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1. Introduction 

Vulnerability is the susceptibility of a system to threats and incidents that results in operational degradation. The 
core of transportation network vulnerability analysis is to identify the critical/vulnerable/important components (e.g., 
links and nodes), whose disruptions could have a significant impact on travelers’ behaviors and network performance. 
This topic has received a great deal of attention in the past decade (see, e.g., Berdica, 2002; Chen et al., 2007a,b; 
Murray and Grubesic, 2007; Nagurney and Qiang, 2010; Chen et al., 2012; Ho et al., 2013; and Jenelius and Mattsson, 
2015).  

In the literature, the majority of existing methodologies for transportation network vulnerability analysis belong to 
the disruption scenario enumeration approach (via enumeration without or with pre-scanning, or random simulation 
schemes). At each enumerated scenario, one link/node is removed or degraded at a time, and the impact of each 
individual link/nodal removal or degradation is evaluated and ranked according to different indictors. Interested 
readers are directed to a comprehensive review by Mattsson and Jenelius (2015) on the evaluation methods and 
indictors.  With the increase of the number of enumerated scenarios, this type of approach is able to consider a range 
of potential disruption scenarios. However, the enumeration approach has a combinatorial complexity especially when 
considering the simultaneous disruption of multiple links/nodes at the same time. Let m and n denote the total number 
of links and the number of simultaneously disrupted links, respectively. Then, the number of potential scenarios with 
n disrupted links is Cn

m. One can envision the computational burden when applying it to large-scale networks with 
simultaneous disruptions. Although many well connected networks could be resilient enough to a single-link (or node) 
failure, simultaneous disruptions can be very problematic, resulting in disruption propagations and widespread 
disruptions. On the other hand, the simulation scheme may miss some important scenarios (e.g., the best or the worst 
case) due to the limited number of samples. Also, it may miss some hidden/phantom vulnerability scenarios (see, e.g., 
Jenelius, 2010) that are not apparent to analysts due to the large scale and complex network structure. These issues 
render an incomplete understanding of all potential disruption scenarios and their associated impacts. Recently, Wang 
et al. (2016) recognized the combinatorial complexity of considering multiple disruptions, and provided a global 
optimization approach to identifying critical links for multiple disruptions, without the need to perform a complete 
network scan. However, only the worst case situation was considered, which may not provide a useable or cost-
effective strategy for managing/protecting the identified critical links.  

On a different line of research, the game theoretic approach has been developed to assess the transportation 
network vulnerability, such as Bell (2000) of considering a two-player zero-sum non-cooperative game, Bell and 
Cassir (2002) of considering a multiplayer game, and Szeto et al. (2007) of considering multiple network-specific 
demons. In this approach, the evil entity or demon seeks to maximize the total network cost by damaging links in the 
network, while network users seek a route to minimize their travel costs. The critical links in the network are likely to 
be destroyed by the demon as a consequence of the game. Since the demon is allowed to destroy any link in the 
network, the game theoretic approach also only considers the worst-case scenario, and therefore provides a pessimistic 
evaluation of network performance.  

In addition, sensitivity and uncertainty analyses have also been used to identify critical links that affect the system 
performance the most (e.g., Nicholson and Du, 1997; Chen et al., 2002; Luathep et al., 2011; Yang et al., 2013). A 
weak link with higher capacity variability may not necessarily be a critical link. Instead, a critical link must be one 
that is both important (i.e., substantial impact on system performance) and weak (i.e., large capacity variability). The 
critical links should be the prime candidates for strengthening, rather than those that are merely weak. The critical 
index of a link indicates the proportion of the overall uncertainty of performance measure contributed by the 
uncertainty of its link capacity. This approach is able to consider simultaneous link degradations. However, since 
sensitivity analysis is only valid locally for minor perturbations of inputs and parameters, this approach may not be 
applicable to large perturbations in some disruption scenarios.  

When considering multiple simultaneous disruptions (e.g., n links disrupted), there may have a large number of 
possible scenarios corresponding to different location combinations, and each scenario has an unknown occurrence 
possibility. Hence, a way to avoid the unknown occurrence possibility of disruption scenarios is to consider the range 
of all potential disruption scenarios and their associated impacts. To the best of our knowledge, there is no analytical 
approach of transportation network vulnerability with a systematic consideration and quantification of all possible 
simultaneous disruptions. This study attempts to develop an optimization approach for deriving the upper and 
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lower bounds of transportation network vulnerability –a vulnerability envelope, while circumventing the need 
of enumerating all possible disruption scenarios. This is different from the conservative (or pessimistic) 
consideration of the worst-case scenario in Wang et al. (2016) or the game theoretic approach in Bell (2000), Bell 
and Cassir (2002), and Szeto et al. (2007). The upper and lower bounds provide the most optimistic and pessimistic 
quantification of network vulnerability range (i.e., the least to the most disruptive cases). The single consideration of 
either the least or the most disruptive cases may lead to biased (overestimated or underestimated) network performance 
assessment. Instead, with the vulnerability envelope, network planners and managers can more cost-effectively plan 
for system protection against disruptions, and prioritize system improvements to minimize disruption risks with 
limited resources. Particularly, those links appeared in both the upper-bound and lower-bound scenarios deserve more 
resources and actions to protect in the pre-disaster network planning stage. A large range between the upper and lower 
bounds indicates that the network is more susceptible or less resilient against disruptions, and a substantial percentage 
of trips can be affected by these different combinations of multiple simultaneous disruptions. On the other hand, a 
small range could mean that the network is very vulnerable as it could be easily disconnected (i.e., both upper and 
lower bounds are quite small and similar), or it is not vulnerable at all as it could be highly connected (i.e., both bounds 
are quite large and similar). 

