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An elliptic vortex-type ansatz introduced into a 2 + 1-dimensional system govern-
ing rotating homentropic magneto-gasdynamics with a parabolic gas law is shown
to lead to a finite-dimensional nonlinear dynamical system which admits exact an-
alytical solution in terms of an elliptic function and integral representation. The
dynamical system is demonstrated to be Hamiltonian and equivalent to the sta-
tionary reduction of the integrable nonlinear Schrödinger equation coupled with a
Steen-Ermakov-Pinney equation. A novel magneto-gasdynamic analogue of the pul-
srodon of shallow water f-plane theory is isolated thereby. Confined and time-periodic
magneto-gasdynamic flows are constructed explicitly. C© 2011 American Institute of
Physics. [doi:10.1063/1.3622595]

I. INTRODUCTION

The analysis of the motion of electrically conducting fluids and plasmas as described by the
Lundquist magneto-hydrodynamics (mhd) equations is of considerable importance in astrophysics,
geophysics, and engineering applications.2, 21, 32 In general, the coupled nonlinear mhd system is
analytically intractable. However, under certain physically acceptable approximations, reductions
have been made to canonical equations of soliton theory. Indeed, it was in a study of interaction
processes in collisionless plasmas that Zabusky and Kruskal37 made their historic discovery of
recurrent solitonic phenomena as described by the Korteweg-de Vries (KdV) equation. The modified
KdV equation was likewise originally set down in an analysis of the propagation of nonlinear Alfvén
waves in a collisionless plasma.12 Recent work has established that the uniaxial propagation of
magneto-acoustic waves in a cold plasma subject to a purely transverse magnetic field may be
modelled by the integrable “resonant” nonlinear Schrödinger equation.14 In Refs. 26, 29, and 30, a
geometric approach has been used to obtain reduction of a steady spatial mhd system to an integrable
Regge-Lund model subject to a volume-preserving constraint. Novel Bernoulli-type integrals of
motion for certain planar mhd systems have recently been shown to provide a means to construct
exact solutions.27

In the case of integrable reductions, the well-established methods of modern soliton theory such
as the inverse scattering transform1 and invariance under Bäcklund transformations25 are available
for the analysis of the associated mhd systems. In general, in the absence of approximation, Lie
group methods may be applied in a systematic manner to isolate substitution principles and privileged
symmetry reductions corresponding to restricted classes of exact solutions of the mhd equations.8, 9, 19

In an interesting series of papers, Neukirch16 and Neukirch and Priest18 introduced a novel
solution procedure in which the nonlinear acceleration terms in the governing Lundquist momentum
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equation either vanish or, more generally, are assumed to be conservative.17 In this paper, an approach
to a 2 + 1-dimensional mhd system is adopted which has roots in work of Goldsbrough10 in classical
hydrodynamics wherein a class of exact elliptical vortex solutions was constructed in a study of
tidal oscillations in an elliptical basin. This work is, in turn, related to that of Kirchhoff13 on
vortex structures in the classical 2 + 1-dimensional Euler system. In Ref. 4, an analytic study of a
reduced gravity model descriptive of the time-dependent behaviour of upper-ocean elliptic eddies was
undertaken. Subsequently, in Ref. 3, an eight-dimensional dynamical system was derived descriptive
of the time evolution of elliptical warm core eddies. This system was solved in general in Ref. 24 and,
in particular, a novel rotating, periodically pulsating eddy therein termed a pulsrodon was described
analytically. An elegant Lagrangian treatment of an equivalent rotating shallow water system by
Holm11 established that the canonical exact solutions, namely, the rodon, pulson, and pulsrodon, are
orbitally Lyapunov stable to perturbations within the class of elliptical vortex solutions.

Here, the procedure presented in Ref. 24 is adapted and extended to analyse a 2 + 1-dimensional
magneto-gasdynamics system of the type investigated in Ref. 17. An elliptical vortex type ansatz
is introduced and reduction obtained thereby to a finite-dimensional nonlinear dynamical system
analogous to that of Ref. 24 together with an additional algebraic condition. Time-modulated physical
variables are introduced to reduce this system to a form amenable to exact solution. It is demonstrated
that the dynamical system is Hamiltonian and that its general solution may be expressed in terms
of elliptic functions and integrals. Thereby, remarkably, equivalence with the stationary reduction
of the integrable nonlinear Schrödinger equation coupled with a classical Steen-Ermakov-Pinney
equation6, 20, 35 is proven. The above-mentioned algebraic condition is analysed and shown to hold if
either the magnetic field is purely transversal or a compatible constraint is imposed on the dynamical
system. In the latter case, a magneto-gasdynamic analogue of the pulsrodon is isolated. A detailed
analysis then reveals that the class of solutions so obtained represents confined magneto-gasdynamic
flows which are bounded by the surface of vanishing density. The existence of time-periodic flows
in the case of the pulsrodon solutions is then investigated.

