functions of
LMNA isoforms [73]. Knock-in strategy was used to generate LMNA isoform specific expressing
mice and found that lamin C and progerin are antagonistic in signaling adipose mitochondrial
biogenesis and energy expenditure [74]. In brief, LmnaLCS/LCS mice exclusively expressing the lamin
C isoform exhibit obese phenotypes with decreased energy metabolism and mitochondrial activity [74].
In contrast, progerin-expressing mice (LmnaG609G/+) present a higher energy metabolism and are
lipodystrophic [74].

2.5. Lipin-1

Lipin-1 is an inducible transcriptional coactivator which is required for adipocyte differentiation
and lipid metabolism. Two lipin-1 protein isoforms (lipin-1A and lipin-1B) are generated by alternative
mRNA splicing of the LPIN1 (Figure 5). Lipin-1B differs from lipin-1A by the presence of exon 7.
The isoforms of LPIN1 serve distinct functions in adipocytes [75]. Lipin-1A is mainly expressed in
early states of differentiation of preadipocytes, but lipin-1B expression increases with differentiation
and is predominant in mature adipocytes. Lipin-1A induces the expression of adipogenic transcription
factors peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer-binding
protein-alpha (C/EBPα), whereas lipin-1B more effectively induces lipogenic genes such as fatty acid
synthase [75]. Studies on lipin-1-deficient mice and tissue-specific lipin-1 transgenic mice showed
that lipin-1 is required for adipocyte differentiation. Lipin influences fat mass and energy balance
in adipose tissues and skeletal muscle, respectively [76]. To further demonstrate the distinct role
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of lipin-1A and lipin-1B in vivo and disruption of the relative abundance of lipin-1A and lipin-1B,
splice-specific knockout lipin-1A and lipin-1B mice shall be generated.
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As mentioned in the introduction, a recent study demonstrated the downregulation of the
expression of many RNA processing genes, including SFRS10 (also known as transformer 2
beta homolog TRA2B) in key metabolic organs, liver, and skeletal muscle of obese subjects [28].
Sfrs10 heterozygous mice were generated to explore the role of RNA splicing factor in obesity-related
lipogenesis. Interestingly, LPIN1 is a splicing target of SFRS10. Reduced SFRS10 favors the expression
of lipogenic lipin-1B [28]. Sirtuin 1 (SIRT1), the key coordinator of the metabolic response to caloric
restriction, also plays a regulatory role in the expression of lipin-1B [77]. Ethanol inhibited the expression
of SIRT1 which leads to reduced SFRS10 mRNA and protein expression levels in liver [77]. In agreement
with previous findings, reduction of SFRS10 increases in expression of lipin-1B in parallel with a decrease
in the lipin-1A isoform [28]. Hepatic SIRT1-SFRS10-LIPIN-1A/B axis was explored in the pathogenesis
of alcoholic fatty liver disease [77]. Obesity-associated downregulation of SIRT1 in adipose tissues of
obese subjects were reported [78,79]. It is interesting to further explore if the SIRT1-SFRS10-LIPIN-1A/B
regulatory axis is conserved in adipose tissues.

3. The Expression Level of Splicing Factors Altered in Obese Subjects

A number of examples of alternative splicing being changed by hormonal or metabolic
signals have been reported [80]. For example, insulin signaling pathway may regulate alternative
mRNA splicing via phosphorylation of the splicing factors serine/arginine (SR)-rich proteins and
also heterogeneous nuclear ribonucleoproteins (HNRNP). In addition to the post-translational
modifications, recent studies demonstrated that expression of several RNA processing genes was
altered in various organs of obese subjects [29,81,82]. Further investigation on the dysregulation of
splicing machinery components of obesity may provide novel diagnostic and therapeutic tools for this
pandemic non-communicable disease.

3.1. RNA Binding Protein, Fox-1 Homolog 2

RNA Binding Protein, Fox-1 Homolog 2 (RBFOX2), encodes an RNA binding protein which binds
to a conserved element (U)GCAUG stretch in regulated exons or in flanking introns [83], and promotes
recruitment of U1 snRNP to the 5′ Splice site leading to inclusion of the alternative exon in the
mature transcript [84]. Recent studies demonstrated that RBFOX2 contributes to transcriptome changes
under diabetic conditions [81,82]. A genome wide analysis on the alternative splicing profiles of
the heart of Type 1 diabetic mouse was changed with a corresponding increase in RBFOX2 protein
levels [81]. PKC was identified as regulators of alternative mRNA splicing via the phosphorylation of
RBFOX2 [81]. In diabetic heart, the activation of PKC increases the phosphorylation of RBFOX2 which
leads to reactivation of fetal alternative splicing programs [81]. Inhibition of PKC activity reduces the
steady state levels of RBFOX2 protein [81].

