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A common difficulty for the traditional methods of fluorescent molecular tomographic (FMT) reconstruction is
that only a small amount of measurements can be used to recover the image comprised of a large number of
pixels. This difficulty not only leads to expensive computational cost but also likely results in an unstable so-
lution prone to be affected by the noise in the measurement data. In this paper, we propose a region-based
method for reducing the unknowns, where the target areas are determined by searching for the nearest neigh-
bor nodes. In this method, the Hessian matrix of the second-order derivatives is incorporated to speed up the
optimization process. An iteration strategy of multi-wavelength measurement is introduced to further improve
the accuracy of inverse solutions. Simulation results demonstrate that the proposed approach can significantly
speed up the reconstruction process and improve the image quality of FMT. © 2010 Optical Society of America
OCIS codes: 100.3190, 170.3010, 170.3880, 170.6960, 260.2510.

1. INTRODUCTION

It is well known that the biological tissues have relatively
low optical absorption in the near-infrared (NIR) spectral
window, which has enabled a variety of NIR imaging tech-
niques [1,2]. The use of low-energy photons yields no ra-
diation hazard and requires cost-effective instrumenta-
tion. In recent years, fluorescent molecular tomography
(FMT) has emerged as a promising tool for small animal
imaging due to its ability to offer noninvasive tomogra-
phic reconstruction of cellular and subcellular function in
tissues [3]. FMT is an optical imaging technique for
depth-resolved imaging of fluorescent-tagged objects. In
this imaging modality, the injected fluorophore usually
accumulates in diseased tissue as a result of the increased
vascular density or by means of selective targeting [4]. A
laser emits photons at the excitation wavelength. These
photons propagate through the tissue and undergo ab-
sorption and scattering events. The fluorophore absorbs
the excitation light and then decays to the ground state
while releasing the energy, which is detected as fluores-
cence. The emitted photon has a longer wavelength than
that of the excitation photon, resulting in a color shift.
From the measured data, one can reconstruct the images
of the fluorescent lifetime and the fluorescent yield [5].
Reconstruction of FMT involves the generation of a for-
ward model that predicts the observable states at the
measurement sites based on the known excitation light
sources and the spatial distributions of optical properties
of the tissue [6]. In addition to the forward model, fluores-
cence tomography in tissues also requires an inverse
method to reconstruct interior optical and fluorescent
property maps of the tissue from noisy measurements [7].
Basically, the inverse problem of FMT can be solved with
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solutions of the forward model obtained either numeri-
cally or analytically [8].

It is generally accepted that one of the major challenges
in image reconstruction is the high computational com-
plexity. A common difficulty with the traditional methods
is that only a small amount of data from measurements
can be used to recover the image comprised of a large
number of unknown parameters. Large-scale tomographic
reconstructions not only bring a heavy computational bur-
den, but also lead to a low precision of the inverse solu-
tions due to the ill-posedness of the problem. In order to
reduce the number of unknowns for improving the ill-
posed nature of the inverse problem, and hence for im-
proving the reconstructed results, some related re-
searches have been conducted. In [9], a model-order
reduction (MOR) technique is adopted to reduce the sys-
tem complexity, where instead of solving the full-order
model system involving thousands of state variables, the
unknowns are expressed in the subspace with a reduced
dimension. In this method, the Wilson—Yuan-Dickens
(WYD) basis vectors or the Lanczos basis vectors in the
Krylov subspace are used to construct a transformation
matrix. In [10], an efficient technique for direct object lo-
calization and characterization is proposed, where the
number of unknowns is reduced by appropriate param-
eterization as well as the B-spline model. The computa-
tional advantage of that method is its inherent parallel-
ism. However, that work is concerned with the problem
with only one target included. Kolehmainen et al. also
made an important contribution by proposing another
method for the same purpose, where the diffusion equa-
tion with piecewise constant decay and diffusion coeffi-
cients is employed to model the forward problem [11].