II. THE MAGNETO-GASDYNAMIC SYSTEM

Here, we consider a 2 + 1-dimensional homentropic magneto-gasdynamic system incorporating
rotation, namely,

∂ρ

∂t
+ div(ρ q) = 0

ρ

[
∂q
∂t

+ (q · ∇)q
]

− μ curl H × H + ρ f (k × q) + ∇ p = 0

div H = 0

∂ H
∂t

= curl(q × H),

(2.1)

where

q = u i + v j , H = ∇ A × k + hk (2.2)

and the parabolic pressure-density law

p = p0 + δρ + ερ2,
∂p

∂ρ
> 0, (2.3)

is adopted. This gas law may be used to approximate real magneto-gas behaviour. In particular, the
adiabatic law p ∼ ρ2 has previously arisen in astrophysical contexts,28 while the relation p ∼ ρ

was adopted in Ref. 17. In the above, the magneto-gas density ρ(x, t), pressure p(x, t), gas velocity
q(x, t), magnetic induction H(x, t), and magnetic flux A(x, t) are all assumed to be dependent
only on x = x i + y j and t so that (2.2)2 represents the general solution of the magnetic induction
equation (2.1)3 with (i, j , k) being an adapted orthonormal triad.
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Insertion of the representation (2.2) into Faraday’s law (2.1)4 produces the convective constraint

∂ A

∂t
+ (q · ∇)A = 0 (2.4)

together with

∂h

∂t
+ div(h q) = 0. (2.5)

By virtue of the continuity equation (2.1)1, the latter is identically satisfied if we set

h = λρ, λ = const. (2.6)

and insertion of the representation (2.2) together with the constitutive law (2.3) into the momentum
equation (2.1)2 then yields

∂q
∂t

+ (q · ∇)q + μ

ρ
(∇2 A)∇ A + f k × q + δ∇(ln ρ) + (2ε + μλ2)∇ρ = 0 (2.7)

together with

∂ A

∂y

∂ρ

∂x
= ∂ A

∂x

∂ρ

∂y
,

whence

A = A(ρ, t). (2.8)

In the sequel, attention is restricted to the separable case

A = �(ρ)T (t), (2.9)

whence, on substitution into (2.4) and use of the continuity equation (2.1)1, it is seen that

Ṫ = ρ�′

�
T div q. (2.10)

Here, we proceed with the simplest case � = ρ and (2.9) becomes

A = ρT (t), (2.11)

whence, on insertion into (2.7),

∂q
∂t

+ (q · ∇)q + (μT 2∇2ρ + δ)∇ ln ρ + (2ε + μλ2)∇ρ + f k × q = 0 (2.12)

to be solved in conjunction with the continuity equation

∂ρ

∂t
+ div(ρ q) = 0 (2.13)

and the time evolution (2.10), that is,

Ṫ = T div q. (2.14)

The inherent nonlinearity of the coupled magneto-gasdynamic system (2.12)–(2.14) remains a
major impediment to analytic progress. It is noted that this system is overdetermined since (2.12) is
implicitly constrained by the requirement that div q be a function of t only.

III. A FINITE-DIMENSIONAL DYNAMICAL SYSTEM

An elliptic vortex type ansatz is now introduced with

q = L(t)x̄ + m(t), x̄ =
(

x − q̄(t)
y − p̄(t)

)

ρ = x̄T E(t)x̄ + h0(t)

2ε + μλ2
, 2ε + μλ2 �= 0,

(3.1)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

158.132.161.240 On: Fri, 07 Mar 2014 02:49:36



083701-4 C. Rogers and W. K. Schief J. Math. Phys. 52, 083701 (2011)

where

L =
(

u1(t) u2(t)

v1(t) v2(t)

)
, m =

(
˙̄q(t)

˙̄p(t)

)

E =
(

a(t) b(t)

b(t) c(t)

)
.

(3.2)

Here and in the following, three-dimensional purely “horizontal” vectors are identified with their
canonical two-dimensional counterparts and vice versa. Insertion into the continuity equation (2.13)
yields ⎛

⎝ ȧ
ḃ
ċ

⎞
⎠ +

⎛
⎝ 3u1 + v2 2v1 0

u2 2(u1 + v2) v1

0 2u2 u1 + 3v2

⎞
⎠

⎛
⎝ a

b
c

⎞
⎠ = 0 (3.3)

together with

ḣ0 + (u1 + v2)h0 = 0. (3.4)

It is observed that the momentum equation (2.12) does not contain the function T (t) if it is so
chosen that the terms in ∇ ln ρ are eliminated. Accordingly, it is demanded that

μT 2 = −δ(2ε + μλ2)

2(a + c)
, (3.5)

whence (2.12) is reduced to

∂q
∂t

+ (q · ∇)q + f k × q + (2ε + μλ2)∇ρ = 0. (3.6)

Insertion of (3.1) into (3.6) now gives⎛
⎜⎜⎝

u̇1

u̇2

v̇1

v̇2

⎞
⎟⎟⎠ +

(
LT − f I

f I LT

) ⎛
⎜⎜⎝

u1

u2

v1

v2

⎞
⎟⎟⎠ + 2

⎛
⎜⎜⎝

a
b
b
c

⎞
⎟⎟⎠ = 0, (3.7)

augmented by the linear auxiliary equations

¨̄p + f ˙̄q = 0, ¨̄q − f ˙̄p = 0. (3.8)

Thus, the solution of the original magneto-gasdynamic system is encoded in the seven-dimensional
nonlinear dynamical system (3.3) and (3.7). Once, the solution of the latter is known, the quantities
h0 and T are obtained via integration of (3.4) and (2.14), that is,

Ṫ = (u1 + v2)T . (3.9)

However, a priori, the ansatz (3.5) imposes a constraint on the dynamical system, the admissibility
of which is examined below. It is noted that if f = 0 or the divergence u1 + v2 = 0 then the relations
(3.7) show that the class of motions governed by (3.1) constitutes “accelerated” motions in the sense
of Ref. 17.

