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With the previous results for the analytical blowup solutions of the N-dimensional
�N�2� Euler–Poisson equations, we extend the same structure to construct an
analytical family of solutions for the isothermal Navier–Stokes equations and pres-
sureless Navier–Stokes equations with density-dependent viscosity. © 2008 Ameri-
can Institute of Physics. �DOI: 10.1063/1.3013805�

I. INTRODUCTION

The Navier–Stokes equations can be formulated in the following form:

�t + � · ��u� = 0,

�1�
��u�t + � · ��u � u� + � � P = vis��,u� .

As usual, �=��x , t� and u�x , t� are the density and the velocity, respectively. P= P��� is the
pressure. We use a �-law on the pressure, i.e.,

P��� = K��, �2�

with K�0, which is a universal hypothesis. The constant �=cP /cv�1, where cp and cv are the
specific heats per unit mass under constant pressure and constant volume, respectively, is the ratio
of the specific heats. � is the adiabatic exponent in �2�. In particular, the fluid is called isothermal
if �=1. It can be used for constructing models with nondegenerate isothermal fluid. � can be the
constant 0 or 1. When �=0, we call the system pressureless; when �=1, we call that it is with
pressure. Additionally, vis�� ,u� is the viscosity function. When vis�� ,u�=0, the system �1� be-
comes the Euler equations. For the detailed study of the Euler and Navier–Stokes equations, see
Refs. 1 and 4. In the first part of this article, we study the solutions of the N-dimensional
�N�1� isothermal equations in radial symmetry,

�t + u�r + �ur +
N − 1

r
�u = 0,

�3�
��ut + uur� + �K� = vis��,u� .

Definition 1: �Blowup� We say a solution blows up if one of the following conditions is
satisfied.

�1� The solution becomes infinitely large at some point x and some finite time T.
�2� The derivative of the solution becomes infinitely large at some point x and some finite time T.

For the formation of singularity in the three-dimensional case for the Euler equations, please
refer to the paper of Sideris.10 In this article, we extend the results from the study of the �blowup�
analytical solutions in the N-dimensional �N�2� Euler–Poisson equations, which describes the
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evolution of the gaseous stars in astrophysics2,3,7,12,13 to the Navier–Stokes equations. For the same
kinds of blowup results in the nonisothermal case of the Euler or Navier–Stokes equations, please
refer to Refs. 5 and 12.

Recently, in Yuen’s results,13 there exists a family of the blowup solution for the Euler–
Poisson equations in the two-dimensional radial symmetry case,

�t + u�r + �ur +
1

r
�u = 0,

�4�

��ut + uur� + K�r = −
2��

r
�

0

r

��t,s�sds .

The solutions are

��t,r� =
1

a�t�2ey�r/a�t��, u�t,r� =
ȧ�t�
a�t�

r ,

ä�t� = −
�

a�t�
, a�0� = a0 � 0, ȧ�0� = a1, �5�

ÿ�x� +
1

x
ẏ�x� +

2�

K
ey�x� = �, y�0� = 	, ẏ�0� = 0,

where K�0, �=2� /K with a sufficiently small �, and 	 are constants.

�1� When ��0, the solutions blow up in a finite time T.
�2� When �=0, if a1
0, the solutions blow up at t=−a0 /a1.

In this paper, we extend the above result to the isothermal Navier–Stokes equations in radial
symmetry with the usual viscous function

vis��,u� = v�u ,

where v is a positive constant,

�t + u�r + �ur +
N − 1

r
�u = 0, �6a�

��ut + uur� + K�r = v�urr +
N − 1

r
ur −

N − 1

r2 u� . �6b�

Theorem 2: For the N-dimensional isothermal Navier–Stokes equations in radial symmetry
(6a) and (6b), there exists a family of solutions; those are

��t,r� =
1

a�t�Ney�r/a�t��, u�t,r� =
ȧ�t�
a�t�

r ,

ä�t� =
− �

a�t�
, a�0� = a0 � 0, ȧ�0� = a1, �7�

y�x� =
�

2K
x2 + 	 ,
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where 	 and � are arbitrary constants.
In particular, for ��0, the solutions blow up in finite time T.
In the last part, the corresponding solutions to the pressureless Navier–Stokes equations with

density-dependent viscosity are also studied.

II. THE ISOTHERMAL „�=1… CASES

Before we present the proof of Theorem 2, Lemma 6 of Ref. 13 could be needed to further
extend to the N-dimensional space.