© 2010 Optical Society of America
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That approach is proposed only for the recovery of the re-
gion boundaries on the basis of the necessary assumption
that the values of the diffusion and decay coefficients are
known a priori.

The aim of our work is to improve the quality of the re-
constructed image as well as speed up the reconstruction
process of the FMT. Based on the previous research, in
this paper, an innovative region-based method without
the need of that prior information is proposed for reduc-
tion of unknowns in the FMT reconstruction. Because
fluctuations in properties of the interior of a region are
usually much smaller than the differences between the
background and targets or between the different targets,
the proposed method classifies the image to be recon-
structed into two different kinds of areas (background
and target areas) and then assigns constant value to the
property in the interior of a region. This can lead to a sig-
nificant reduction of the unknowns involved in the recon-
struction. In this method, the target areas are con-
structed by attaching to each target its nearest neighbor
node with minimum cost one by one from the background
region. The proposed region-based reconstruction method
converts a highly underdetermined problem of recon-
structing an image with a large number of pixels to a well
determined problem of reconstructing the target regions
and the background area with constant optical properties
for each area. As compared with other methods proposed
in the literature, the most important innovation of our
proposed method lies in the fact that it can deal with
problems with multiple target areas of anomalies. In ad-
dition, different from the traditional iterative reconstruc-
tion algorithms, where only the first-order derivatives are
involved, we propose to incorporate the second-order de-
rivatives (i.e., the Hessian matrix) in the iterative optimi-
zation problem to further improve the reconstruction ac-
curacy, as well as to accelerate the reconstruction process.
A multi-wavelength reconstruction strategy that employs
the excitation and emission light measurements is also
proposed to improve the quality of the reconstructed re-
sults. Simulation results demonstrate that both the speed
and precision of the reconstruction can be significantly
improved with our proposed algorithm.

2. METHODS

A. Forward Diffusion Modeling

Propagation of photons in biological tissue is basically
governed by the radiative transfer equation (RTE). How-
ever, the use of RTE is computationally expensive in bio-
medical imaging. An alternative simplification approach
is the diffusion approximation [12]. The diffusion equa-
tion approximates the photon propagation under the as-
sumption that scatter dominates over absorption [13].
The generation and propagation of fluorescence light
through highly scattering is often modeled by a pair of
partial differential equations. In the frequency domain,
the propagation of excitation light over a bounded domain
) at a given modulation frequency is described by the fol-
lowing diffusion equation:

-V-D, V&) +k, D, =S, onQ, (1)

where the subscript x denotes the measurements or prop-
erties at the excitation wavelength A,, V is the gradient
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operator, S, (W/cm?) is the excitation light source whose
intensity is usually modulated on a sinusoidal signal,
®,(W/cm?) is the photon fluence at the excitation wave-
length, D,(cm) is the optical diffusion coefficient, and
k.(cm™) is the decay coefficient.

The generation and propagation of the emission light
can be described in a manner similar to that of the exci-
tation light:

l+ioT
-V- (Dm \% q)m) + kmq)m = Sm = (p,uaxfmq)x on ().

2

The subscript m denotes the parameters or measure-
ments at the emission wavelength \,,, ®,,(W/cm?) is the
photon fluence at the emission wavelength, S,, is the
emission light source, ¢ is the fluorescence quantum effi-
ciency, 7(s) is the fluorescence lifetime, and i=(~1)"2. The
diffusion coefficient D, ,,(cm) and the decay coefficient
ky m(cm™) are defined as follows:

1
D,,= —, (3)
3(:uax,mi + lu'ax,mf+ lusx,m)
lw
kx,m = : + Max,mi T Max,mf> (4)

where f1,, ni(cm™) is the absorption coefficient due to the
nonfluorescing chromophore, ,u,ax,mf(cm‘l) is the absorp-
tion coefficient due to the fluorophore, ,u,s'x,m(cm‘l) is the
isotropic scattering coefficient, w(rad/s) denotes the angu-
lar modulation frequency of the excitation light source
[14], and c(cm/s) is the speed of light in the medium.