A. Canonical variables

In the sequel, it proves convenient to proceed in terms of new variables

G = u1 + v2, G R = 1

2
(v1 − u2),

GS = 1

2
(v1 + u2), G N = 1

2
(u1 − v2),

B = a + c, BS = b, BN = 1

2
(a − c).

(3.10)
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Here, G and G R represent, in turn, the divergence and spin of the velocity field, while GS and G N

represent shear and normal deformation rates. On use of the expressions (3.10), the system (3.3),
(3.4), (3.7), and (3.9) adopts the form

Ḃ = −2[BG + 2(BN G N + BSGS)],

ḂS = −2BSG − GS B + 2BN G R,

ḂN = −2BN G − G N B − 2BSG R

Ġ = −1

2
G2 − 2(G2

N + G2
S − G2

R) + 2 f G R − 2B,

Ġ R = −GG R − 1

2
f G,

Ġ N = −GG N + f GS − 2BN ,

ĠS = −GGS − f G N − 2BS,

(3.11)

together with

ḣ0 = −Gh0, Ṫ = GT . (3.12)

The form of (3.11)4 suggests introducing a function � via

G = 2�̇

�
(3.13)

so that (3.11)5 and (3.12) yield, in turn,

G R + 1

2
f = c0

�2
(3.14)

and

h0 = c1

�2
, T = c̃�2, (3.15)

where c1 and c̃ are arbitrary constants of integration.
New modulated variables are now introduced according to

B̄ = �4 B, B̄S = �4 BS, B̄N = �4 BN ,

ḠS = �2GS, Ḡ N = �2G N ,
(3.16)

whence the system (3.11) reduces to

˙̄B = −4
B̄N Ḡ N + B̄SḠS

�2
,

˙̄BS = − B̄ḠS − 2c0 B̄N

�2
− f B̄N ,

˙̄BN = − B̄Ḡ N + 2c0 B̄S

�2
+ f B̄S

˙̄G N = f Ḡ S − 2
B̄N

�2
,

˙̄GS = − f Ḡ N − 2
B̄S

�2
,

, (3.17)

together with the second-order nonlinear differential equation

�3�̈ + f 2

4
�4 − c2

0 + Ḡ2
N + Ḡ2

S + B̄ = 0. (3.18)
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B. The constraint (3.5)

Comparison of the two expressions for T given by (3.15)2 and (3.5), that is

μT 2 = −δ(2ε + μλ2)

2B̄
�4, (3.19)

reveals that

2μc̃2 B̄ = −δ(2ε + μλ2) (3.20)

and hence

c̃ = δ = 0 or B̄ = const. (3.21)

In the former case, the magnetic flux A vanishes so that the magnetic induction H is purely transversal
and the dynamical system (3.17), (3.18) is unconstrained. In the latter case, the evolution equation
(3.17)1 implies that the dynamical system (3.17), (3.18) is constrained by

B̄N Ḡ N + B̄SḠS = 0. (3.22)

In order to satisfy this condition, we introduce the parametrisation

B̄N = αḠS, B̄S = −αḠ N . (3.23)

The system (3.17) is then readily shown to reduce to the pair

˙̄G N =
(

f − 2
α

�2

)
ḠS,

˙̄GS = −
(

f − 2
α

�2

)
Ḡ N , (3.24)

with

B̄ = 2α(c0 − α), α̇ = 0. (3.25)

Accordingly, the constraint (3.5) is admissible. The above linear system is equivalent to a harmonic
oscillator equation and gives rise to pulsrodon solutions of the magneto-gasdynamic system as
discussed in Sec. V.

In conclusion, it is noted that, in general, the dynamical system (3.17), (3.18) admits the three
integrals of motion

B̄2
S + B̄2

N − B̄2

4
= c2, Ḡ2

S + Ḡ2
N − B̄ = c3,

2(B̄N ḠS − B̄SḠ N ) − c0 B̄ = c4,

(3.26)

the relevance of which is analysed in Sec. IV. In particular, if B̄ = const. then the second-order
equation (3.18) reduces to the classical Steen-Ermakov-Pinney equation6, 20, 35

�̈ + f 2

4
� = (c0 − 2α)2 − c3

�3
, (3.27)

with constant “frequency” f/2. In fact, it is shown in Sec. IV that the Steen-Ermakov-Pinney equation
with variable frequency arises in the general case. A connection with a standard two-component
generalisation of the Steen-Ermakov-Pinney equation leading to another “hidden” integral of motion
is revealed in Sec. VII.