A unified optimization framework requires the same (or a common) objective function to derive the upper and 
lower bounds of network vulnerability. The proposed framework is flexible in the sense that it allows the use of 
different specifications of vulnerability measures (i.e., objective functions) for different modeling purposes. Examples 
include the remaining travel throughput of the network (a measure of network capacity) after disruptions, and the 
remaining route diversity (a measure of network redundancy) after disruptions. The more remaining travel throughput 
and/or the alternative routes are preserved after disruptions, the more robust is the network to disruptions.  

Mathematically, we formulate the upper and lower bounds of transportation network vulnerability as a binary 
integer bi-level program (BLP). The basic decision variables are binary variables indicating whether a link is disrupted 
or not, and the basic equality constraint is imposed on the total number of disrupted links to represent the level of 
network disruption. The larger the number of simultaneously disrupted links, the more severe is the network 
disruption. The upper-level subprogram maximizes or minimizes the remaining network travel throughput after 
disruptions under a given number of disrupted links, which corresponds to the upper and lower vulnerability bounds, 
respectively. The lower-level subprogram determines the O-D connectivity/accessibility under a disruption scenario 
from the upper-level subprogram. Two alternative modeling approaches are provided for the lower-level subprogram 
without path enumeration but with an explicit consideration of traveler’s route acceptance criterion: the virtual link 
capacity-based maximum flow problem formulation and the virtual link cost-based shortest path problem formulation. 
If an O-D pair is connected, then the virtual maximum flow is larger than zero and the virtual minimum cost is smaller 
than travelers’ acceptable elongation threshold (i.e., a usable path exists). To solve the proposed BLP model, we can 
reformulate it as a single-level mixed integer linear program (MILP) by making use of the Karush-Kuhn-Tucker 
(KKT) conditions of the lower-level subprogram and various linearization techniques for the complementarity 
conditions and bilinear terms. The desirable MILP structure makes it readily solvable by existing solvers in 
commercial software packages for its globally optimal solution.  

In summary, the main contribution of this paper is the development of an optimization framework for deriving the 
exact upper and lower bounds of transportation network vulnerability envelope under simultaneous disruptions of 
multiple links, without the need to evaluate all possible combinations as in the enumerative approach for assessing 
network efficiency (e.g., Nagurney and Qiang, 2010). The proposed modeling framework is flexible for three reasons: 
(1) it allows flexible specifications of a common objective function for different modeling purposes, (2) it allows 
flexible modeling approaches to check the O-D connectivity without path enumeration, and (3) it allows users to 
specify thresholds to implicitly define route availability. The vulnerability bound envelope constructed by the upper 
and lower bounds under the optimization framework is capable of considering all possible combinations without the 
need to perform a full network scan, thus avoiding the combinatorial complexity of enumerating multi-disruption 
scenarios.  

The remainder of this paper is organized as follows. Section 2 and Section 3 present the mathematical formulation 
and solution algorithm of the vulnerability bounds model, respectively. Section 4 uses a set of numerical examples to 
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demonstrate the features of the proposed model. Finally, some concluding remarks and future research directions are 
provided in Section 5. 

2. Mathematical formulation 

In this section, the BLP formulation is provided to derive the exact upper and lower bounds of network vulnerability 
envelope under multiple simultaneous disruptions.  

2.1. Upper-level subprogram 

Consider the following binary integer linear program: 

 ( )max or min , w w
n

w W
f q z

∈

= ∑x z  (1) 

s.t. 
a

a A
x n

∈

=∑ , (2) 

 ( )1 ,w w wM z V Mz w Wε− − + ≤ ≤ ∀ ∈ , (3) 
 { }10, ,ax a A= ∀ ∈ , (4) 
 { }10, ,wz w W= ∀ ∈ , (5) 

where A denotes the set of directed links; W is the set of O-D pairs; qw is the travel demand between O-D pair w; M 
is a very large positive constant; and ε is a very small positive constant. The two types of binary decision variables 
(x and z in the vector form) are defined as follows:  

xa=1 Link a is disrupted 
zw=1 O-D pair w is connected 

The objective function in Eq. (1) maximizes or minimizes the remaining network throughput after disruptions, 
which corresponds to the upper and lower vulnerability bounds (i.e., the optimistic and pessimistic cases), respectively. 
Eq. (2) is the basic equality constraint imposed on the total number of disrupted links (n), representing the level of 
network disruption or the ability of attackers to destroy the network components. The larger the number of 
simultaneously disrupted links, the more severe is the network disruption. If the purpose is not to obtain the entire 
vulnerability envelope (i.e., the upper and lower bounds of all values of n), we can replace Eq. (2) by an inequality, 
which corresponds to the upper and lower bounds under the simultaneous disruptions of no more than n links. Even a 
single link disruption could significantly deteriorate the connection of multiple O-D pairs. To link the objective 
function (in terms of zw) and the basic decision variables (in terms of xa), we introduce another set of auxiliary variables 
Vw in Eq. (3) to denote the virtual maximum flow of O-D pair w. Vw (or denoted by Vrs) can be determined from the 
following lower-level subprogram for each O-D pair w (or denoted by rs). In other words, we can adapt the concept 
of maximum flow problem to check the O-D connectivity under each disruption scenario (x). The meaning of Eq. (3) 
will be further explained in Eq. (12) after presenting the lower-level subprogram.  