A subsequent investigation demonstrated that RBFOX2 targets more than 70% of mis-spliced
pre-mRNAs of the diabetic hearts [82]. Consistent with the study mentioned above [81],
RBFOX2 protein levels increased during myocardial differentiation, but alternative splicing activity
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of RBFOX2 in diabetic hearts is surprisingly low [82]. The phenomenon is explained by the
increase of a dominant negative version, instead of the full-length, of RBFOX2 in cardiac tissues
of diabetic samples [82]. Dominant negative version of RBFOX2 is generated via exclusion of exon 6,
which encodes half to the RNA recognition motif (Figure 6). As a result, dominant negative RBFOX2
has lower RNA binding capability than its full-length RBFOX2, and calcium handling in diabetic
hearts is adversely affected by inhibiting RBFOX2 dependent splicing [82]. Although RBFOX proteins
facilitate a significant number of the splicing of micro-exons in muscle [3], only five genes relevant to
skeletal muscle physiology were found mis-spliced in skeletal muscles of diabetic type 1 despite an
elevated RBFOX1 protein levels [78]. A genome wide analysis on the alternative splicing profiles of the
skeletal muscle shall be performed. In addition, it is interesting to further explore whether truncated
RBFOX2 could be found in human as RRM domain of human RBFOX2 also located on exon 5 to 7 [85].
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3.2. Neuro-Oncological Ventral Antigen (NOVA) Splicing Factors

Exon skipping is the most common form of HFD-induced mis-splicing [29]. The phenomenon
seemed to be adipose tissue specific, as very few HFD-induced mis-splicing were detected in
the liver [29]. As NOVA potential binding sites were identified on the mis-spliced pre-mRNAs,
NOVA cross-linking immunoprecipitation followed by sequencing (CLIP-seq) was performed to
confirm the direct involvement of NOVA proteins in the HFD-induced exon inclusion [29].

NOVA1 and NOVA2 are highly homologous neuron specific RNA-bind proteins and function
as alternative splicing regulators. Both NOVA1 and NOVA2 proteins are found in adipocytes [29,86].
HFD treatment decreased NOVA expression in adipose tissues. Adipocyte-specific NOVA deficiency
mice were generated to explore the contribution of NOVA to metabolic regulation [29]. Similar to HFD
treatment, exon skipping was the most common form of mis-splicing due to NOVA deficiency [29].

Targeting thermogenesis in adipose tissues is a potential strategy treating obesity [87–89].
Adipocytes deficient in the NOVA splicing factors displayed increased thermogenesis [29]. The finding
is in agreement with the study that demonstrated action of NOVA1 as a brown-adipogenic repressor
and manifested the regulation of RNA-binding motif protein 4a (RBM4a) on the expression of
NOVA1 [86]. A recent publication showed that body temperature cycles drive rhythmic SR protein
phosphorylation to control an alternative splicing program [90]. Change of 1 ◦C in body temperature is
sufficient to induce a concerted splicing switch in a large group of functionally related genes [90]. It is
interesting to further explore if alternative mRNA splicing can function as negative feedback system in
the regulation of thermogenesis.

4. Alternative Splicing as a Therapeutic Target for Obesity

The section above summarizes the emerging evidences of detection of alternative mRNA
mis-splicing in obese subjects and discuss the potential of mis-splicing as the root cause of the metabolic
dysregulations. Targeting mis-splicing to treat human diseases, gene therapy is one of the approaches
to fix the errors in the splicing process raised by mutated cis- and trans-regulatory elements [91].
Therapeutic strategies by small molecule modulators for post-translational modification of splicing
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factors, antisense oligonucleotides, and trans-splicing have been proposed as potential therapies [92,93].
Several spliceosome inhibitors have been used to treat cancer [94] but exert pronounced cytotoxic
effects resulting in abnormal alternative splicing [95,96].

Remarkably, many Food and Drug Administration (FDA) approved marketed drugs,
including metformin, affect the alternative splicing machinery [97,98]. Metformin is the first-line
anti-diabetic drug which reduces hepatic glucose production, increases intestinal glucose utilization,
increases GLP-1 production and alters the composition of the gut microbiota [99]. The proposed
underlying molecular mechanisms of metformin are very complicated [100]. A recent study tested the
effect of metformin in the treatment of a “spliceopathy-associated” disease, myotonic dystrophy type I
(also known as Steinert’s diseases) [98]. Metformin was proposed to act as a modifier of alternative
mRNA splicing of a subset of genes mis-splicing in myotonic dystrophy type 1 by activation of AMPK
and downregulation of the expression of the RNA-binding protein 3 (RBM3) [98]. It is interesting to
explore whether metformin can also fix the pathological mis-splicing in obesity.

