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Abstract 

This paper investigates demand response (DR) potentials of residential air conditioners (AC) under different control strategies using a 
grey-box room thermal model. The proposed resistance-capacitance (RC) thermal model combines the essential prior knowledge of 
room thermal characteristics with data-driven techniques. With the aim of saving the optimization time and improving the 
reasonableness of the search results, undetermined parameters were physically estimated prior to the identification with nonlinear 
optimization method. A typical residential bedroom in Hong Kong was chosen to test the room thermal model. The root mean square 
errors (RMSE) between the sampled and predicted data sets for training and validation sessions were 0.25  and 0.28  respectively. 
After coupling the room RC thermal model and an empirical AC energy consumption model, we can get AC power reductions under 
different control strategies during the DR period. The simulation results show that the temperature set-point reset control strategies 
enable the power consumption to decrease during the DR event, and the peak reduction increases when the set-point is set higher. 
Besides, the precooling control strategy can help to further reduce the electric power. 
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1. Introduction 

Smart grid is an intelligent electric system that integrates with advanced communication and control technologies, and 
upgrades the power grid to be cleaner and more efficient, reliable, resilient and responsive. In smart grid, demand response 
enables consumers to reduce or shift their electricity usage during peak periods in response to time-based rates (e.g., 
Time-of-Use Pricing, Critical Peak Pricing and Real Time Pricing) or other forms of financial incentives. With the 
increasing saturation and penetration rate of the Advanced Metering Infrastructure (AMI), the potential peak reduction 
from retail and wholesale demand response programs had reached to 57,029 MW in total in 2013, accounting for 7.3 
percent of non-coincident peak load in U.S. [1, 2]. As to the residential sector, demand response resources provided by 
residential customers ramped up from 5,803 MW in 2006 to 8,600MW in 2012 due to the wide deployment of AMI and 
the dynamic electricity pricing schemes [3]. In Hong Kong, a high density city, the electricity consumption of residential 
buildings accounted for 26 percent of all electricity consumption in 2013, in which the electricity consumed by space 
conditioning represented 31% [4]. A typical evening peak usually occurs between 18:00 and 20:00 in summer because 
people go back home and turn on their home air conditioners. Residential air conditioners can make significant 
contributions to power reduction during this peak periods.  
In recent years, smart household monitoring, communication and automated control technologies and products, e.g. smart 
meters, and home energy management system (HEMS), have been developed and deployed rapidly. This can provide 
large amount of measured data, like indoor air temperature and power consumption, and facilitate the use of the data-
driven techniques for home energy management [5-7]. In this paper, an improved grey-box room thermal model was 
developed to investigate the demand response potentials of residential air conditioners in Hong Kong. The model can be 
integrated in the smart home energy management system to control the energy consumption during normal and DR periods. 
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2. Development of grey-box room thermal model 

Building thermal RC models have been widely investigated [5-7]. This study focus on the individual room thermal model 
considering that a huge number of small air conditioners are installed in the high-rise residential buildings in modern high 
density cities like Hong Kong and Shanghai. Many previous researchers studied the demand response of residential 
buildings in an aggregated approach using simplified RC models [8-11]. The grey-box room thermal model proposed in 
this study integrates physical principles of room thermal responses and data-driven optimization technique. Model 
training data are assumed to be available from smart home system and local observatory. 

2.1. Improved RC model 

The physical description of a grey-box model should be neither too simple nor too complex. It should capture the key and 
most thermal behaviors of targeted room to keep its robustness to different operating conditions. But for the sake of 
computation time, the model should not be too complicated. Fig.1 illustrates the components included in the model and 
the heat fluxes exchanged between them. The model mainly involves four nodes: outdoor environment, building envelop, 
indoor air, and internal thermal mass.  
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Fig. 1. Schematic of grey-box thermal model of residential buildings (5R4C) 