The network vulnerability analysis using a predefined travel demand pattern qw can be considered as a conservative 
estimation (i.e., identical importance of all O-D pairs) since no available information is known about the future growth 
or decline under different disruption scenarios. The objective function in Eq. (1) specifies the remaining network travel 
throughput after disruptions as the common objective function of the vulnerability envelope, which is different from 
the total travel time measure typically used in vulnerability analysis. Note that the network travel throughput has been 
used to characterize network capacity (see, e.g., Wong and Yang (1997); Yang et al. (2000); Gao and Song (2002) 
and Chen and Kasikitwiwat (2011) with different assumptions and choice dimensions). Herein, for simplicity and also 
as an initial development of the vulnerability envelope, we only consider the O-D connectivity (i.e., whether an O-D 
pair is connected or not) to measure the O-D pair travel throughput while ignoring the traveler's rerouting effect. When 
an O-D pair is connected, its travel demand/throughput could be realized despite that the level of service may be 
degraded under disruptions. To a certain degree, this is justifiable since vulnerability analysis is mainly used to assist 
in planning/designing/managing a network against disruptions. However, the proposed optimization framework is 
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flexible in the sense that different lower-level subprograms can be incorporated to include travelers’ rerouting 
behavior. One possible model is the partial user equilibrium (PUE) model developed by Sumalee and Watling (2003), 
which can be used to consider travelers’ adaptive route choice behaviors under disruptions. Note that this PUE model 
has been also adopted in Faturechi and Miller-Hooks (2014) to determine travel time resilience under disaster. In this 
extension, the O-D connectivity based network travel throughput could be replaced by congestion and behavior based 
network throughput. The O-D specific binary auxiliary variable in the upper-level objective function could be replaced 
by a continuous variable to represent the realized proportion of travel demand between this O-D pair.  

2.2. Lower-level subprogram 

[Alternative I: Virtual Link Capacity-Based Maximum Flow Problem] 
We use the following linear program to determine Vw (Vrs) for each O-D pair.  

 ( )max orw
rsV Vx

y
 (6) 

s.t. , if
, if

0, , ,i i

w

w
a a

a O a I

V i r
y y V i s

i N i r s∈ ∈

+ =


− = − =
 ∀ ∈ ≠

∑ ∑ , (7) 

 0 1,ay a A≤ ≤ ∀ ∈ , (8) 
 1 ,a ay x a A≤ − ∀ ∈ , (9) 

where ya is a binary decision variable: if ya=1, link a is selected; and 0 otherwise; Oi is the set of links emanating from 
node i; Ii is the set of links going into node i; N is the set of nodes. The objective function in Eq. (6) is the virtual 
maximum flow between O-D pairs rs. If the virtual maximum flow is equal to 0, then this O-D pair is disconnected 
(i.e., does not exist any feasible route) under the disruption scenario x. Eq. (7) is the flow conservation constraint at 
origin, destination, and non-centroid nodes. In Eq. (8), we set the virtual link capacity as one unit for the BLP model 
solvability. In addition, we add Eq. (9) to characterize the mutually exclusive relationship between xa and ya, 

 ( ) ( )
( ) ( )

if 1 disrupted , 0 not usable in any path
1

if 0 connected , 0 or 1 usable
a a

a a
a a

x y
y x

x y

= =≤ − ⇔ 
= =

. (10) 

Considering xa is a binary integer variable, Eqs. (8) and (9) can be simplified as  

 0 1 ,a ay x a A≤ ≤ − ∀ ∈ . (11) 

One can readily observe that the lower-level subprogram in Eqs. (6)-(9) is a simple linear program (LP). According 
to the Integral Flow Theorem (Ford and Fulkerson, 1956), if each link has integral capacity, there exists an integral 
maximal flow. From Eq. (8), one can see if an O-D pair is connected, the virtual maximum flow determined by the 
lower-level subprogram is integral (at least 1); otherwise, it is zero.  

With the lower-level subprogram, we can verify Eq. (3) by substituting the binary values of zw. 
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 ( )
 ( )

( )
unrestrictive

unrestrictive

1 ,

1 0 i.e., 0

0 0 0 i.e., 0

w w w

w w w w

w w w w

M z V Mz w W

z V M V V

z M V V V

ε

ε ε

ε

− − + ≤ ≤ ∀ ∈

 = ⇔ ≤ ≤ ⇔ ≥ > >


⇔ 
= ⇔ − + ≤ ≤ ⇔ ≤ =




. (12) 

This relationship is consistent with the definition of zw. If Vw>0 (there is at least one feasible route between O-D pair 
w), then zw =1 (i.e., this O-D pair is connected); if Vw =0, then zw =0 (i.e., this O-D pair is disconnected).  

As an initial development, Eq. (3) only uses the virtual maximum flow to check the O-D connectivity. As long as 
a route is available (i.e., Vw>0), this O-D pair is treated as connected. To account for capacity of the O-D connectivity, 
we may use the concept of volume/capacity (V/C) ratio to check if the maximum flow under disruptions is able to 
satisfy a minimum percentage of travel demand. For example, Eq. (3) can be replaced by 

 ( )1 ,w w w w wM z lc V q Mz w Wε− − + ≤ ⋅ − ≤ ∀ ∈ , (13) 

where lcw is the maximum link capacity among all links going out of the origin and going into the destination of w; 
qw can be considered as the minimum travel demand that should be satisfied, e.g., 50% of qw; lcw×Vw can be considered 
as an upper bound approximation of the virtual maximum flow between O-D pair w, i.e., 

i i

w w w
a a aa O a O

c y lc y lc V
∈ ∈

⋅ ≤ ⋅ = ⋅∑ ∑ , where ca is the capacity of link a. If lcw×Vw>qw, then zw=1 (this O-D pair is 
considered as connected); otherwise, zw =0 (disconnected).  
 