Lemma 3: �The Extension of Lemma 6 of Ref. 13� For the equation of conservation of mass
in radial symmetry,

�t + u�r + �ur +
N − 1

r
�u = 0, �8�

there exist solutions

��t,r� =
f�r/a�t��

a�t�N , u�t,r� =
ȧ�t�
a�t�

r , �9�

with the form f �0�C1 and a�t��0�C1.
Proof: We just plug �9� into �8�. Then

�t + u�r + �ur +
N − 1

r
�u =

− Nȧ�t�f�r/a�t��
a�t�N+1 −

ȧ�t�r ḟ�r/a�t��
a�t�N+2 +

ȧ�t�r
a�t�

ḟ�r/a�t��
a�t�N+1 +

f�r/a�t��
a�t�N

ȧ�t�
a�t�

+
N − 1

r

f�r/a�t��
a�t�N

ȧ�t�
a�t�

r = 0.

The proof is completed. �

Besides, Lemma 7 of Ref. 13 is also useful. For the better understanding of the lemma, the
proof is given here.

Lemma 4: �Lemma 7 of Ref. 13� For the Emden equation,

ä�t� = −
�

a�t�
,

�10�
a�0� = a0 � 0, ȧ�0� = a1,

we have that, if ��0, there exists a finite time T−
 +� such that a�T−�=0.
Proof: By integrating �10�, we have

0 
1
2 ȧ�t�2 = − � ln a�t� + � , �11�

where �=� ln a0+ 1
2a1

2.
From �11�, we get

a�t�  e�/�.

If the statement is not true, we have

0 
 a�t�  e�/� for all t � 0.

However, since
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ä�t� = −
�

a�t�


− �

e�/� ,

we integrate this twice to deduce

a�t�  �
0

t �
0

� − �

e�/�dsd� + C1t + C0 =
− �t2

2e�/� + C1t + C0.

By taking t large enough, we get

a�t� 
 0.

As a contradiction is met, the statement of the lemma is true. �

By extending the structure of the solutions �5� to the two-dimensional isothermal Euler–
Poisson equations �4� in Ref. 13, it is a natural result to get the proof of Theorem 2.

Proof of Theorem 2: By using Lemma 3, we can get that �7� satisfy �6a�. For the momentum
equation, we have

��ut + u · ur� + K�r − v�urr +
N − 1

r
ur −

N − 1

r2 u� = �
ä�t�
a�t�

r +
K

a�t�
�ẏ� r

a�t�
�

=
�

a�t��−
�r

a�t�
+ Kẏ� r

a�t�
�	 .

By choosing

y�x� =
�

2K
x2 + 	 ,

we have verified that �7� satisfies the above �6b�. If ��0, by Lemma 4, there exists a finite time
T for such that a�T−�=0. Thus, there exist blowup solutions in finite time T. The proof is com-
pleted. �

With the assistance of the blowup rate results of the Euler–Poisson equations, i.e., Theorem 3
in Ref. 13, it is trivial to have the following theorem.

Theorem 5: With ��0, the blowup rate of the solutions (7) is

lim
t→T�

��t,0��T� − t�	 � O�1� ,

where the blowup time T� and 	
N are constants.
Remark 6: If we are interested in the mass of the solutions, the mass of the solutions can be

calculated by

M�t� = �
RN

��t,s�ds = 	�N��
0

+�

��t,s�sN−1ds ,

where 	�N� denotes some constant related to the unit ball in RN: 	�1�=1; 	�2�=2�; for N�3,

	�N� = N�N − 2�V�N� = N�N − 2�
�N/2

��N/2 + 1�
,

where V�N� is the volume of the unit ball in RN and � is the gamma function. We observe the
following for the mass of the initial time 0:

�1� For ��0,
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M�0� =
	�N�

a0
N �

0

+�

e��/2K�s2+	sN−1ds .

The mass is infinitive. The very large density comes from the ends outside the origin O.
�2� For �
0,

M�0� =
	�N�

a0
N �

0

+�

e��/2K�s2+	sN−1ds =
	�N�e	

a0
N �

0

+�

e��/2K�s2
sN−1ds .

The mass of the solution can be arbitrarily small but without compact support if 	 is taken
to be a very small negative number.

Remark 7: Our results can be easily extended to the isothermal Euler/Navier–Stokes equa-
tions with frictional damping term with the assistance of Lemma 7 in Ref. 12,

�t + u�r + �ur +
N − 1

r
�u = 0,

��ut + u · ur� + K�r + ��u = v�urr +
N − 1

r
ur −

N − 1

r2 u� ,

where ��0 and v�0. The solutions are

��t,r� =
ey�r/a�t��

a�t�N , u�t,r� =
ȧ�t�
a�t�

r ,

ä�t� + �ȧ�t� =
− �

a�t�
, a�0� = a0 � 0, ȧ�0� = a1,

y�x� =
�

2K
x2 + 	 .