IV. HAMILTONIAN STRUCTURE AND INTEGRABILITY

It is now demonstrated that the seven-dimensional dynamical system (3.17), (3.18) is
Hamiltonian and, in fact, equivalent to the stationary integrable nonlinear Schrödinger equation
coupled with the Steen-Ermakov-Pinney equation.
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A. Hamiltonian formulation

We first eliminate the “rotation coefficient” f by considering the change of variables

σ = B̄S cos f t + B̄N sin f t, ϕ = ḠS cos f t + Ḡ N sin f t,

τ = B̄N cos f t − B̄S sin f t, ψ = Ḡ N cos f t − ḠS sin f t.
(4.1)

In terms of the new variables, the dynamical system adopts the form

σ̇ = − B̄ϕ − 2c0τ

�2
, ϕ̇ = −2

σ

�2

τ̇ = − B̄ψ + 2c0σ

�2
, ψ̇ = −2

τ

�2

(4.2)

and

˙̄B = −4
σϕ + τψ

�2
(4.3)

together with

�3�̈ + f 2

4
�4 − c2

0 + ϕ2 + ψ2 + B̄ = 0. (4.4)

If we now introduce a new time measure s according to

s =
∫

dt

�2(t)
(4.5)

then the above system “decouples” into the five-dimensional dynamical system

σ ′ = −B̄ϕ + 2c0τ, ϕ′ = −2σ,

τ ′ = −B̄ψ − 2c0σ, ψ ′ = −2τ,

B̄ ′ = −4(σϕ + τψ),

(4.6)

and the Steen-Ermakov-Pinney equation

�′′ + (c2
0 − ϕ2 − ψ2 − B̄)� = f 2

4�3
, � = 1

�
, (4.7)

which may be solved once σ, τ, ϕ, ψ , and B̄ are known. The associated integrals of motion become

σ 2 + τ 2 − B̄2

4
= c2, ϕ2 + ψ2 − B̄ = c3,

2(τϕ − σψ) − c0 B̄ = c4.

(4.8)

Thus, the dynamical system (4.6) may be formulated as

ϕ′′ − 2(ϕ2 + ψ2 − c3)ϕ − 2c0ψ
′ = 0,

ψ ′′ − 2(ϕ2 + ψ2 − c3)ψ + 2c0ϕ
′ = 0,

(4.9)

with

σ = −1

2
ϕ′, τ = −1

2
ψ ′, B̄ = ϕ2 + ψ2 − c3, (4.10)

and the Steen-Ermakov-Pinney equation becomes

�′′ + [c2
0 + c3 − 2(ϕ2 + ψ2)]� = f 2

4�3
. (4.11)

Finally, the remaining integrals of motion are given by

ϕ′2 + ψ ′2 − (ϕ2 + ψ2 − c3)2 = const. ,

ϕ′ψ − ψ ′ϕ − c0(ϕ2 + ψ2) = const.
(4.12)
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It turns out that the integral of motion (4.12)1 essentially constitutes a Hamiltonian associated
with the dynamical system (4.9). Indeed, if we set

H1 = 1

2
(pϕ + c0ψ)2 + 1

2
(pψ − c0ϕ)2 − 1

2
(ϕ2 + ψ2 − c3)2 (4.13)

then the Hamilton equations

ϕ′ = ∂H1

∂pϕ

, ψ ′ = ∂H1

∂pψ

, (4.14)

deliver the generalised momenta

pϕ = ϕ′ − c0ψ, pψ = ψ ′ + c0ϕ, (4.15)

while the remaining Hamilton equations

p′
ϕ = −∂H1

∂ϕ
, p′

ψ = −∂H1

∂ψ
(4.16)

are equivalent to the “equations of motion” (4.9).

B. The stationary integrable nonlinear Schrödinger equation

The integrability of the dynamical system (4.9) may also be seen by relating it to the stationary
reduction of the integrable nonlinear Schrödinger equation. Thus, if we set

γ = ϕ + iψ (4.17)

then the two second-order differential equations (4.9) may be combined to obtain

ic0γ
′ + c3γ = −1

2
γ ′′ + |γ |2γ. (4.18)

The latter is nothing but the stationary reduction

γ (η, ξ ) = γ (η + c0ξ )e−ic3ξ (4.19)

of the integrable (defocusing) nonlinear Schrödinger equation1

iγξ = −1

2
γηη + |γ |2γ. (4.20)

Moreover, the Steen-Ermakov-Pinney equation (4.11) adopts the compact form

�′′ + (c2
0 + c3 − 2|γ |2)� = f 2

4�3
. (4.21)

1. The solution of the stationary Schrödinger equation

It is well known that the stationary nonlinear Schrödinger equation may be solved in terms
of elliptic functions and integrals (see, e.g., Ref. 30, and references therein). Here, in view of the
Steen-Ermakov-Pinney equation, it is convenient to express the solution in terms of the Weierstrass
℘ function.34 Thus, if we set

ϕ = κ cos χ, ψ = κ sin χ (4.22)

then the dynamical system (4.9) represented by the integrals of motion (4.12) assumes the form

κ ′2 + κ2χ ′2 − (κ2 − c3)2 = c5, κ2χ ′ + c0κ
2 = c6. (4.23)

Thus, elimination of χ ′2 leads to the differential equation

κ ′2 +
( c6

κ2
− c0

)2
κ2 − (κ2 − c3)2 = c5, (4.24)
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for κ only, while χ is obtained via integration of

χ ′ = c6

κ2
− c0. (4.25)

If we now set

κ2 = P + 1

3
c2

0 + 2

3
c3 (4.26)

then (4.24) reduces to the differential equation

P ′2 = 4P3 − g2 P − g3, (4.27)

with

g2 = 4

3
c4

0 + 16

3
c2

0c3 + 4

3
c2

3 − 4c5 − 8c0c6,

g3 = 8

27
c6

0 + 16

9
c4

0c3 + 20

9
c2

0c2
3 − 4

3
c2

0c5,

−8

3
c3

0c6 − 16

3
c0c3c6 − 8

27
c3

3 − 8

3
c3c5 + 4c2

6.