[Alternative II: Virtual Link Cost-Based Shortest Path Problem] 

Other than using the virtual maximum flow problem (Eqs. (6)-(9)) as the lower-level subprogram, we can also 
check the O-D connectivity by using a virtual link cost-based shortest path problem. We introduce another auxiliary 
variable uw to denote the minimum cost of O-D pair w, which can be determined by the following lower-level 
subprogram for each O-D pair w (or denoted by rs).  

 ( )min w
a a a

a A
u t M x y

∈

= + ⋅∑y
 (14) 

s.t. 1 , if
1 , if

0, otherwisei i

a a
a O a I

i r
y y i s

∈ ∈

= =
− = − =
=

∑ ∑ , (15) 

 0,ay a A≥ ∀ ∈ , (16) 

where ta is the travel time or cost of link a; ya is a binary decision variable: ya =1 if link a is used in the minimum cost 
route, and 0 otherwise. Eq. (14) minimizes the total travel cost for the selected links. Eq. (15) is the node conservation 
constraint. Note that the objective function is different from the classical shortest path problem, since it imposes a 
virtual link cost of using the disrupted links. If link a is disrupted (xa=1), its virtual link cost or usage penalty is at M+
; otherwise, its usage cost is ta. For a given disruption scenario x, the lower-level subprogram is a simple LP with 
respect to y. This continuous LP has a desirable integral property; therefore, every basic optimal solution has all 
variables equal to 0 or 1 (Ahuja et al., 1993). The main reason is that the constraint coefficient matrix of Eq. (15) (i.e., 
a (+1, 0, -1) matrix, and each column has entries of exactly one 1 and one -1) is totally unimodular, which enables to 
relax the binary integer constraint as a continuous interval [0, 1] (Hoffman and Kurskal, 1956). Furthermore, since we 
deal with directed graphs without negative cycles, the solution variables can be relaxed as a simple non-negative 
variable. This nice property is quite valuable in rendering the lower-level subprogram with a simple non-negativity 
constraint and reformulating the BLP into a readily solvable form.  
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When specifying the lower-level subprogram as Eqs. (14)-(16), Eq. (3) in the upper-level subprogram should be 
replaced by the following inequality, while Eqs. (1), (2), (4) and (5) keep intact.  

 ( )1 ,w w w wMz u u M z w Wε− + ≤ − ≤ − ∀ ∈ . (17) 

where wu  could be uniformly specified as a constant or defined as 0
w wu uθ= . Note that θ (>1) denotes the travelers’ 

allowable elongation ratio of accepting a detoured route relative to a reference cost u0
w (e.g., the shortest route cost 

between O-D pair w in normal situation). When θ approaches positive infinity, travelers could accept all available 
routes to serve this O-D pair; when θ approaches 1, travelers only accept a very tight route elongation ratio relative to 
the reference cost. Typically, not-too-long routes with an acceptable travel cost are more likely to be considered by 
travelers as a reasonable alternative when the primary or secondary route is not available under disruptions.  Eq. (17) 
corresponds to the following equivalent ‘if-then’ conditions: 

 



0 0
unrestrictive

0 0
unrestrictive

1 0 exist usable path

0 no usable path .

w w w w w

w w w w w

z M u u u u

z u u M u u

ε θ θ

ε θ θ

 = ⇔ − + ≤ − ≤ ⇔ ≤



= ⇔ ≤ − ≤ ⇔ >



 (18) 

If an O-D pair is connected (zw=1), the minimum cost uw will be smaller than the travelers’ acceptable elongated cost 
θu0

w; otherwise, the O-D pair is considered not connected for two possible reasons: (i) it is physically connected, but 
the minimum cost uw is greater than the travelers’ acceptable elongated cost θu0

w, and (ii) it is physically disconnected 
(i.e., no path available), so the minimum path cost with virtual link cost is greater than a large positive number M (i.e., 
xa=ya=1, link a is disconnected but it is still virtually used under the additional penalty M).  

Instead of using the objective function in Eq. (14), one may think of using 1-ya≥xa (i.e., if link a is disrupted xa=1, 
then it is not usable in any path ya=0; if link a is not disrupted xa=0, then it is usable ya=0 or 1) to characterize the 
mutually exclusive relationship between xa and ya. Then, one may use aa A

y
∈∑  (i.e., with an identical link cost) as 

the objective function subject to Eqs. (15)-(16) and 1-ya≥xa. However, when there is no available route (i.e., ya=0 for 
all links), the constraint set in Eq. (15) at the origin and destination is violated. Hence, the above trial is infeasible.  

The proposed optimization framework is flexible, because it allows the use of different specifications of 
vulnerability measures (i.e., objective functions) for different modeling purposes. Examples include the remaining 
network throughput (a measure of network capacity) and the remaining route diversity (a measure of network 
redundancy) after disruptions. The more remaining travel throughput and/or the more alternative routes are preserved, 
the more robust is the network to disruptions. In addition, within the BLP framework, the lower-level subprogram is 
also flexible. As shown in Alternatives I and II, we can use either the virtual link capacity based maximum flow 
problem or the virtual link cost based shortest path problem to effectively check the O-D connectivity under a network 
disruption scenario without path enumeration. 