In the previous section, we discussed the importance of lamin A/C mRNA level in energy
metabolism [72,74]. LMNA luciferase reporter assay was developed for the screening of small
molecules modulating SR protein activity [101]. A small molecule named as ABX300 was identified
which can abrogate diet-induced obesity by modulating LMNA isoforms via serine and arginine rich
splicing factor 1 (SRSF1) in HFD-fed mice [102]. SRSF1 also known as alternative splicing factor 1
(ASF1) and tends to promote exon skipping [101]. A previous study demonstrated that an indole
derivative IDC16 inhibits HIV pre-mRNA splicing via targeting SRSF1 [103]. Based on the structure
of IDC16, ABX300 was developed. Treatment of ABX300 reversed the mis-splicing induced by HFD
potentially by directly binding to and inhibition of SRSF1 [102]. ABX300 also altered the metabolic
rate or energy expenditure of mice by promoting the expression of the genes that prevent fat gain or
induce fat loss when mice are on HFD [102]. Most importantly, ABX300 did not have any adverse
effect on lean mice of normal weight during the study [102]. As the amino acid sequences of human
and mouse SRSF1 are 100% identical, it is interesting to explore the translational potential of ABX300
in anti-obesity treatment.

Alternative splicing is regulated by differential splicing factors binding to cis-acting sequences
in the pre-mRNA. Antisense oligonucleotides can act as “splice-switchers” by binding to splicing
enhancer or splicing silencer elements on the pre-mRNA to modulate alternative splicing [104].
For instance, exon skipping can be induced by using antisense oligonucleotides that bind to the
splicing enhancer sequence and create a steric hindrance that blocks the recruitment of stimulatory
splicing factor. Vice versa, antisense oligonucleotides binding to splicing silencer elements can promote
exon inclusion by preventing the recruitment of negative splicing factors [104].

Serotonin 2C receptor (5-HTR2c) is involved in controlling appetite and food consumption.
Alternative exon skipping generates a truncated 5-HTR2c protein isoform [105]. The transcript,
including exon 5b, encodes the full-length serotonin 2C receptor (5-HTR2c-FI), but the transcript
loss of exon 5b changes the amino acid reading frame and leads to the production of a truncated
receptor (5-HTR2c-Tr) (Figure 7). The truncated serotonin 2C receptor (5-HTR2c-Tr) dimerizes with
the full-length serotonin 2C receptor (5-HTR2c-FI) and prevents the full-length receptor to reach the
plasma membrane [106]. Serotonin enhances satiety and hence reduces food intake [107]. As a result,
endoplasmic reticulum retention of 5-HTR2c inhibits serotonin signaling [106].
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very different subcellular distribution.

A recent study demonstrated that a snoRNA, SNORD115, regulates the alternative mRNA splicing
of serotonin 2C receptor [108] and is missing in patients with Prader-Willi syndrome [109]. The 18 nt
oligonucleotide (complementarity against exon 5b and intron 5) promoted the inclusion of exon 5b
into the pre-mRNA of 5-HTR2c, and reduced food uptake by increasing the ratio of 5-HTR2c-FI in
a mouse model [110]. However, elevated anxiety and hypoactivity with overexpression of 5-HTR2c
were reported when intracerebroventricular or carotid injection was used in the delivery of the
oligonucleotide [110,111]. Improvement on oligonucleotide delivery is required and potential side
effects of the oligonucleotide treatment shall be explored.

Intrathecal injection via lumber puncture is one of the promising ways to deliver antisense
oligonucleotide to the central nervous system [112]. Nusinersen (marketed as Spinraza; a modified
antisense oligonucleotide) was the first approved drug for Spinal Muscular Atrophy (SMA) in
December 2016 [113]. SMA is a hereditary disease with global muscle atrophy caused by reduction
of survival motor neuron (SMN) protein in spinal cord α-motor neurons [114]. SMN is involved in
snRNP assembly, intron retention and DNA damage [115,116]. Reduction of SMN is proposed to
disrupt the function of axons by affecting pre-mRNA splicing [117]. In human, two genes SMN1 and
SMN2 encode SMN. SMN1 and SMN2 share almost identical amino acid sequences [118]. The critical
difference between SMN1 and SMN2 is a single nucleotide difference in exon 7 which play a key role
regulating the splicing of the genes [118]. Due to a single nucleotide change, the majority of SMN2
transcripts lack of exon 7 and produce truncated SMN proteins (Figure 8). The truncated SMN proteins
are rapidly degraded and decrease the oligomerization efficiency [119]. Nusinersen promotes the
inclusion of exon 7 by binding to intron splicing silencer-N1 and hence increasing the production of
full length SMN2 protein [120]. Clinical trials in SMA patients have demonstrated that administration
of nusinersen to the central nervous system using intrathecal injection significantly improved motor
function [113].
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Figure 8. Human SMN1 and SMN2 genes are located respectively in the telomeric and centromeric
region of chromosome 5. The single nucleotide difference in exon 7 (C or T as indicated) of SMN1 and
SMN2 gene affects their splicing. The single nucleotide change from C to T drastically reduces the
efficiency of exon 7 inclusion and increase the production of the truncated mRNAs and proteins [121].
SMN has been shown to self-associate and functions as an oligomer [117]. The stability of SMN protein
is highly influenced by oligomerization [119]. The splice variant lacking exon 7 (SMN∆7) impairs
oligomerization leading to rapid degradation of SMN [119]. SMN2 is present in all SMA patients.
Splice intervention therapies promote SMN2 exon 7 retention offer a promising approach for SMA
therapy by increasing the amount of full-length SMN2 transcript [122].

