
1876-6102 © 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the scientific committee of the 8th International Conference on Applied Energy.
doi: 10.1016/j.egypro.2017.03.323 

 Energy Procedia   105  ( 2017 )  335 – 342 

ScienceDirect

The 8th International Conference on Applied Energy – ICAE2016 

Termination control temperature study for an air source heat 
pump unit during its reverse cycle defrosting 

SONG Mengjiea,*, WANG Xuanjieb, LIAO Liyuana, DENG Shimingc 
a Department of Energy Engineering, School of Materials and Energy, Guangdong University of Technolog, Guangzhou, China 

bDepartment of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong 
Kong SAR 

 c Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 
 

 
Abstract 

For an air source heat pump (ASHP) unit with a vertically installed multi-circuit outdoor coil, a reverse cycle 
defrosting (RCD) operation is always terminated when the tube surface temperature at the exit of the lowest circuit 
reaches a pre-set value. It is obviously that when the pre-set temperature is higher, the defrosting duration would be 
prolonged. Not only more energy would be consumed on heating cold ambient air, but also the occupants’ thermal 
comfort adversely affected. However, if the pre-set temperature is lower, more residual water would be left on the 
downside surface of fin in an outdoor coil, which degrades the system performance during the next 
frosting/defrosting cycle. In order to find a suitable DTT or its range, in this paper, an experimental investigation on 
RCD operation for an ASHP unit with a multi-circuit outdoor coil was conducted and reported. As concluded, DTT is 
suitable at the range of 20-25 oC, around 22 oC. 
 
© 2016 The Authors. Published by Elsevier Ltd. 
Selection and/or peer-review under responsibility of ICAE 
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1 Introduction 
 
Air source heat pump (ASHP) units have been widely used as cooling and heating sources for heating, 
ventilation and air conditioning installations over the recent decades in many parts of the world because 
of their advantages such as energy saving, environmental protection and flexibility. However, when an 
ASHP unit works in heating mode at high humidity and low temperature environment in winter, it is 
difficult to avoid frost formation and accumulation on its surface of outdoor coil. The frost layer degrades 
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system heating/frosting performance and even results in an unexpected shutdown of the ASHP unit. 
Therefore, periodic defrosting becomes necessary [1]. 
 
Currently, there are many defrosting methods, such as 1) compressor shut-down defrosting [2], 2) electric 
heating defrosting [3,4], 3) hot water spray defrosting [5], 4) hot gas by-pass defrosting [6,7], 5) 
compressed air blowing defrosting [8,9], 6) ultrasonic vibration defrosting [10,11], etc. However, among 
these used methods, the most widely used standard defrosting method is reverse cycle defrosting (RCD). 
When a space heating ASHP unit is operated at a RCD mode, its outdoor coil acts as a condenser and its 
indoor coil acts as an evaporator [12]. It should be noted that for defrosting on ASHP unit, a complete 
defrosting process covers both melting frost and drying coil surface. For an outdoor coil used in an ASHP 
unit, on its refrigerant side, multi-circuit structures are commonly used for minimizing refrigerant 
pressure loss and enhancing heat transfer efficiency. To save more floor space, a multi-circuit outdoor is 
always vertically installed. Authors have carried out series experimental and numerical studies to improve 
the RCD performance of an ASHP unit with a multi-circuit outdoor coil, by eliminating the negative 
effects of melted frost [12-14], improving the frosting evenness values [15-17], optimizing the refrigerant 
distribution [18,19], and adjusting the installation style of outdoor coil [20,21], etc. 
 
For an ASHP unit with a vertically installed multi-circuit outdoor coil, a RCD operation is always 
terminated when the tube surface temperature at exit of the lowest circuit reaches a pre-set value. It is 
obviously that when the pre-set temperature is higher, the defrosting duration would be prolonged. Not 
only more energy would be consumed on heating cold ambient air, but also the occupants’ thermal 
comfort adversely affected [22]. Since the ambient air temperature is always at the lowest value at night, 
sleep thermal comfort problem due to the degraded performance of air conditioning system attract 
scholar’s attentions [23-25]. On the contrary, if the pre-set temperature is lower, more residual water 
would be left on the surface of outdoor coil, which degrades the system performance during the next 
frosting/defrosting cycle [26]. In the open literatures, a suitable pre-set temperature, working as defrosting 
termination temperature (DTT) of a RCD operation, was not fixed. For example, used values consist of 10 
oC [27], 12 oC [28], 15 oC [29], 18 oC [30], 20 oC [31], 24 oC [12-21], 26.7 oC [32], and 35 oC [33], etc. 
Consequently, in order to find a suitable DTT or its range, in this paper, an experimental investigation on 
RCD operation for an ASHP unit with a multi-circuit outdoor coil was conducted. This study makes 
contributions on the method to find a suitable DTT for RCD of ASHP units. 