The forward solver obtains the fluence for a given dis-
tribution of optical and fluorescent properties by applying
suitable boundary conditions such as the following Robin-
type boundary conditions:

n-OD,VD)+b,P.,=0 on JQ, (5)

n-D,V®,)+b,P,=0 on i, (6)

where n is the vector normal to the boundary JQ. The
Robin boundary coefficients b, and b,, are governed by the
reflection coefficients R, and R,,, respectively [15].

The forward Egs. (1) and (2) can be solved with analyti-
cal methods [16] or numerical methods such as the finite
element method (FEM) [17]. The analytical method is
more computationally efficient, but simplified assump-
tions of geometry and properties may lead to inaccurate
results [18]. The most important superiority of FEM is its
versatility, which makes it applicable to complex geom-
etries and highly inhomogeneous property distributions.
In this study, the FEM is employed to solve the forward
model. We give here a brief introduction of forming the
FEM equations for the forward problem. The domain () is
first partitioned into M non-overlapped elements Q; (i
=1,2,---,M) joined at N vertex nodes, such that Q
=U%19i. Let @x,mxiﬁ 1Py mii be an N-node finite-
element discretization of the photon fluence with basis
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functions ¢={¢;,i=1,2,---,N}. Thus, the diffusion equa-
tions in the FEM framework can be expressed as the fol-
lowing matrix form [19]:

A, =S, (7

Amq)m = Sm’ 8)

where the entries of matrices A, ,,, and S, ,, can be given,
respectively, by

Aij:ff Dx,mV (Z)LV(ﬁJdQ"'ff kx,m¢l¢jdﬂ
Q Q

+ f by mbidids, )
)

Si:ff Sx,md)idQ' (10)
O

B. Linear Reconstruction

The forward problem is to predict the measurements y
from a given distribution of tissue parameters x and the
light sources, which can be represented by a nonlinear
forward operator

y=F(x), (11)

where F' is the forward operator.

Similarly, in the inverse problem, the task is to derive
the tissue parameter distribution x on the basis of the
known distribution of the light sources and the measure-
ments y. Generally, y is a nonlinear function of x. To sim-
plify the problem, the function F' can be expanded in the
vicinity of x( in a Taylor series as [20]

1 1
¥y =F(xp) + F'(x0)(x — x0) + EF"(XO)(X —950)2 + ot ;

XF™(xg)(x —xo)" + -+, 12)

where F', F”, and F®™ are the first-, second-, and
nth-order Frechet derivatives of F, respectively.

The extent of accuracy of the Taylor approximation is
controlled by the residual term. In traditional image re-
construction algorithms, only up to the first-order deriva-
tives are usually kept for the aforementioned approxima-
tion in Eq. (12), which results in the following linearized
approximation:

y=F(x) + F'(x)(x — x¢). (13)

The solution to Eq. (13) can be expressed in a matrix
form:

Ax = (JTJ + \I)"1J Ay, (14)

where the Jacobian matrix J e R®*N with M and N be-
ing, respectively, the number of measurements and vertex
nodes, is the matrix form of the Frechet derivatives F'. It
is usually referred to as the first-order sensitivity matrix.
The vectors Ax e RN are the perturbations in the optical
or fluorescent properties, while Ay € RM is the residual
data between the measurements and the predicted data.
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The second term in the parentheses is the Tikhonov regu-
larization term for tackling the ill-posedness of the in-
verse problem.

Solving Eq. (14) involves computing a matrix inversion
of (JTIJ+\I)"1, which is computationally expensive be-
cause the dimension of that matrix N XN is usually ex-
tremely large. To reduce the computational intensity
while considering the fact that the value of N is usually
much larger than that of M, the strategy proposed in [21]
will be adopted here. Following this idea, Eq. (14) can be
rewritten as follows:

Ax = JT(JJIT + \I)'Ay. (15)

Different from that in Eq. (14), the matrix to be inverted
in Eq. (15) is JJT+\I with a size of M X M which is much
smaller than N XN, and hence the computational inten-
sity can be significantly reduced.