The exterior building envelop consists of opaque walls and transparent windows. Considering the climate in Hong Kong, 
most residential buildings are constructed with light-weight wall and without thermal insulation. Therefore, it is 
reasonable to consider the external wall as one thermal resistance and two equal thermal capacities [12]. Note that a 
portion of solar radiation through the window is directly transmitted into indoor air, and the rest is absorbed by internal 
mass constituted by floor, ceiling, partitions, and furniture. The bulk of internal mass absorbs the solar radiation through 
the windows and heat from indoor heat sources, then gradually transfers the heat into the space by convection. The energy 
balances for the external/internal wall surfaces, the indoor air and the internal thermal mass are given by the following 
equations: 

  

  

  

  

  

  

  

  

  

where R and C represent the overall heat resistance and capacity; T denotes temperature; subscripts i, o, w, in, ex, win and 
m indicate indoor air, outdoor air, exterior wall, internal wall surface, external wall surface, window and internal mass 
respectively; Qsolar,w, Qsolar,i and Qsolar,m are solar heat gains absorbed by external wall surface, indoor air and internal mass 
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respectively; Qinter,i and Qinter,m are internal heat gains absorbed by indoor air and internal mass; Isolar denotes global solar 
radiation; A denotes geometric area; f denotes the radiative/convective split for heat gain; α denotes absorptance of surface 
for solar radiation; SHGC denotes solar heat gain coefficient. To improve the accuracy of the model, the mathematical 
representation of the improved RC model incorporates more physical parameters compared with other RC model 
structures, such as SHGC, α, and f. The values of SHGC and α depend on the materials, structures and processes of the 
glasses and external wall surface [13]. The radiative/convective splits for different heat gain types vary to some extent 
[13]. 

2.2. Parameter identification  

Accuracy and computation efficiency are two major considerations in developing grey-box models using data-driven 
techniques. In this study, physical estimation of the model parameters was first conducted to narrow the search space of 
the optimization problem. 

2.2.1 Estimation of the model parameters 

In Hong Kong, U-value of exterior wall ranges typically from 2.2 to 2.9 W/(m2·K), and average U-value of single glazed 
windows is 5.6 W/(m2·K). Considering the average wind speed of 7.2 m/s during the summer months in Hong Kong, an 
average external wall surface resistance is recommended as 0.036 (m2·K)/W, or the convective heat transfer coefficient 
equals 27.8 W/(m2·K) [14, 15]. Typical range for interior surface heat transfer coefficient is from 0.12 to 0.2 (m2·K)/W 
[13]. Thermal resistances, i.e. Rw, Rwin, Rw,o, Rw,i, and Ri,m, are all overall thermal transfer values, and can be calculated by 
the Eq. (10). The thermal capacities in model including Ci, Cw, and Cm play functions of dampening the effects of heat, 
which would otherwise result in an instantaneous change in corresponding objects. It is noted that the thermal capacities 
used in the grey-box model may be effective or equivalent thermal capacities, not always equal the physical ones. For 
example, Ci used in GridLAB-D equals three times the volumetric capacitance of the interior air volume [16]. The building 
internal mass (e.g. partitions, furniture, carpet etc.) can be summed to a lumped thermal mass Cm, ranging from 100 to 
450 kJ/(K·m2) [17, 18]. Thermal capacity of half exterior wall can be calculated by the Eq. (11). 

  

  

where σw denotes the wall thickness; Aw denotes the wall area; ρw denotes the wall density. 

2.2.2 Nonlinear optimization of the parameters  

Searching the best values of the undetermined parameters of the grey-box model is a nonlinear optimization process, and 
the whole identification was processed using the Nonlinear Least Squares in the MATLAB platform.  
During the regression, given a set of R and C, the grey-box model can generate the predicted the profile of indoor air 
temperature, then we can evaluate the fitness between the prediction results and measured data arising from smart sensors 
by the objective function. The optimal set of R and C can make the indoor air temperature prediction fit the measured 
profile well each day. The optimization objective is to minimize the integrated root-mean-square error defined as: 

            (12) 

where Tmodel,i is the model predicted indoor air temperature; Tsample,i is the actual measured indoor air temperature; Cw, Ci, 
Cm, Rw, Rwin, Rw,o, Rw,i, Ri,m are the unknown parameters of the grey-box model. The Trust Region algorithmic strategy [19] 
was employed to search the optimal set of parameter values. 