Remark 8: Our results can be easily extended to the isothermal Euler/Navier–Stokes equa-
tions with frictional damping term with the assistance of Lemma 7 in Ref. 12,

�t + u�r + �ur +
N − 1

r
�u = 0,

��ut + u · ur� + K�r + ��u = v�urr +
N − 1

r
ur −

N − 1

r2 u� ,

where ��0 and v�0. The solutions are

��t,r� =
ey�r/a�t��

a�t�N , u�t,r� =
ȧ�t�
a�t�

r ,

ä�t� + �ȧ�t� =
− �

a�t�
, a�0� = a0 � 0, ȧ�0� = a1,

y�x� =
�

2K
x2 + 	 .
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Remark 9: The solutions (5) to the Euler–Poisson equations only work for the two-
dimensional case. However, the solutions (7) to the Navier–Stokes equations work for the
N-dimensional �N�1� case.

Remark 10: We may extend the solutions to the two-dimensional Euler/Navier–Stokes equa-
tions with a solid core,6

�t + u�r + �ur +
1

r
�u = 0,

��ut + uur� + K�r + ��u =
M0

r
+ v�urr +

1

r
ur −

1

r2u� ,

where M0�0; there is a unit stationary solid core locating �0,r0�, where r0 is a positive constant,
surrounded by the distribution density. The corresponding solutions are

��t,r� =
ey�r/a�t��

a�t�2 , u�t,r� =
ȧ�t�
a�t�

r for r � r0,

ä�t� + �ȧ�t� =
− �

a�t�
, a�0� = a0 � 0, ȧ�0� = a1,

y�x� =
�

2K
x2 + M0 ln x + 	 ,

where 	�−� /2K is a constant.

III. PRESSURELESS NAVIER–STOKES EQUATIONS WITH DENSITY-DEPENDENT
VISCOSITY

Now we consider the pressureless Navier–Stokes equations with density-dependent viscosity,

vis��,u� � � ����� � · u� ,

in radial symmetry,

�t + u�r + �ur +
N − 1

r
�u = 0,

�12�

��ut + uur� = ������rur + �����urr +
N − 1

r
ur −

N − 1

r2 u� ,

where ���� is a density-dependent viscosity function, which is usually written as �������� with
the constants �, ��0. For the study of this kind of the above system, the readers may refer to
Refs. 8, 9, and 11.

We can obtain the same estimate about Lemma 4 to the following ordinary differential equa-
tion �ODE�:

ä�t� =
�ȧ�t�
a�t�2 ,

�13�

a�0� = a0 � 0, ȧ�0� = a1 
�

a0
.
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Lemma 11: For the ODE (13), with ��0, there exists a finite time T−
 +� such that
a�T−�=0.

Proof: If a�t��0 and ȧ�0�=a1� /a0 for all time t, by integrating �13�, we have

ȧ�t� = −
�

a�t�
−

�

a0
+ a1  −

�

a�t�
. �14�

Take the integration for �14�,

�
0

t

a�s�ȧ�s�ds  − �
0

t

�ds ,

1
2 �a�t��2  − �t + 1

2a0
2.

When t is very large, we have

1
2 �a�t��2  − 1.

A contradiction is met. The proof is completed. �

Here we present another lemma before proceeding to the next theorem.
Lemma 12: For the ODE,

ẏ�x�y�x�n − �x = 0,

�15�
y�0� = 	 � 0, n � − 1,

where � and n are constants, we have the solution

y�x� =
n+1
1

2 �n + 1��x2 + 	n+1.

Proof: The above ODE �15� may be solved by the separation method,

ẏ�x�y�x�n − �x = 0,

ẏ�x�y�x�n = �x .

By taking the integration with respect to x,

�
0

x

ẏ�x�y�x�ndx = �
0

x

�xdx ,

we have

�
0

x

y�x�nd�y�x�� = 1
2�x2 + C1, �16�

where C1 is a constant.
By integration by part, then the identity becomes

y�x�n+1 − n�
0

x

y�x�n−1ẏ�x�y�x�dx =
1

2
�x2 + C1,
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y�x�n+1 − n�
0

x

ẏ�x�y�x�ndx =
1

2
�x2 + C1.

From Eq. �16�, we can have the simple expression for y�x�,

y�x�n+1 − n� 1
2�x2 + C1� = 1

2�x2 + C1,

y�x�n+1 = 1
2 �n + 1��x2 + C2,

where C2= �n+1�C1.
By plugging into the initial condition for y�0�, we have

y�0�n+1 = 	n+1 = C2.