 
 

2 Experimentation 
 

2.1. Experimental ASHP unit 
 

An experimental ASHP unit was specifically established for carrying out the experimental work reported 
in this paper. The experimental ASHP unit was installed in an existing environmental chamber having a 
simulated indoor heated space and a simulated outdoor frosting space. Fig. 1 shows the schematics of the 
ASHP unit installed in the environmental chamber. The outdoor coil was specially designed and made for 
this study, as shown in Fig. 2. 
 
2.2. Experimental procedures and conditions 

 
Relative detailed information about the equipment is shown in References [12-14], including 

experimental procedures and conditions. Specially, in this study, only one experimental case was carried 
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out. The results were analysed to find the most suitable DTT or its range. 
 

 
 

Fig. 1 Schematics of the experimental ASHP unit installed in an environmental chamber 
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Fig. 2 Details of the three-parallel refrigerant circuit outdoor coil and locations of solenoid valves and manual stop valves 
 
 

3 Results 
 

As shown in Fig. 3, five phases were divided with six nodes, and Node 1 to 6 are at 10, 15, 20, 25, 30, 
and 35 oC, respectively. The six nodes are directly corresponding to the time of 151, 158, 172, 189, 211, 
235 s, respectively. Fig. 4 shows the measured fin surface temperature at the centre of each circuit of 
outdoor coil. Clearly, the temperature range is changed from 10-35 oC to 6.2-31.2 oC. Temperature 
difference of P3 is the biggest, at 6.6 oC. 
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In addition, Figs. 5-10 show the other several operating parameters of system during RCD. Table 1 
summarizes the DTT phase and nodes from the special points of different parameters. From these 
analysed special values in the following six figures, it is seems that the tube surface temperature at 175 s, 
about 22 oC in Fig. 3, could reflect the most suitable DTT. Therefore, it is demonstrated that, the most 
suitable DTT is about 22 oC, and the range is P3, 20-25 oC, in this study. 
 

 
Fig. 3 Measured tube surface temperature at exit of the lowest outdoor coil circuit 

 

 
Fig. 4 Measured fin surface temperature at the centre of each circuit of outdoor coil 
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Fig. 5 Measured temperatures of compressor suction and 

discharge 
Fig. 6 Total energy coming from outside of system 

 
  

  
Fig. 7 Total inputs coming from outside of system Fig. 8 Measured temperatures of tube surface at entrance and 

exit of outdoor coil 
  

  
Fig. 9 Measured temperature of air surrounding each circuit Fig. 10 Measured refrigerant volumetric flow rate 
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Table 1 DTT phase and node from different parameters 
 

Item Parameter Duration 
1 Total energy coming from outside of system 165 s - 
2 Total inputs coming from outside of system 170 s - 
3 Compressor suction temperature 170 s - 190 s 
4 Average of fin surface temperature 172 s - 189 s 
5 Temperature of air surrounding outdoor coil 172 s - 185 s 
6 Tube surface temperature at the exit of outdoor coil 175 s 
7 Measured refrigerant volumetric flow rate 175 s 

 
 
4 Conclusions 
 

For an ASHP unit with a vertically installed multi-circuit outdoor coil, a suitable DTT can effectively 
improve the frosting/defrosting operation performances. To find a suitable DTT or its range, an 
experimental investigation on RCD operation was conducted. Five phases were firstly divided with six 
tube surface temperature nodes. This was followed by analyzing experimental results, such as 
temperatures of fin surface and surrounding air, total energy, refrigerant flow rate, etc. Finally, the 
conclusion that DTT is suitable at 20-25 oC, around 22 oC, was given. In addition, using this method, 
suitable RCD DTTs could also be reached for other ASHP units. Consequently, saving more energy for 
ASHP units could be expected. 
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