3. Test of the room thermal model using field measurements 

One residential bedroom in Hong Kong was chosen to test the grey-box room thermal model. The geometric dimension 
of the room is 4.8m long, 3.6m wide, and 3m high. It has only one exterior wall which embedded with single glazed 
windows. The Window-Wall-Ratio (WWR) is 0.2 and the type of glass is clear. The absorption coefficient of the external 
wall surface is 0.8, and the solar heat gain coefficient (SHGC) of the glass is 0.7. Considering the interior shading and 
types of internal heat gains, the radiative/convective splits for both solar heat gain through windows and internal heat 
gains are 0.5/0.5 [13]. A smart sensor was installed in the room to record the indoor air temperature with the interval 10 
minutes. As for the outdoor weather data, both outdoor air temperature and horizontal global solar radiation are obtained 
from the nearby Hong Kong Observatory with the interval of 1 minute. 
In order to get the feasible search ranges of the parameters, an estimation procedure was conducted first using the specific 
geometric parameters and general building thermal parameters in Hong Kong. The search range of each parameter is set 
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as 1±30% of the corresponding estimated value. Then the measured data from 27 July 2015 to 31 July 2015 were used to 
train the optimal parameters of the grey-box model. The estimated and identified values of R and C are shown in Tab. 1. 
Fig 2-a shows the outdoor weather condition during the training session. Fig 2-b depicts the sampled and modelled indoor 
air temperature profiles.  

Table 1. Estimated and identified values of R and C for the bedroom grey-box thermal model. 

 

 
Cw (J/K) Ci (J/K) Cm (J/K) 

Rwin 

(K/W) 

Rw 

(K/W) 

Rw,o 

(K/W) 

Rw,i 

(K/W) 

Ri,m 

(K/W) 

Estimated values 1,850,688 187,868 25,488,000 0.0643 0.0463 0.0033 0.0106 0.0014 

Identified values 2,221,000 225,400 30,590,000 0.0450 0.0531 0.0023 0.0075 0.0009 

 

Fig. 2-a. Outdoor weather conditions during training session (27 Jul 2015 - 31 Jul 2015) 

 

Fig. 2-b. Simulated and sampled indoor air temperature during training session (27 Jul 2015 - 31 Jul 2015) 

Then during the next five days (1 August 2015- 5 August 2015), a validation was made using the model and the identified 
R and C. The outdoor weather condition and comparison between sampled and simulated data during validation session 
are shown in the Fig. 3-a and Fig. 3-b respectively. The modelling performance during the training and validation sessions 
are listed in Tab. 2. 

 

Fig. 3-a. Outdoor weather conditions during validation session (1 Aug 2015 - 5 Aug 2015) 
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Fig. 3-b. Simulated and sampled indoor air temperature during validation session (1 Aug 2015 - 5 Aug 2015) 

Table 2. Evaluations of the deviation between measured data and prediction results from grey-box the model. 

Sessions 
Performance metrics 

MAE MAPE RMSE 

Training session 0.1968 0.63% 0.2475 

Validation session 0.2276 0.72% 0.2849 

4. Estimation of DR potentials under different AC control strategies using grey-box room thermal model 

To investigate the energy saving and peak reduction potentials for a specified residence during DR events, apart from the 
building thermal model, a residential air conditioner energy consumption model is also needed. The DOE-2 [20], a widely 
used and accepted building energy analysis program, provides characteristic curves for cooling capacity and energy input 
ratio of room air conditioners, as shown in Eq. (13) – (14). 

                         (13) 

                          (14) 

Where the EIR refers to energy input ratio, which is the inverse of COP; Cap denotes the cooling capacity, W; To,db is dry-
bulb temperature of outdoor air, ; subscript nom indicate AC nominal operating condition. 
The control algorithm of the AC is on/off control, and the state depends on the deviation of the indoor air temperature 
from thermostat set-point, as shown in Eq. (15)-(16), in which δ denotes the dead-band. 