(4.28)

Accordingly, the general solution of the above differential equation is given by

P(s) = ℘(s + s0), (4.29)

where s0 is an arbitrary constant of integration, and the Steen-Ermakov-Pinney equation (4.21)
becomes

�′′ − (2P + C)� = f 2

4�3
(4.30)

with

C = 1

3
(c3 − c2

0). (4.31)

2. The solution of the Steen-Ermakov-Pinney equation

The general Steen-Ermakov-Pinney equation is given by

�′′ + ω2(s)� = δ0

�3
, (4.32)

where ω is an arbitrary but given function of the independent variable and δ0 is a constant. It
originated in a paper by Steen35 and arises in a wide range of areas of physical importance, most
notably in quantum mechanics, optics, and nonlinear elasticity (see, e.g., Refs. 7, 15, and 31). It is
characterised by its admittance of a nonlinear superposition principle. Thus, the general solution of
(4.32) is given by

�2 = δ1�
2
1 + 2δ2�1�2 + δ3�

2
2 , (4.33)

where �1 and �2 are linearly independent solutions of

�′′
L + ω2(s)�L = 0 (4.34)

with unit Wronskian, that is,

W (�1, �2) = �1�
′
2 − �2�

′
1 = 1 (4.35)

and the constants δi are constrained by the relation

δ1δ3 − δ2
2 = δ0. (4.36)
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In the current context,

ω2 = −(2P + C), δ0 = f 2

4
(4.37)

so that, remarkably, (4.34) turns out to be the classical Lamé equation5

�′′
L − l(l + 1)P�L = C�L , l = 1, (4.38)

that is, the Schrödinger equation with a constant multiple of the Weierstrass ℘ function as its potential.
If l is an integer, the Lamé equation may be solved explicitly in terms of Lamé polynomials5, 36 and
hence the integration of the dynamical system (3.17), (3.18) has been achieved.

V. THE PULSRODON

In general, the solution of the magneto-gasdynamic system obtained in the preceding is only
valid for purely transversal magnetic fields, that is δ = 0. However, as discussed in Sec. III if one
imposes the admissible constraint B̄ = const. then δ may be arbitrary. In this case, the solutions of
the stationary nonlinear Schrödinger equation (4.18) are of the simple form

γ = κ0eiχ0t (5.1)

and the Lamé equation (4.38) degenerates to the harmonic oscillator equation. Alternatively, it has
been shown in Sec. III that this particular case is governed by the linear system

˙̄G N =
(

f − 2
α

�2

)
ḠS,

˙̄GS = −
(

f − 2
α

�2

)
Ḡ N , (5.2)

and the Steen-Ermakov-Pinney equation,

�̈ + f 2

4
� = δ0

�3
, δ0 = (c0 − α)2 + α2 − G2

0, (5.3)

where

Ḡ2
S + Ḡ2

N = G2
0 = const. (5.4)

The general solution of the linear system (5.2) is given by

Ḡ N = G0 sin η, ḠS = G0 cos η,

η = f t − 2α

∫
dt

�2(t),

(5.5)

and application of the procedure outlined in Sec. IV with

�1 = cos
f

2
, �2 = 2

f
sin

f

2
(5.6)

produces the general solution

�2 = δ4 cos( f t + ω0) + δ5 (5.7)

of the Steen-Ermakov-Pinney equation (5.3), where the constants δ4 and δ5 are related by

f 2(δ2
4 − δ2

5) + 4δ0 = 0. (5.8)

It is noted that the reality constraints associated with the relations (5.3)2, (5.7), and (5.8) require that

δ5 > δ4 ≥ 0, (c0 − α)2 + α2 > G2
0 (5.9)

without loss of generality.
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The quantities B, BS, BN , G, G R, G N , GS , and h0, T are now determined via the relations
(3.13)–(3.16) and (3.20), (3.23), (3.25). We obtain

G = 2
�̇

�
, G R = c0

�2
− 1

2
f, B = 2α(c0 − α)

�4
,

BN = αG0

�4
cos η, BS = −αG0

�4
sin η,

G N = G0

�2
sin η, GS = G0

�2
cos η,

(5.10)

together with

h0 = c1

�2
, T 2 = − δ(2ε + μλ2)

4μα(c0 − α)
�4, (5.11)

subject to δα(c0 − α) < 0. The velocity and density distributions are given by the relations (3.1) and
(3.2), wherein

u1 = �̇

�
+ G0

�2
sin η,

v1 = G0

�2
cos η + c0

�2
− 1

2
f,

u2 = G0

�2
cos η − c0

�2
+ 1

2
f,

v2 = �̇

�
− G0

�2
sin η,

(5.12)

and

a = α

�4
(c0 − α + G0 cos η),

b = −αG0

�4
sin η,

c = α

�4
(c0 − α − G0 cos η).

(5.13)

The remaining functions p̄ and q̄ are readily determined from the coupled system of linear differential
equations (3.8). Finally, the magnetic flux A is determined by (2.11), while the pressure is obtained
from the constitutive law (2.3).