Note that Matisziw et al. (2007) developed a network interdiction model to identify bounds for network 
connectivity vulnerability in terms of facilities associated with worst-case (or best-case) impacts. The model is a binary 
integer linear program, which is solvable theoretically. However, it relies on path enumeration and/or path storage. 
On the one hand, path generation/enumeration is a non-trivial task, especially for large-scale networks. On the other 
hand, the quality of the generated route set (e.g., behavioral realism or reasonableness) may affect the resultant 
evaluation of vulnerability bounds.  For example, the generated route set may exclude routes that are unattractive but 
become attractive after implementing some management policies (Watling et al., 2015). Subsequently, Matisziw and 
Murray (2009) developed a path-enumeration-free approach to model the O-D path availability to support disaster 
vulnerability assessment of network infrastructure. Specifically, a path aggregation constraint structure was proposed 
to eliminate path enumeration in the worst-case scenario of the flow interdiction model, which provides computational 
benefit over the original network interdiction model of Matisziw et al. (2007). Other than the conservative 
consideration of only the worst-case scenario, we observe that the path aggregation constraint may not be applicable 
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to urban transportation systems, since it is not able to differentiate path length when checking the O-D connectivity. 
It implicitly assumes that all connected routes between an O-D pair are viable and usable, regardless of their travel 
distance or cost. The negative consequence of this unrealistic assumption is that the O-D connectivity could be 
significantly overestimated under disruptions. Travelers do not treat all simple routes (without any upper bound on 
distance or cost) as usable alternatives in either normal or disruption scenarios. Instead, they have some tolerance for 
taking alternative routes that deviate from their normal best routes. On the contrary, our proposed model explicitly 
captures the travelers’ tolerance for accepting these alternative routes when checking the O-D connectivity under 
disruptions. Specifically, this modeling realism is attributed to the virtual link capacity based maximum flow 
formulation together with Eq. (13) or the virtual link cost based shortest path formulation together with Eq. (17). Also, 
Eq. (13) and Eq. (17) allow users to flexibly specify thresholds to implicitly define route availability.  

3. Solution algorithm 

Recall that the proposed model is a BLP, which is not directly solvable. The upper-level subprogram is a binary 
integer linear program (BILP). Both alternatives I and II of the lower-level subprogram (for a given x) are a continuous 
LP. Below, we reformulate the BLP as a single-level MILP by substituting the lower-level subprogram with its KKT 
conditions along with some linearization techniques.  

Consider the lower-level subprogram alternative I. The Lagrangian function is (Luenberger and Ye, 2008) 
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 (19) 

where the objective function has been replaced by the first condition of Eq. (7); λ and μi are the dual variables 
associated with the second and third conditions of Eq. (7); and τa1 and τa2 are the dual variables associated with -ya≤0 
and ya-(1-xa)≤0 in Eq. (11). Then, the KKT conditions of the lower-level subprogram can be derived as follows.  
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 0, , ,
i i

a a
a O a I

y y i N i r s
∈ ∈

− = ∀ ∈ ≠∑ ∑ , (22) 

 1 10, 0, 0,a a a ay y aτ τ≥ ≥ = ∀ , (23) 
 ( )2 20, 1 0, 1 0,a a a a a ax y x y aτ τ≥ − − ≥ − − = ∀ , (24) 

where i
aδ
+ =1 if link a is leaving out of node i, and 0 otherwise; i

aδ
− =1 if link a is going into node i, and 0 otherwise. 

Note that Eqs. (20)-(22) are all linear equations. Eqs. (23) and (24) are complementarity conditions, making the KKT 
conditions being a nonlinear system. Below, we reformulate the complementarity conditions in Eqs. (23) and (24) as 
a linear system by making full use of the problem characteristics. As mentioned before, the lower-level subprogram 
alternative I has an integral optimum solution (i.e., ya at optimality will be either 0 or 1). Considering xa is a binary 
integer variable, then 1-xa≥ya in Eq. (23) implies that 1-xa-ya is also binary. With these observations, the 
complementarity conditions in Eqs. (23) and (24) can be reformulated as the following simple linear inequalities. We 
should point out that this linearization technique with a much smaller number of variables and constraints is different 
from the typical linearization technique of complementarity conditions (e.g., Wang and Lo, 2010). 
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With the above equivalent reformulation in Eqs. (25)-(26), the KKT conditions becomes a linear system. Along 
with the BILP structure of the upper-level subprogram in Eqs. (1)-(5), the proposed BLP model has been reformulated 
as a single-level MILP. This desirable feature permits a number of existing algorithms in commercial software 
packages for its global optimal solution. For completeness, below we present the reformulated MILP for the virtual 
link capacity based maximum flow problem as the lower-level subprogram. Since the lower-level subprogram works 
for each O-D pair, we add superscript w to decision variable y and dual variables λ, μ, and τ of the lower-level 
subprogram. 
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Similarly, the BLP model using the lower-level subprogram alternative II in Eqs. (14)-(16) can be reformulated as 
the following MILP: 
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(28) 

where μr
w, μs

w, and μi
w are the dual variables associated with the three conditions of Eq. (15); and τaw is the dual variable 

associated with Eq. (16). The same logic in Eq. (25) is used to reformulate the complementarity condition τawya
w=0 as 

a linear form. We add another set of variables pa
w in order to eliminate the bilinear term when calculating 

( )w w
a a aa

u t Mx y= +∑ . There are multiple ways to deal with the bilinear terms (e.g., Hanson and Martin, 1990). Note 
that xaya

w=xa when ya
w=1; and xaya

w=0 when ya
w=0. Eq. (28) uses the four inequalities associated with pa

w=xaya
w 

together with the binary constraint of ya
w to calculate uw:  
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In addition, some practical constraints may be used to enhance the computational efficiency. The maximization 
case seeks to have zw =1, while the minimization case seeks to have zw =0. As mentioned in Eq. (18), if zw=1, uw≤θu0

w; 
there are two possible reasons for an O-D pair not to be considered as connected: θu0

w<uw<M (physically connected, 
but exceeds the travelers’ acceptable elongated cost), or uw>M (physically disconnected). To differentiate uw>θu0

w and 
uw>M, we could define another set of binary variables hw: hw=1 for physically connected case and 0 otherwise.  
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Then, the relationship between zw and hw is as follows 
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When hw=1, pa
w is 0 for all links (i.e., no disrupted link is used; otherwise, there exists a link with pa

w=1); when hw=0, 
at least one disrupted link is used (i.e., pa

w=1). This relationship could be expressed as 
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 (32) 

