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Abstract: A novel graphene saturable absorber is used in fiber laser for optical pulse generation. 

Such saturable absorber is created by tightly attaching the graphene film onto the surface of 

microfiber based on its evanescent field.  
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1. Introduction 

Passively mode-locked fiber lasers have attracted significant attention because of their compactness, low cost and 

widespread applications in optical communications, medicine, and materials processing. One of the efficient 

methods for passively mode-locked fiber lasers to generate high-quality pulses is by use of saturable absorber. 

Currently, the majority of fiber lasers employ semiconductor saturable absorber mirror (SESAM) and single-wall 

carbon nanotubes (SWCNTs) as a saturable absorber, to convert the continuous laser light into optical pulse trains 

[1–4]. It is desirable to have an ultrafast and broadband SA, as the central wavelength of the ultrafast pulses can be 

tuned across a number of available transmission channels. Graphene is a promising candidate for this ultrafast and 

broadband SA, because of the gapless linear dispersion of Dirac electrons and Pauli blocking, which enable ultrafast 

and broadband saturable absorption prosperity [5–7]. Moreover, the graphene-based SA is superior to SESAM and 

SWCNTs as it requires no bandgap or diameter control to achieve broadband saturable absorption.  

Various approaches have been exploited to enable wavelength-tunable operation in passively mode-locked fiber 

lasers, such as to use a tunable bandpass filter [8,9], an unbalanced Mach–Zehnder interferometer (UMZI) [10], or a 

Sagnac fiber filter with a thermoelectric cooler (TEC) [11] as the wavelength selective element. However, to 

maintain the mode-locking stability in the above-mentioned systems, each wavelength tuning step should adjust the 

polarization controller (PC). 

In this paper, we propose and demonstrate a wavelength-tunable, passively mode-locked fiber laser based on 

graphene saturable absorber (SA) and chirped fiber Bragg grating (CFBG). The graphene SA is fabricated by 

transferring graphene film onto a microfiber to enable light-graphene interaction along the fiber length. In this 

system, once the mode-locking operation is established, no adjustment of polarized controller is needed, even when 

the peak wavelength of the CFBG is tuned. 

2. Experimental setup 
The passively mode-locked erbium-doped fiber (EDF) laser with a ring cavity configuration is shown in Fig. 1. A 

1.5 m high concentration EDF (OFS EDF-80) is used as the gain medium, pumped by a 1480 nm high power laser 

diode via a wavelength division multiplexer (WDM) coupler. The function of the isolator is to further enhance the 

unidirectional pulse propagation in the fiber laser system. An optical circulator (OC) is used to direct the light into 

the CFBG, which is mounted on the top surface of a triangular cantilever beam. By pressing the vertex of the 

cantilever beam, the wavelength of the output pulses can be changed. The PC is used to control the polarization state 

of the light launched into the graphene-based SA. The mode-locked pulses generated are directed out by a 90∶10 
optical coupler. The output spectrum of the fiber laser is recorded by an optical spectrum analyzer (ANDOAQ6319) 

with a 0.01 nm resolution. The radio frequency (RF) spectrum of the passively mode-locked fiber laser is measured 

by use of a high speed photo-detector (Newfocus 1414, 25 GHz) connected to a real-time spectrum analyzer 

(Tektronix RSA 3303A, 3 GHz). The pulse is monitored by a second harmonic generation (SHG) autocorrelator 

(FEMTOCHROME FR-103XL, resolution <5 fs) together with a high speed photo-detector connected to an 

oscilloscope (Tektronix, TPS 2024). 

The CFBG used in fiber laser, as shown in Fig.2, has a reflection peak wavelength at 1547.1nm, with peak 

reflectivity of 16dB and a 3-dB bandwidth of 1.6nm. This CFBG is a type-II grating written in H2-free SMF-28 fiber 

by use of 800nm/120fs femto-second laser pulses and a phase mask (Ibsen Photonics). The laser pulse energy is 
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300-400µJ, with 1/e Gaussian beam radius of 3mm, and exposure time of ~ 45 min. 

 
Fig.1 Configuration of the wavelength-tunable, passively mode-locked fiber laser. LD, Laser diodes; WDM, 

wavelength division multiplexer; EDF, Erbium-doped fiber; CFBG, chirped fiber Bragg grating; PC, Polarization 

controller. 
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Fig.2 The reflectivity of CFBG with central wavelength of ~1547.1nm 

The Graphene SA used in fiber laser is fabricated by using a monolayer graphene film on the polycrystalline Cu 

substrate. Firstly, we spin the polymer clad resin (EFIRON, PC-373) on the graphene film, and then cure it by 

ultraviolet light. After 24 hours, the supporting/graphene/metal layers are soaked with FeCl3 solution to remove the 

metal layers. Finally, the resulting polymer-supported graphene film can be transferred onto the upper surface of the 

12µm-diameter-microfiber. The microfiber can be fabricated by use of the flame brushing method from the single 

mode fiber with low loss. Compared with other graphene SA, our approach can lead to a large evanescent light-

graphene interaction length. The schematic structure of the graphene SA is shown in Fig.3(a). The power dependent 

saturable absorption properties of the graphene SA is shown in Fig.3(b), where a typical high modulation depth of 

12.88% is presented. 
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Fig.3 (a) Schematic structure of the graphene SA. (b) Power dependent saturable absorption properties of the 

graphene SA. 

3.  Results and discussion 

A series of experiments on the fiber laser system employing the graphene-based SA have been carried out. As 

demonstrated in Fig. 4(a), the laser output pulse train has a period of ~74.8 ns which matches well with the cavity 

(b) 
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round-trip time and verifies that the laser is indeed in passive mode-locking scheme. Figure 4(b) shows the RF 

measurement results of the laser output. The basic repetition rate is ~27 MHz, corresponding to the ~74.8 ns round-

trip time obtained in Fig. 4(a). The signal-to-noise ratio of > 70 dB is observed, showing the good mode-locking 

stability of the fiber laser system. By tuning CFBG, the output wavelength can be changed from 1545.5 to 1550 nm, 

as revealed in Fig. 4(c). The typical soliton sidebands can be observed, due to the periodic intra-cavity perturbations. 

The AC traces of the laser pulses obtained are shown in Fig. 4(d), with pulse durations of ~14 ps. In the passively 

mode-locked fiber laser, the pulse duration mainly depends on the dispersion of the system and the chirp introduced 

by the chirped fiber Bragg grating.  
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Fig. 4 Characteristics of the wavelength tunable passively mode-locked fiber laser. (a) Output pulse train. (b) RF 

spectrum, measured around the fundamental repetition rate ~26.7MHz over 1MHz with 10Hz resolution. (c) Output 

spectra under CFBG. (d) Autocorrelation traces at different wavelengths under CFBG A. 

4.  Conclusion  

A wavelength-tunable, passively mode-locked fiber laser based on graphene SA and a CFBG has been demonstrated. 

A simple and effective method can been used to transfer graphene onto the upper surface of the microfiber. Without 

tuning the polarization controller, 14ps output pulses with 4.5m wavelength tuning range can be realized by pressing 

the vertex of the cantilever beam. 
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