As SMN is a ubiquitously expressed protein and metabolic dysregulations associated with
SMA have been reported [123–125], heterozygous Smn-depleted [126] and severe SMA (Smn−/−;
SMN2+/0) [127] mouse models had been employed to investigate the role of SMN in metabolism.
Interestingly, metabolic function of Smn-depleted mice is indistinguishable from the wild type.
However, after metabolically challenged with a high-fat diet, Smn(+/−)mice display abnormal
localization of glucagon-producing alpha-cells within the pancreatic islets, increased number of
insulin-producing beta cells, hyperinsulinemia and increased hepatic glucagon sensitivity [126].
In addition, in the severe SMA mouse model, subcutaneous administration of antisense oligonucleotide,
which restored SMN expression, also restored the expression of hepatic IGF1 in SMA mice to
normal levels [127]. The findings strongly suggested the importance of SMN in the metabolism
of peripheral tissues. It is interesting to further explore the therapeutic potential of nusinersen in the
treatment of metabolic diseases such as fatty acid metabolism and glucose homeostasis by systemic
administration [128].

5. Conclusions

There is a growing interest in the role of alternative mRNA splicing in obese-related metabolic
dysregulation. In Table 2, we summarized the splice variants described in this review known to play in
metabolic diseases. The examples of alternative mRNA splicing contributed to obese-related diseases
cited in this review are far from comprehensive. As recent studies demonstrated, dramatic change of
splice variants is detected under different environmental and pathological conditions. Findings provide
new information in the development of novel therapeutics by fixing splicing dysregulation.
Further investigation on the mechanism of producing and functional consequence of the splice variants
are required. The splice-specific KO mice and transgenic mice overexpressing particular splice variant
are important tools for investigating unique function of each alternatively spliced variants.
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Table 2. Summary of the splice variants described in this review known to play a role in
metabolic diseases.

Gene
Changes of Variant Level in
Pathological Conditions of

Obese Subject
Key Changes in Metabolic Phenotypes References

Insulin receptor (IR) Increase IR-A (skipping of
exon 11) in the liver

Correlate with fasting plasma glucose and
insulin level [41–43]

Leptin receptor (OB-R) Decrease soluble OB-R * Correlate with body mass index [52–54]

LMNA Increase Lamin C in subcutaneous
adipose tissue Correlate with type 2 diabetes [72]

Lipin-1 Increase Lipin 1-A (skipping of 7)
in liver Cause alcoholic fatty liver disease [76]

RNA Binding Protein,
Fox-1 Homolog 2

(RBFOX2)

Increase truncated RBFOX2
(skipping of exon 6) in heart Lower calcium handling in diabetic heart [81]

Serotonin 2C receptor
(5-HTR2c)

Increase truncated 5-HTR2c
(skipping of exon 5b) in brain Reduce satiety and enhance food intake [109]

Remark: * The mechanisms of the soluble OB-R production in human and mouse are different [55].

Many approaches have been proposed to manipulate splicing. Use of antisense oligonucleotides
is an attractive therapeutic approach for the treatment of diseases related to mis-splicing. The stability
and delivery of antisense oligonucleotides are greatly improved by the recent advancement in
chemically modifications of the oligonucleotides and delivery methods [104,129]. Numerous antisense
oligonucleotides have progressed to human clinical trial for diseases such as muscular dystrophy [130].
While antisense oligonucleotides are still struggling their ways to the clinic, major challenges include
off-target effects, efficacy, and immune system activation [131]. Interestingly, many marketed drugs
also regulate the alternative splicing machinery, the contribution of those marketed drugs for the
treatment of diseases in targeting alternative RNA splicing remains to be explored. Massive researches
are still required in the future.
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