The proposed optimization model for deriving the vulnerability envelope is capable of guaranteeing a globally 
optimal solution from two perspectives: (1) it enables to derive both the exact upper and lower bounds (i.e., the best 
and worst cases) of network vulnerability under multiple simultaneous disruptions, while circumventing the need to 
perform a full network scan, but with an implicit consideration of all possible combinations of multiple disruptions 
(via the optimization approach); (2) from the optimization perspective, the equivalently reformulated MILP has a 
globally optimal solution, which is a desirable property for both theoretical exploration and algorithm development.  

4. Numerical examples 

In this section, numerical examples are provided to demonstrate the validity, capability, and flexibility of the 
proposed optimization framework for deriving the upper and lower vulnerability bounds. Example 1 verifies the 
correctness of the optimal upper and lower bounds by comparing with the complete enumeration approach, and also 
explores the implication of the vulnerability envelope. Example 2 demonstrates the flexibility of the proposed 
framework in terms of allowing different models in the lower-level subprogram, and implicitly defining route 
availability without path enumeration. Example 3 compares the vulnerability envelope between individual link 
disruption and pairwise link disruption. A simple network shown in Figure 1 is used for ease of results exposition. 
This network consists of 6 nodes, and 16 directed links. Examples 1 and 2 consider 14 O-D pairs (i.e., (1, 2), (1, 3), 
(1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3), (5, 6), and (6, 5)), and Example 3 considers all 30 
(i.e., 6×5) O-D pairs. For simplicity, all O-D pairs are assumed to have the same travel demand of 1 unit. Accordingly, 
the common objective function degenerates to the total number of available/usable/connected O-D pairs. As to the 
maximum flow-based model, we simplify the term w w wlc V q⋅ −  in Eq. (13) as Vw-p. When p=0, Eq. (13) means this 
O-D pair is connected as long as Vw-0>0; When p=1, Eq. (13) means this O-D pair w is considered as connected only 
when Vw-1>0. As to the shortest path-based model, we set all links to have the same travel time of 1 unit, which will 
be used in Eq. (14). One can readily consider link-specific travel time and O-D pair specific maximum flow constraint 
and travel demand in the proposed model.  
 



656 Xiangdong Xu et al. / Transportation Research Procedia 23 (2017) 645–66312 X. Xu, A Chen, and C. Yang / Transportation Research Procedia 00 (2017) 000–000 

875

1

3

2

4

6

2

1

5

6

10

11

15

16

14

13

9

12

34

 
Figure 1. Example network. 

4.1. Example 1 

First of all, we solve the proposed vulnerability bound model with both lower-level subprogram alternatives: the 
virtual link capacity-based maximum flow problem and the virtual link cost-based shortest path problem. Specifically, 
we set p=0 in the maximum flow-based model and θ=M (a very large positive constant) in the shortest path-based 
model. Figure 2 shows the optimal upper and lower bounds of the remaining throughput (i.e., objective value) as a 
function of the number of disrupted links (n). Both the maximum flow-based and the shortest path-based models 
generate exactly the same vulnerability bounds. This is consistent with the setting of p=0 and θ=M, which means that: 
as long as an O-D pair is physically connected (i.e., Vw>0 or uw<M), the travel throughput of this O-D pair is considered 
to be realized.  

 

Figure 2. Upper and lower bounds (shortest path-based model, θ=M). 

To verify the correctness of the optimal upper and lower bounds, without loss of generality, we set n=4 and 
enumerate all possible combinatorial scenarios (C16

4=1820). For each scenario, we use the virtual link cost-based 
shortest path problem to check the connectivity of all 14 O-D pairs. Figure 3 shows the boxplot of the objective value 
(i.e., the number of connected O-D pairs) from the complete enumeration approach. One can see that the maximum 
objective value is 14 and the minimum objective value is 4. These complete enumeration results verify the optimal 
upper and lower bounds obtained from the proposed approach shown in Figure 2. We should point out that the 
complete enumeration approach has a combinatorial complexity, and hence is computationally burdensome. For this 
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simple example, we need to solve 25,480 (i.e., 1820 scenarios × 14 O-D pairs) linear programs of the virtual link cost-
based shortest path problem. The entire objective value distribution is unknown without a complete enumeration of 
all possible combinations. However, the proposed optimization approach is able to derive the exact upper and lower 
bounds (i.e., range) without the need to conduct a complete network scan. 

 

Figure 3. Boxplot of objective values obtained from complete enumeration approach. 

Below we explore the details of the optimal vulnerability bounds shown in Figure 2. The following observations 
can be drawn: 
• For each number of disrupted links, the upper and lower bounds capture all possible disruption scenarios provided 

by the complete enumeration approach. For all numbers of disrupted links, these two bounds form a vulnerability 
envelope. Both the upper and lower bounds of the remaining throughput are not strictly decreasing with the number 
of disrupted links, nor a convex/concave curve with respect to n. Overall, the consequence of more disrupted links 
becomes more severe regardless of the optimistic or pessimistic evaluation.  

• The reformulations presented in Section 3 are equivalent without approximation. Due to the LP structure of the 
proposed reformulation model, the derived upper and lower bounds are exact and globally optimal. However, the 
LP structure also leads to multiplicity of optimal solutions (i.e., non-unique optimal solutions in terms of disruption 
location x that can achieve the same objective value).  