C. Reconstruction Based on the Second-Order
Sensitivity Matrix
Basically, linear approximation is usually employed in the
traditional reconstruction of FMT. The reason for neglect-
ing the second- and other even higher-order derivatives is
their extremely high computational complexity when in-
volved in the iterative reconstruction, especially for large-
scale reconstruction. However, involving the higher-order
derivatives in the reconstruction process will be helpful to
improve the convergence property of the algorithms.
Therefore, if the scale of the inverse problem or the num-
ber of unknowns to be reconstructed can be reduced, it
will be possible to introduce the second-order derivatives
into the inverse problem for improving the efficiency of re-
construction with low computational requirements. As
pointed out in the introduction, the number of unknowns
will be reduced by using a region-based reconstruction
method instead of the pixel-based one. Hence, the second-
order derivatives will be employed in our reconstruction.
To derive the framework for the nonlinear reconstruc-
tion of FMT with the second-order derivatives involved,
the inverse problem is described as the following optimi-
zation problem:

x = arg min Y(x) = |y - Fx)|* + Nix|*, (16)
X

where (x) is a multi-variable objective function with x
=[xq,%9,  *,xn]7, the second term on the right-hand side
(RHS) of Eq. (16) is the regularization term to improve
the ill-posedness of the reconstruction, \ is the regulariza-
tion parameter, and ||| is the Lo-norm.

We expand the above objective function in the vicinity
of x in a Taylor series and keep up to the first- and
second-order terms as follows:

1
W(x + AX) = f(x) + [Vi(x)]TAX + EAXTHAX, (17)

where the vector Ax is the perturbation in the optical or
fluorescent properties, and V¢(x) is the gradient of the ob-
jective function at x, i.e.,
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IYX) ) ax) |
0y g h ay |

(18)

X)=

H is the Hessian matrix (also referred to as the second-
order sensitivity matrix), whose entries are the second-
order partial derivatives of the objective function with re-
spect to all unknown parameters x describing the local
curvature of the objective function with respect to many
variables [22]. Let ¢: R¥—R, be a real-valued function as
defined above; then the N XN Hessian matrix H can be
obtained as

[ 2 Ry Py ]
o di, iy
Py P P
H=| xgix, 2 dginy |, (19)
Py Py el
dxnOxXy  JXNOXg ﬁx—zzv

Suppose that the objective function ¢ attains its extre-
mum at x+Ax; hence the iterative expression for the in-
verse problem of FMT based on the second-order sensitiv-
ity matrix can be obtained as

HAx = - Vi(x). (20)

D. Region-Based Reconstruction

As mentioned before, the inverse problem of FMT recon-
struction is ill-posed. The ill-posedness may be due to its
intrinsic properties or lack of enough measured data. For
an ill-posed problem, small variations in the data will re-
sult in large changes in the solution, i.e., the solution is
not stable and is sensitive to noise [23].

There are some ways to tackle the ill-posedness of the
inverse problem. One of such methods is to incorporate
the prior information into the inverse problem. Such prior
information can either be obtained from other imaging
modalities [24] or be incorporated in a manner by intro-
ducing penalty functions, as well as regularization terms
such as in Eq. (14) [25,26]. An alternative way of improv-
ing the ill-posed nature of the FMT reconstruction is to
reduce the number of unknowns involved in the recon-
struction. Extremely large numbers of unknown param-
eters not only result in the ill-posed nature, but also in-
crease the complexity and the computational intensity of
the reconstruction problem. Therefore, it will be of great
value to reduce the number of unknowns while not reduc-
ing the image quality. For such a purpose, some strategies
have been proposed in the literature [9—-11]. In this paper,
we propose to reduce the number of unknowns in FMT re-
construction by classifying the image into two different
kinds of areas (background and target areas) and assign-
ing a constant value to the property in the interior of a
region. Such a region-based reconstruction method tries
to convert a highly underdetermined problem of recon-
structing an image with a large number of pixels to a
well-determined problem of reconstructing the target re-
gions and the background area with constant optical
properties for each area. This is plausible because the
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fluctuations in properties of the interior of a region are
usually much smaller than the differences between the
background and targets or between the different targets.
Because of the significant reduction of the number of un-
knowns that need to be reconstructed, not only the ill-
posedness of the problem can be improved, but also the
reconstruction process can be accelerated. As compared
with previous region-based algorithms, the most impor-
tant innovation of our proposed method lies in the fact
that it can deal with problems with multiple target areas
of anomalies, which are not unusual in medical imaging.