Thus, the solution is

y�x� =
n+1
1

2 �n + 1��x2 + 	n+1.

The proof is completed. �

The family of the solution to the pressureless Navier–Stokes equations with density-dependent
viscosity,

�t + u�r + �ur +
N − 1

r
�u = 0, �17a�

��ut + uur� = �����rur + ����urr +
N − 1

r
ur −

N − 1

r2 u� , �17b�

is presented as the following.
Theorem 13: For the pressureless Navier–Stokes equations with density-dependent viscosity

(17a) and (17b) in radial symmetry, there exists a family of solutions.
For �=1,

��t,r� =
ey�r/a�t��

a�t�N , u�t,r� =
ȧ�t�
a�t�

r ,

ä�t� =
�ȧ�t�
a�t�2 , a�0� = a0 � 0, ȧ�0� = a1,

y�x� =
�

2�
x2 + 	 ,

where 	 and � are arbitrary constants. In particular, for ��0 and a1� /a0, the solutions blow
up in finite time. For ��1,

��t,r� = �
y�r/a�t��

a�t�N for y� r

a�t�
� � 0;

0 for y� r

a�t�
� 
 0 �, u�t,r� =

ȧ�t�
a�t�

r ,

ä�t� =
− �ȧ�t�

a�t�N�−2N+2 , a�0� = a0 � 0, ȧ�0� = a1, �18�
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y�x� =
�−1
1

2
�� − 1�

− �

��
x2 + 	�−1,

where 	�0.
Proof of Theorem 13: To �17a�, we may use Lemma 3 to check it. For �=1, �17b� becomes

��ut + u · ur� − ����rur − ��r�urr +
N − 1

r
ur −

N − 1

r2 u�
= ��ut + u · ur� − ���rur� = �

ä�t�
a�t�

r − ��ey�r/a�t��

a�t�N �
r

ȧ�t�
a�t�

= ���ȧ�t�r
a�t�3 � −

�ey�r/a�t��ẏ� r
a�t� �

a�t�N+1

ȧ�t�
a�t�

=
�ȧ�t�
a�t�2 � �r

a�t�
− �ẏ� r

a�t�
�� , �19�

where we use

ä�t� =
�ȧ�t�
a�t�2 .

By choosing

y� r

a�t�
� � y�x� =

�

2�
x2 + 	 ,

�19� is equal to zero.
For the case of ��1, �17b� can be calculated,

��ut + u · ur� − �����rur − ����urr +
N − 1

r
ur −

N − 1

r2 u�
= �

ä�t�
a�t�

r − ���y� r
a�t� �

a�t�N ��	
r

ȧ�t�
a�t�

= ��−
�ȧ�t�r

a�t�N�−2N+2a�t�
� −

��y� r
a�t� ��−1ẏ� r

a�t� �
a�t�N��−1�a�t�

ȧ�t�
a�t�

= ��−
�ȧ�t�r

a�t�N�−2N+2a�t�
� −

��y� r
a�t� �y� r

a�t� ��−2ẏ� r
a�t� �ȧ�t�

a�t�Na�t�N�−2N+2

= ��−
�ȧ�t�r

a�t�N�−2N+2a�t�
� −

���y� r
a�t� ��−2ẏ� r

a�t� �ȧ�t�

a�t�N�−2N+2 �20�

=
− �ȧ�t�

a�t�N�−2N+2�−
�r

a�t�
+ ��y� r

a�t�
��−2

ẏ� r

a�t�
�� . �21�

Define x�r /a�t�, n��−2; it follows

=
− �ȧ�t�

a�t�N�−2N+2 ��x + ��y�x�nẏ�x�� �22�

=
− ��ȧ�t�

a�t�N�−2N+2�x +
��

�
y�x�nẏ�x�� , �23�

and ��� /�� in Lemma 12, and choose
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y� r

a�t�
� � y�x� =

�−1
1

2
�� − 1�

− �

��
x2 + 	�−1.

Moreover this is easy to check that

ẏ�0� = 0.

Equation �22� is equal to zero. The proof is completed. �

Remark 14: By controlling the initial conditions in some solutions �18�, we may get the
blowup solutions. Additionally the modified solutions can be extended to the system in radial
symmetry with frictional damping,

�t + u�r + �ur +
N − 1

r
�u = 0,

��ut + uur� + ��u = ������rur + �����urr +
N − 1

r
ur −

N − 1

r2 u� ,

where ��0. With the assistance of the ODE,

ä�t� + �ȧ�t� =
− �ȧ�t�
a�t�S ,

a�0� = a0 � 0, ȧ�0� = a1,

where S is a constant.
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