• The best and worst case curves intersect at n=1 (no connectivity loss) and n=16 (completed disconnected). The 
largest vulnerability range is 13 occurred at n=10. Among the 16 values of n, 12 scenarios have a range of 
vulnerability greater than 5, and 9 scenarios have a range of vulnerability greater than 10. These vulnerability 
ranges indeed highlight the importance of systematically considering all possible simultaneous disruptions as well 
as the efficacy of the proposed optimization approach. A complete network scan is too computational burdensome, 
while a partial scan may miss some critical scenarios that may lead to a bias vulnerability assessment. These 
vulnerability ranges could be used to assist in developing possible system improvements in the contingency 
planning. The disrupted links that result in the largest system loss should be protected as much as possible, while 
the disrupted links that result in the least system loss could be ignored especially with limited resources in planning 
contingencies.  

• As to the best case curve, due to the relatively slack setting of p=0 and θ=M, the O-D connectivity does not decrease 
until n=11. From the optimistic perspective, this network allows at most 10 disrupted links, and the remaining 6 
links constitute a closed loop for guaranteeing a full connectivity of all 14 O-D pairs as shown in Figure 4(a).When 
n=11, the maximum objective value reduces to 12, due to the connectivity loss of O-D pairs (5, 6) and (6, 5) as 
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shown in Figure 5. The largest slope occurs at n=13, which reduces the upper bound from 12 (85% connectivity) 
at n=12 to 6 (42% connectivity) at n=13.  

• As to the worst case curve, any single link disruption (n=1) does not degrade the full connectivity of the 14 O-D 
pairs, while n=2 reduces the lower bound to 9. O-D pairs (1, 2), (1, 4), (3, 2), (3, 4) and (5, 6) become disconnected 
due to the disruptions on links 5 and 13 as shown in Figure 4(b) and Figure 5. These five O-D pairs are sensitive 
or vulnerable O-D pairs for this particular network.  The largest slope of lower bound occurs at n=2 and n=4, which 
reduce the objective value by 5 units. Also, n=4 is a critical point, starting from which the worst network 
connectivity is less than 50% (i.e., 7) and half of the 14 O-D pairs are disconnected. From Figure 4(c), the 
disruptions on links 5, 6, 13, and 14 lead to the disconnection of 10 O-D pairs, while only zones 1 and 3 and zones 
2 and 4 are still connected. The disrupted links corresponding to the largest slope of lower bound (e.g., at n=2 and 
n=4) should be strategically protected to maintain network resiliency against disruptions, whose failures could 
create a dramatic degradation of the vulnerability bounds. The complete network disconnection happens at n=12, 
where only links 1, 2, 9 and 10 shown in Figure 4(d) are available. The earlier the completely disconnected point 
occurs, the less survivable is the network to disruptions.  
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(a) Best case at n=10 
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(b) Worst case at n=2 
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(c) Worst case at n=4 
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(d) Worst case at n=12 

Figure 4. Network configuration after certain disruptions (solid line: connected link; dashed line: disconnected link). 

 

Figure 5. Change of O-D connectivity under various numbers of disrupted links. 
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4.2. Example 2 

This section extends Example 1 to demonstrate the flexibility of the proposed framework in terms of allowing 
different lower-level subprograms, as well as implicitly defining route availability without path enumeration. First, 
we examine the impact of p on the maximum flow-based vulnerability bounds. Figure 6 shows the optimal upper and 
lower bounds obtained from the maximum flow-based model with p=0 and p=1. The upper (and lower) bound curve 
with p=0 is above that with p=1. The reason is that p=1 represents a tighter requirement of O-D connectivity (Vw>1). 
An O-D pair is considered connected only when it has at least two units of virtual maximum flow or two distinct 
routes. The lower bound with p=1 is equal to 9 at n=1, rather than 14. In this scenario, the disruption of link 5 reduces 
the virtual maximum flow of O-D pairs (1, 2), (1, 4), (3, 2), (3, 4) and (5, 6) to a single unit, which is considered as 
disconnected with p=1. Again, these five sensitive O-D pairs are consistent with p=0. From this perspective, the upper 
and lower bounds may not necessarily constitute a closed vulnerability envelope.  

 

 

Figure 6 Upper and lower bounds (maximum flow-based model, p=0 vs. p=1). 

The range between upper and lower bounds informs how resilient the network is against disruptions. The largest 
range with p=1 appears early (at n=4) than that with p=0 (at n=10). The best case starts to lose its O-D connectivity 
starting from n=4 (versus n=10 with p=0). At n=5, failures on links 7, 10, 11, 12, and 15 reduce the virtual maximum 
flow of O-D pairs (5, 6) and (6, 5) to a single unit. Similarly, the best case gets completely disconnected at n=14 
(versus n=16 with p=0); and the worst case gets completely disconnected even much earlier at n=6 (versus n=12 with 
p=0). The early occurrence of the completely disconnected points indicates that the network is less survivable to 
disruptions. Disruptions on links 3, 4, 8, 9, 13, and 14 (i.e., n=6) make all 14 O-D pairs with Vw=1. Also, the cumulative 
range between upper and lower bounds is 122 at p=0 and 99 at p=1. 