                                    (15) 

                                    (16) 

The peak reduction potential of one air conditioner with nominal cooling capacity 2.8 kW and nominal COP 2.5 was 
investigated on a typical hot summer day (i.e., 1 August 2015). For the room air conditioner, the DR control strategies 
refer to vary the temperature set-points of the AC when or before the electricity network reaches a peak demand (18:00 
to 20:00). Tab. 3 provides a summary of different control strategies used during predefined periods, and there is one 
baseline case and five DR cases.  

Table 3. Indoor air temperature set-points schedules in different control strategies. 

 

 

Control Strategies 

0:00 - 8:00 8:00 - 17:00 
17:00 - 18:00 

(Precooling Period) 

18:00 - 20:00  

(DR Period) 
20:00 - 24:00 

Baseline Case 24 OFF OFF 24 24 

DR Case 1 24 OFF OFF 25 24 

DR Case 2 24 OFF OFF 26 24 

DR Case 3 24 OFF 25 25 24 

DR Case 4 24 OFF 26 26 24 

DR Case 5 24 OFF 26 25 24 

Fig. 4 illustrates the simulated daily AC electric power consumption shapes under different operation cases. The simulated 
results were also analyzed, as shown in the Tab. 4. When thermostat set-point is reset from 24 during DR 
period, a peak reduction of 0.2 kW and 0.63 kW can be respectively achieved by DR case 1 and DR case 2. Combining 
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the set-point reset strategy with precooling strategy (e.g. DR case 3, 4, and 5), the peak demand reduction will rise to 
some extent. Compared with the DR case 1, the peak demand reduction in DR case 3 goes up from 0.2 kW to 0.41 kW. 
Similarly, the precooling measure enables the demand reduction increase from 0.63 kW in DR case 2 to 0.82 kW in DR 
case 4. Comparing the DR case 3 and DR case 5, we can find that the set-point during the precooling period have impact 
on the demand reduction during the DR period. When the set-point during the precooling session increases from 25

, the AC contribution to peak demand reduction will decrease from 0.41kW to 0.3 kW. In conclusion, the temperature 
set-point reset control strategy do reduce the peak demand during the DR event, and the precooling control strategy can 
help to further the power reduction.  

 

Fig. 4. AC energy consumption shapes with different control strategies 

Table 4. AC electricity consumption pattern in different control strategies.  

 

 

Electricity Consumption   (kWh) Average power 

reduction during 

DR period (kW) 

Power reduction 

percentage during 

DR period Precooling period DR period All-day 

Baseline Case 0 2.06 10.49 0 0.00% 

DR Case 1 0 1.66 10.28 0.2 19.42% 

DR Case 2 0 0.8 9.79 0.63 61.17% 

DR Case 3 1.05 1.24 10.62 0.41 39.81% 

DR Case 4 0.49 0.42 9.87 0.82 79.61% 

DR Case 5 0.49 1.46 10.43 0.3 29.13% 

5. Conclusion 

In the present paper, we developed an improved RC room thermal model and investigated the peak reduction potentials 
of residential AC under different DR strategies in Hong Kong. The grey-box room thermal model can be trained by 
making full use of indoor environment data collected and stored in smart home energy management system. For a typical 
room in Hong Kong, the root mean square errors for the training and validation data sets were 0.25 and 0.28 
respectively. It is worth mention that prior to the nonlinear optimization of R and C values, estimations were done to 
guarantee the reasonableness of the identified parameter values and to save the CPU time for regression. The simulation 
results show that AC power consumption can be reduced by adopting the temperature set-point reset and precooling 
strategies. 
The RC room thermal model proposed in this paper can capture the essential thermal dynamics in the air-conditioned 
room and has a simple structure at the same time. After being trained with the data collected from the smart home energy 
management system, it can be used for supervisory control purpose to save the energy and cost for residents. Besides, the 
utility companies can use the model to estimate the electric power baseline and DR potentials in large scale, then make 
some incentive policies accordingly. The AC used in this research is with single-speed compressor, and its energy 
consumption model is a simplified empirical steady-state model. However, more and more variable-speed air conditioners 
are produced and installed in residential buildings nowadays. In the future work, we will focus on studying the dynamical 
modeling and control of inverter residential AC and investigating their power reduction potentials during DR events.  
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