The first task of our method is to determine the number
of targets and their centers, which is of critical impor-
tance for image reconstruction. Basically, different tar-
gets have different properties. Furthermore, the number
of the targets is really important in clinical application for
diagnosis and therapy. In our approach, the number of
target regions as well as the initial target centers are es-
timated from the initial guess obtained using the tradi-
tional reconstruction method as illustrated in Eq. (15).
Pixels with the extremum value in the areas of refined
grids generated as discussed in Subsection 2.Ewill be as-
sumed as the initial centers of the target areas. Obvi-
ously, the number of targets can be easily determined by
counting the number of centers just obtained. After deter-
mining the number of target regions and their centers,
different constants will be assigned to the properties of
the background and the targets regions. Thus, the tradi-
tional pixel-based reconstruction problem with a large
number of unknowns involved can be converted to the
region-based reconstruction with only a small number of
unknowns corresponding to the background and targets,
which can be more efficiently solved.

The next task is to reconstruct the regions from the ini-
tial estimated centers. In our algorithm, the target areas
will grow gradually along with the evolution of the itera-
tive process. Suppose that the number of target regions
determined from the initial guess is ¢, and the nodes of
the triangular grid in the whole reconstructed area are
denoted by p; (i=1,2,---,N) with N being the number of
nodes. Initially, only the centers are assumed as the tar-
gets and the rest of the areas are assumed to be the back-
ground. The algorithm proceeds by attaching to each tar-
get its nearest neighbor node with the minimum cost from
the background region. The cost of a node is defined as the
discrepancy between the measured and the predicted
data if the node is attached to the center. Such a cost can
be computed by two steps: first, the iterative reconstruc-
tion as in Eq. (20) is implemented with the assumption
that the node under consideration is attached to the cen-
ter; second, the cost of the node is computed using the ob-
jective function as in Eq. (16) with the reconstruction re-
sult just obtained in the first step as an input. Here, the
nearest neighbor nodes are defined based on the two-
dimensional Euclidean distance:

b= min |[jp;,-c, (21)
i=1,2, N

||pi - C‘kH = \/(xpi - ka)Z + (ypi _yck)2a (22)

where ¢, (k=1,2,---,q) is the kth center, b,, is its nearest

neighbor node, x, and x., are the x coordinate of the



Zou et al.

Vol. 27, No. 10/October 2010/J. Opt. Soc. Am. A 2331

(a)

©

Fig. 1. (Color online) Schematic illustration of the process of target area growth. (a) Existing target nodes that have been found, (b) the
nearest neighbor nodes of the existing target nodes, and (c) the candidate node with the minimum cost is attached as the target node.

points p; and ¢, respectively, and Vp, and y, , represent the
y coordinates of p; and c;. The nearest neighbor nodes as
defined above are only candidate nodes for being attached
to the target. After computing the cost for each nearest
neighbor node, only those with the minimum cost will be
chosen and attached. Such a process is repeated until
some stopping criteria are satisfied. The process of the
target area growth is schematically illustrated in Fig. 1.
The circles and triangles denote the existing target nodes
that have been found in the shaded (green online) target
area on the left and the shaded (yellow online) target area
on the right, respectively [see Fig. 1(a)]. The squares and
pentagrams represent the corresponding nearest neigh-
bor nodes of the existing target nodes that will be selected
as the candidate nodes (see Fig. 1(b)) for attachment.
Only the candidate node with the minimum cost is chosen
as the target node (see Fig. 1(c)). The overall reconstruc-
tion algorithm can be summarized as follows:

1. the initial guess x; is obtained using Eq. (15), set [
=0;

2. for each target center c;,, choose the nearest neigh-
bor node b, from Eq. (21) and attach them to the targets;

3. for each node in the target areas, the nearest neigh-
bor nodes are chosen one by one as the candidate nodes
(including the nearest neighbor nodes with the same dis-
tance), which forms the new possible target regions;

4. the reconstruction is implemented based on the
second-order derivative as in Eq. (20) for the new possible
target regions generated in step 3. Evaluate the cost us-
ing the objective function as in Eq. (16);

5. the targets are updated by attaching the candidate
node with the minimum cost to the original targets, x;
=xX;,1, let [=1+1;

6. if ¥(x;)>¢ (defined termination criterion &) go to 3;
else output x;.

E. Adaptively Refined Grid Generation

The accuracy of FEM solutions of differential equations
depends on the grid size [27]. Thus the accuracy of recon-
structed results can be improved by decreasing the grid
size. However, a global fine grid will increase the ill-
posedness of the reconstruction and result in unaccept-
able computational requirements because of the increased
number of unknowns. To tackle the above problem with-

out significantly reducing the image resolution, we pro-
pose to reconstruct the image based on an adaptively re-
fined grid.

Because of the relatively higher spatial resolution of
the structural imaging modalities, such as X-ray comput-
erized tomography and magnetic resonance imaging
(MRI), it will be helpful to improve the reconstructed im-
age quality and accelerate the reconstruction process if
the structural image is used as the prior information for
grid generation. In structural imaging, areas with large
variations in pixel values, which are likely to be edges be-
tween different tissues or between normal and abnormal
tissues, should be reconstructed with high resolution,
whereas regions with small variations, which are likely to
lie in the interior of the tissues, can be reconstructed with
low resolution, which will not affect the quality of the re-
constructed image. Following this idea, the reconstructed
domain is first uniformly discretized according to the De-
launay triangulation scheme, after which the uniform
grid is refined only for the areas with large variations in
pixel values. For an area, whether the grid needs to be re-
fined can be judged by the corresponding variations of the
pixel values in the triangle in the structural tomography,
ie.,

DX)=E{X-EX)P}, (23)

where X is the pixel value in the triangular unit in the
prior image, E is the expectation operator, and D is the
variation of pixel values in the triangle. When the varia-
tion is larger than the assumed threshold, the corre-
sponding triangle will be divided further to obtain higher
resolution. With such a variation, adaptive meshing can
be realized, in which triangles in the regions with large
variations will be further segmented into finer triangles
to achieve high resolution.

In addition, such a strategy of adaptive grid refining
will be helpful to locate the target regions in the proposed
algorithm. On the one hand, when we are searching for
the nearest neighbor nodes of the target areas to form the
new updated target regions, the nodes located in the re-
fined area are most likely to be chosen due to their near-
est distances to each other. Hence, the refined areas gen-
erated based on the prior information are the possible
target areas, which can help locate the targets in a correct
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direction. On the other hand, in the possible background
area, the grid is not refined and the resolution is rela-
tively low. This can accelerate the searching process of
targets.

3. RESULTS AND DISCUSSION

In our current implementation, we will focus on recon-
structing the distribution of absorption coefficient u,s
due to the fluorophore. Actually, two kinds of photons at
different wavelengths are involved in the process of FMT
image reconstruction. We can see that the quantity u,, is
contained in both of Egs. (1) and (2). Basically, in step 4 of
the proposed algorithm, the single property in FMT is re-
constructed based on only one kind of measurements, that
is, from either the excitation or emission light wave-
length. In this paper, an iteration scheme based on multi-
wavelength measurements is proposed to reconstruct the
distribution of absorption coefficient, i.e., two types of
measurements were adopted: measurements from both
emission and excitation light. This strategy is motivated
by the fact that two types of measurements from different
wavelengths can provide more information than only one
kind of measurement from a single wavelength during the
iteration process, and hence the quality of reconstructed
results can be improved. In addition, the iterative results
from one kind of measurement can provide a good initial
guess for the next iteration with the other kind of mea-