It is noted, parenthetically, that the class of exact multi-parameter 2 + 1-dimensional magneto-
gasdynamics solutions set down explicitly above may be boosted to produce a class of 3 + 1-
dimensional solutions via the simple superposition q → q + ψ(A)k. The magneto-gasdynamics
solutions presented here are analogous to the pulsrodons constructed in Ref. 24 in the context of a
rotating elliptic-warm core hydrodynamic system. These pulsrodon solutions and their duals were
later derived via an elegant Lagrangian formulation in Ref. 11.

VI. CONFINED MAGNETO-GASDYNAMIC FLOWS

Here, we analyse in more detail the class of solutions presented in the preceding sections. The
following discussion applies to both flows for which the magnetic field is purely transversal and
flows of pulsrodon type. Whenever applicable, properties which are specific to either of these flows
are discussed.
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A. The geometry of the surfaces of constant density

The analysis is based on the surfaces of constant density

S�(t) = {r = x + zk ∈ R3 : ρ(x, t) = �}, (6.1)

defined for any fixed time t and constant �. The ansatz (3.1)3 shows that the surfaces S� given by

x̄T E(t)x̄ + r2(t) = 0, r2(t) = h0(t) − (2ε + μλ2)� (6.2)

constitute cylinders with conic cross sections. If the real eigenvalues of the symmetric matrix E are
denoted by λ± then the cross sections are concentric ellipses if and only if the signs of r2,−λ±
coincide. Since ρ ≥ 0, the region in which the solutions are physically meaningful is bounded by
the cylinder S0. The latter surface of vanishing density is a material surface since it is convected with
the flow. Indeed, the continuity equation (2.1)1 implies that

d

dt
ρ(x(t), t) = −ρ(x(t), t) div q(x(t), t) (6.3)

for any particle line x(t). Thus, magneto-gasdynamic flows which are confined to the interior of an
elliptic cylinder S0 are obtained by demanding that

λ± < 0, h0 > 0. (6.4)

Here, we assume that 2ε + μλ2 > 0. A similar analysis may be conducted in the case 2ε + μλ2 < 0.
It is noted that exact magneto-hydrostatic solutions for elliptic plasma cylinders bounded by a vacuum
have been presented in Refs. 33 and 2.

Since the magnetic induction H is of the form

H = T (t)∇ρ × k + λρ k, (6.5)

we conclude that H · ∇ρ = 0 and hence the magnetic field lines lie on the constant density surfaces
S�. Thus, in the case of a purely transversal magnetic field, the field lines are the straight generators
of the elliptic cylinders S� and the magnetic field vanishes on the boundary S0. In the presence of
pulsrodons (with non-vanishing T ), the magnetic field lines are horizontal ellipses on the boundary
S0 and “elliptic” helices on the interior cylinders S� with constant vertical component λ� (cf.,
Figure 2). At any fixed time, the density ρ assumes its maximum value

�max = h0

2ε + μλ2
, (6.6)

on the (central) magnetic axis S�max . Specifically, for any fixed time t , the parametrised magnetic
field line r(s) passing through the point r(0) = r0 is the solution of the initial value problem

d

ds
r(s) = H(r(s)), r(0) = r0 (6.7)

so that
d

ds
(x̄(s) + z(s) k) = 2T

2ε + μλ2
Ex̄(s) × k + λρ(x̄(s)) k. (6.8)

Since ρ is constant along the magnetic field lines, that is,

ρ(x̄(s)) = ρ0 = x̄T
0 Ex̄0 + h0

2ε + μλ2
, (6.9)

the solution of the above initial value problem is given by

x̄ = x̄0 cos νs + Ex̄0 × k
sin νs√
ac − b2

z = λρ0s + z0

(6.10)

with

ν = 2T

2ε + μλ2

√
ac − b2. (6.11)
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B. The motion of the boundary

The motion of the boundary surface S0 is determined by the temporal behaviour of the elliptic
cross section

x̄T Ex̄ + h0 = 0, h0 = c1

�2
, (6.12)

with c1 > 0 by virtue of the constraint (6.4)2. In general, the motion of this ellipse may be decomposed
into four components. Thus, the ellipse rotates about its centre x̄ = 0 and a fixed point which may
be taken to be the origin of the x-plane and it changes its eccentricity and size.

The definition (3.1)2 of the reduced coordinate x̄ shows that the centre of the ellipse is located
at

x =
(

q̄
p̄

)
, (6.13)

where p̄ and q̄ are a solution of the linear system (3.8) and hence

q̄ = r0 sin f t, p̄ = r0 cos f t (6.14)

without loss of generality. Thus, the ellipse rotates about the origin at an angular velocity of − f
(measured anti-clockwise).