Similar to Figure 6, Figure 7 shows the impact of θ on the shortest path-based vulnerability bounds. Specifically, 
we examine the upper and lower bounds under θ=1.5, 2.0, and 3.0. Recall that θ (>1) denotes the travelers’ allowable 
elongation ratio of accepting a detoured route relative to the normal situation. A smaller value of θ indicates that the 
travelers are only willing to accept a small route elongation relative to the normal situation. As shown in Figure 7, 
with the increase of θ, both the upper and lower bounds shift to the upper right corner. The increase of θ from 1.5 to 
3.0 right shifts the starting point of upper bound reduction from 4 to 6, and then to 8, and the completely disconnected 
point of lower bound from 8 to 12. To give an example on the distinguishing capability of θ, we look at the upper 
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bound with θ=3 at n=8, where at most eight links (i.e., 1, 3, 6, 8, 10, 12, 13, and 15) can be disrupted without impacting 
the complete network connectivity. This is different from Figure 2 that at most ten links can be disrupted for complete 
network connectivity when θ=M. The closed loop constituted by the six links shown in Figure 4(a) makes some O-D 
pairs unacceptably elongated, e.g., uw=4 for O-D pairs (1, 3) and (4, 2) and uw=5 for O-D pairs (2, 1) and (3, 4). The 
shortest path-based model with a reasonable route elongation ratio is able to avoid this unreasonable result. In 
summary, the above results on the impacts of p and θ indicate that ignoring the behavioral requirement of route 
usability (i.e., simply use physically connected p=0 or θ=M as behaviorally usable) overestimates both the optimistic 
and pessimistic estimates of network vulnerability under disruptions. 

 

 

Figure 7 Upper and lower bounds (shortest path-based model, θ=1.5, 2.0, and 3.0). 

Both lower-level subprogram alternatives have their own advantages. On the one hand, the maximum flow-based 
lower-level subprogram has fewer decision variables than the shortest path-based lower-level subprogram, rendering 
more computational efficiency. The reason is that the shortest path-based lower-level subprogram has a bilinear 
objective function, which is reformulated as four linear inequalities associated with an additional variable pa

w
 as shown 

in Eq. (29). On the other hand, the shortest path-based lower-level subprogram has a more intuitive way of modeling 
route availability without path enumeration (via the travelers’ allowable elongation ratio for taking alternative routes 
that deviate from their normal best routes) as shown in Eqs. (17)-(18). 

4.3. Example 3 

Figure 8 compares the vulnerability envelope between individual link disruption and pairwise link disruption. The 
individual link disruption means that there is no restriction on the disrupted link location, while the pairwise link 
disruption means that the two-way links are disrupted simultaneously. The pairwise link disruption may occur at two-
way two-lane roads or during large-scale infrastructure failure due to earthquake or flood, etc. Herein we consider all 
30 (i.e., 6×5) O-D pairs. One can see that Figure 8 with 30 O-D pairs is significantly different from Figure 2 with 14 
O-D pairs. As to the individual link disruption, both the upper and lower bounds degrade to zero at n=16. The largest 
vulnerability range is 25 (83%) also occurred at n=10. The vulnerability envelope of the pairwise link disruption is 
within that of the individual link disruption. This is consistent with optimization theory. More constraints in the 
pairwise link disruption decrease the maximum objective value and increase the minimum objective value. The upper 
bound starts to degrade at n=8 due to the additional disruptions on links 9 and 10, and the lower bound has a significant 
reduction at n=4 due to the additional disruptions on links 5 and 6 or 13 and 14.  
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Figure 8 Vulnerability bound comparison between individual and pairwise disruptions. 

5. Concluding remarks 

In this paper, we developed an optimization framework for deriving both the upper and lower bounds of network 
vulnerability envelope under multiple simultaneous disruptions, while circumventing the need of enumerating all 
possible disruption scenarios. The vulnerability bound envelope constructed by the upper and lower bounds is capable 
of considering all possible combinations while avoiding the combinatorial complexity of enumerating multi-disruption 
scenarios. With the vulnerability envelope as a network performance assessment tool, planners and managers could 
more cost-effectively plan for system protection against disruptions, and prioritize system improvements to minimize 
disruption risks with limited resources.  

Mathematically, we formulated the upper and lower bounds of network vulnerability as a BLP. The upper-level 
subprogram maximizes or minimizes the remaining network travel throughput under a given number of disrupted 
links, which corresponds to the upper and lower vulnerability bounds. The lower-level subprogram checks the 
connectivity or usability of each O-D pair under a network disruption scenario. The virtual link capacity-based 
maximum flow problem formulation and the virtual link cost-based shortest path problem formulation were developed 
as two alternative modeling approaches for the lower-level subprogram. To solve the proposed BLP model, we 
reformulated it as a single-level MILP, such that it could be readily solvable by existing solvers for its globally optimal 
solution without path enumeration. Numerical examples were also provided to systematically demonstrate the validity, 
capability, and flexibility of the proposed optimization model. The proposed modeling framework allowed flexible 
specifications of the common objective function for different modeling purposes, and flexible modeling approaches 
to check the O-D connectivity and to implicitly define route usability without path enumeration.  

A few directions are worthy of further investigations: (1) To further consider traveler’s rerouting effect on the 
remaining network travel throughput, we will include a suitable traffic assignment model as the lower-level 
subprogram. The O-D specific binary auxiliary variable in the upper-level objective function could be replaced by a 
continuous variable to represent the realized proportion of travel demand between this O-D pair. (2) We will explore 
other specifications of vulnerability measures, e.g., route diversity as a measure of network redundancy (Xu et al., 
2015). (3) The current paper focused on how to model the network vulnerability envelope in an optimization 
framework and how to reformulate it into a readily solvable form. Computational efforts required for solving MILPs 
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are complex and difficult (i.e., solving large-scale MILPs is computationally expensive). More efficient algorithms 
with a better utilization of the problem/model structure (e.g., use parallel computing due to the O-D pair specific 
lower-level subprogram) should be developed for enhancing its practical application in large-scale realistic networks. 
(4) It is also of interest to extend to consider node-based disruptions and interdependent infrastructures.  
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