The eigenvalues of the matrix E are given by

λ± = a + c ±
√

(a − c)2 + 4b2

2

=
B̄ ± 2

√
B̄2

N + B̄2
S

2�4

= B̄ ±
√

B̄2 + 4c2

2�4
,

(6.15)

where the relations

a + c = B̄

�4
, a − c = 2

B̄N

�4
, b = B̄S

�4
, (6.16)

and the first integral (3.26)1 have been used. Hence, the condition (6.4)1 of negative eigenvalues is
satisfied if and only if

c2 < 0, B̄ < 0. (6.17)

In the case of pulsrodons, these inequalities reduce to a restriction of the space of parameters since
B̄ is constant. The ratio of the eigenvalues is a measure of the eccentricity of the ellipse and reads

λ+
λ−

= B̄ +
√

B̄2 + 4c2

B̄ −
√

B̄2 + 4c2

. (6.18)

Accordingly, the eccentricity is a function of B̄ only and is therefore constant for pulsrodons. It is
noted in passing that the relation,

|γ |2 = B̄ + c3, (6.19)

reveals that the eccentricity of the boundary surface is directly encoded in the modulus of the solution
γ of the stationary nonlinear Schrödinger equation (4.18) or, equivalently, the associated Weierstrass
℘ function.
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The semi-axes of the ellipse are parallel to the eigenvectors

v± =
(

λ± − c
b

)
=

⎛
⎜⎝ a − c ±

√
(a − c)2 + 4b2

2
b

⎞
⎟⎠

= 1

�4

⎛
⎝ B̄N ±

√
B̄2

S + B̄2
N

B̄S

⎞
⎠

(6.20)

of E. Thus, if we apply the orthogonal transformation

x̄ = (v̂+ v̂−)X, (6.21)

where v̂± are the normalised eigenvectors, then the representation (6.12) of the elliptic cross section
becomes

XT

(
λ+ 0
0 λ−

)
X + h0 = 0. (6.22)

Accordingly, the lengths of the semi-axes are given by

r± =
√

− c1

�2λ±
(6.23)

so that � is a measure of the size of the pulsrodon since

r± ∼ � if B̄ = const. (6.24)

In view of conservation of mass, this is in agreement with the behaviour

�max ∼ �−2 (6.25)

of the density on the magnetic axis. It is observed that the rotation about the origin and the pulsation
of the pulsrodon occur at the same frequency f/2π . In Sec. VII it is demonstrated that, remarkably,
the lengths of the semi-axes r± obey a particular Hamiltonian two-component generalisation of the
Steen-Ermakov-Pinney equation known as Ermakov-Ray-Reid system.22, 23

Finally, if ω± denote the angles between the semi-axes and the x axis then

tan ω± = B̄S

B̄N ±
√

B̄2
N + B̄2

S

. (6.26)

Hence, ω± depends on the ratio B̄N /B̄S only and ω̇+ = ω̇− represents the angular velocity at which
the ellipse rotates about its centre.

C. The pulsrodon solution

We conclude by examining the pulsrodon solution as given by (5.5) and (5.7)–(5.13) in more
detail. Since

B̄ = 2α(c0 − α) < 0, (6.27)

it is required that

α(c0 − α) < 0 (6.28)

so that δ > 0 by virtue of (5.11)2. Evaluation of the first integral (3.26)1 produces

c2 = α2[G2
0 − (c0 − α)2] (6.29)

so that the requirement c2 < 0 leads to the constraint,

(c0 − α)2 > G2
0. (6.30)
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The condition (5.9)2 is then automatically satisfied and

δ5 =
√

δ2
4 + 4

(c0 − α)2 + α2 − G2
0

f 2
, δ4 ≥ 0. (6.31)

The eigenvalues simplify to

λ± = α(c0 − α) ± |αG0|
�4

(6.32)

and hence the cross section of the boundary S0 constitutes a circle if G0 = 0.
In order to determine the angular velocity of the elliptic cross section about its centre, we note

that

tan ω± = − sin η

cos η ± sgn(αG0)
= − tan

(η

2
+ ε̂

)
, (6.33)

where ε̂ is either 0 or π/2 and hence

ω̇± = − η̇

2
= − f

2
+ α

�2
. (6.34)

Thus, if f α < 0 then the angular velocities ω̇± and − f have the same sign. If f α > 0 then, depending
on the choice of parameters, the sign of ω̇± may change periodically. However, on average, the two
rotational motions undergone by the elliptic boundary of the magneto-gasdynamic flow have the
same orientation. Indeed, evaluation of

�ω =
∫ π/| f |

−π/| f |
ω̇±(t) dt (6.35)

yields

σ�ω = −π + 2απ

f
√

δ2
5 − δ2

4

< 0, σ = sgn( f ) (6.36)

since the constraint (6.30) applied to (6.31) delivers

δ2
5 − δ2

4 > 4
α2

f 2
. (6.37)

Accordingly, we conclude that − f �ω > 0.
Periodic motions are obtained if and only if

�ω

π
∈ Q, (6.38)

that is
α√

(c0 − α)2 + α2 − G2
0

∈ Q, (6.39)

since

σ�ω = π

⎛
⎝ ασ√

(c0 − α)2 + α2 − G2
0

− 1

⎞
⎠ . (6.40)

For instance, if

G0 = α = −c0 (6.41)

then

σ�ω =

⎧⎪⎪⎨
⎪⎪⎩

−3π

2
for α f < 0

−π

2
for α f > 0

(6.42)
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FIG. 1. A density plot of a pulsrodon solution at different times for �ω = −3π/2 (a) and �ω = −π/2 (b). The black
ellipses represent the boundary of the flow (vanishing density). In the interior, darker grey corresponds to higher density ρ.
The grey ellipse indicates the position of the pulsrodon after one revolution about the origin.

and, in both cases, the flow returns to its initial state after four revolutions about the origin. This is
indicated in Figure 1. A corresponding snapshot of the flow displaying the magnetic field lines on
the surfaces of constant density is displayed in Figure 2.

VII. A ERMAKOV-RAY-REID CONNECTION

Here, it is demonstrated that, remarkably, the dynamical system considered in this paper may
also be reformulated in terms of a particular Ermakov-Ray-Reid system which turns out to be
Hamiltonian, leading to an additional “hidden” first integral. Thus, the Ermakov-Ray-Reid system
constitutes a two-component generalisation of the Steen-Ermakov-Pinney equation which adopts
the form

Ä + ω2(t)A = 1

A2B F(B/A),

B̈ + ω2(t)B = 1

B2AG(A/B),

(7.1)

where F, G, and ω are given functions of their respective argument. Such systems have their origin
in work of Ermakov6 and were introduced by Ray22 and Reid and Ray23 some 100 years later. The
main theoretical interest in this system resides in its admittance of a distinctive integral of motion,
namely, the Ray-Reid invariant

I = 1

2
(AḂ − BȦ)2 + H (A/B), (7.2)

with

H (w) =
∫

F(w−1) dw−1 +
∫

G(w) dw. (7.3)

The Ermakov-Ray-Reid system may be solved (“linearised”) in various equivalent ways. In the
present context, ω is assumed to be constant and one may employ the change of variables

A = �
√

w, B = �√
w

. (7.4)
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FIG. 2. A typical magnetic field line distribution on the elliptic cylinders of constant density S� .

The Ray-Reid invariant may then be formulated as

ẇ2 = 2
w2

�4
[I − H (w)], (7.5)

while the Ermakov-Ray-Reid system reduces to

�̈ + ω2� = 1

�3
K (w) (7.6)

with

K (w) = 1

2
[w−1 F(w−1) + wG(w) + H (w) − I ]. (7.7)

Finally, introduction of the new independent variable

s =
∫

dt

�2(t)
, (7.8)

leads to the Steen-Ermakov-Pinney equation

�′′ + K (w)� = ω2

�3
(7.9)

in which the “frequency”
√

K (w(s)) is determined via a quadrature associated with the first-order
differential equation

w′2 = 2w2[I − H (w)]. (7.10)
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Hamiltonian Ermakov-Ray-Reid systems are obtained by postulating the existence of a Hamiltonian
of the form

H2 = 1

2
(Ȧ2 + Ḃ2) + 1

2
ω2(A2 + B2) + 1

AB J (A/B). (7.11)

Comparison of the Hamilton equations

Ä = −∂H2

∂A , B̈ = −∂H2

∂B , (7.12)

with the Ermakov-Ray-Reid system (7.1) then reveals that

F(B/A) = J (A/B) − A
B J ′(A/B),

G(A/B) = J (A/B) + A
B J ′(A/B),

(7.13)

so that Hamiltonian Ermakov-Ray-Reid systems adopt the symmetric form

Ä + ω2A = 1

A2B
d

d(B/A)

[B
A J (A/B)

]
,

B̈ + ω2B = 1

B2A
d

d(A/B)

[A
B J (A/B)

]
.

(7.14)

The connection with the dynamical system under consideration is obtained by noting that
combination of (4.3) and the first integrals (4.8) leads to

˙̄B2 = 4

�4
[(B̄2 + 4c2)(B̄ + c3) − (c0 B̄ + c4)2] (7.15)

and the Steen-Ermakov-Pinney equation (4.4) reads

�̈ + f 2

4
� = 1

�3
(c2

0 − c3 − 2B̄). (7.16)

Comparison with the pair (7.5), (7.6) reveals that the pair (7.15), (7.16) may be reformulated as
a Ermakov-Ray-Reid system with appropriately chosen functions F and G. In fact, since (7.15)
encodes the stationary nonlinear Schrödinger equation (4.18), the latter encapsulates the associated
Ray-Reid invariant (7.2). Furthermore, the Ermakov-Ray-Reid variables A and B turn out to be
intimately related to the geometry of the magneto-gasdynamics flow. Thus, as discussed in Sec. VI
the lengths of the semi-axes of the elliptic boundary S0 are given by

r± = |�|
√

c1

2c2
(B̄ ∓

√
B̄2 + 4c2). (7.17)

Hence, up to an irrelevant scaling of �, the definition

A = r+, B = r− (7.18)

may be identified with the change of variables (7.4). On taking into account that

B̄ = −√−c2

(A
B + B

A

)
,

√
B̄2 + 4c2 = √−c2

(A
B − B

A

)
, (7.19)

one may then verify that the associated Ermakov-Ray-Reid system may be brought into the
Hamiltonian form (7.14) with

J (w) = 2c2
1√−c2

+ (c4 + 2c0
√−c2)2c2

1

4c2
2

w

(w + 1)2
+ (c4 − 2c0

√−c2)2c2
1

4c2
2

w

(w − 1)2
. (7.20)

Accordingly, the dynamical system considered in this paper admits the Hamiltonian (7.11) as an
additional first integral which does not appear to be readily available in its original formulation. In
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conclusion, it is noted that J may be obtained from the Ray-Reid-type relation

(AḂ − BȦ)2 = c2
1

c2
2

(c2
4 − 4c2c3) − 2

(A
B + B

A

)
J (A/B). (7.21)
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