Start

Iteration with excitation

A

light measurements
k=k+1

7

Iteration with emission

light measurements
k=k+1

false
true

=! Stop )

Fig. 2. Flow diagram for the multi-wavelength measurement
scheme.
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surements. As a result, the precision of solutions can be
improved using this multi-wavelength measurement
strategy.

This scheme is also suitable for the case of other ele-
ments contained in Eq. (1). Two kinds of measurements
are used in turn for iteration in the proposed multi-
wavelength measurement scheme. The iterative result
from the excitation light measurement is used as an input
to the iteration of the emission light measurement, whose
result is then used in turn as an input to the former. The
process runs repeatedly until the cost can no longer be re-
duced or some convergence criteria are achieved. Figure 2
shows the iteration strategy of multi-wavelength-
measurement-based reconstruction schematically for step
4 of the proposed algorithm.

Fig. 3. Simulated phantoms for FMT of single target phantom.

Fig. 4. Model of prior image of single target phantom.

RSRSSRRRRAAA
WAVAVAVAVAVANANANAY|
VAVAVAVAVAVAVAVA,
\SCANDELY
A VYA %AV,
Wavavi¥A

Fig. 5. Adaptively refined grid of single target phantom.

@ ®)

Fig. 6. Reconstructed image of absorption coefficient due to
fluorophore w,, of single target phantom. (a) Proposed algorithm
and (b) traditional method.
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Table 1. Optical and Fluorescent Properties of Single Target Phantom

Excitation
Light fasf(mm ) Hasi(mm™) L, (mm™) ¢ ns)
Background 0.01 0.06 4.0 0.2 0.5
Target 0.15 0.06 4.0 0.2 0.5
Emission Meamf(mm™?) Hgmi(mm1) el (mmt) @ (ns)
Light
Background 0.006 0.02 1.0 0.2 0.5
Target 0.1 0.02 1.0 0.2 0.5

Table 2. Performance Comparison for Algorithms
of Single Target Phantom

Traditional
Performance Proposed Algorithm Method
MSE 3.861x 10 4.792x107*
Averaged absolute 2.129 X102 2.325x1072
value of relative error
Computation time (s) 149 217

The performance of the proposed approach is evaluated
using the simulated data. The simulated forward data are
obtained from Egs. (1) and (2) in which Gaussian noise
with a signal-to-noise ratio of 10 dB is added to evaluate
the noise robustness of the algorithms. In the first set of
simulations, a single fluorescent target is contained in the
phantom, while in the second set of simulations, double
targets are employed.

A. Single Fluorescent Target

The validation of the proposed algorithm is first per-
formed on a 2-D circular domain as shown in Fig. 3, which
contains one target representing the fluorescence center.
Table 1 outlines the optical and fluorescent parameters in
different regions of the simulated phantom. Four sources
and thirty detectors are positioned alternately around the
circle with equal intervals between each.

We employ the image shown in Fig. 4 with a resolution
of 100X 100 pixels as the prior image corresponding to
Fig. 3. The grid with 122 nodes and 212 triangular ele-
ments is generated as shown in Fig. 5. The grid is refined
around the reconstructed target while the other area is
left with the coarse resolution.

Figures 6(a) and 6(b) illustrate the reconstructed im-
ages of u,,r using the proposed algorithm and the tradi-

@

tional pixel-based method, respectively. We note that the
traditional method reconstructs the anomaly with an in-
correct size (larger than it should be), while the proposed
algorithm can give a more accurate location and contour
of the anomaly.

For the convenience of further evaluating the perfor-
mance of the reconstruction algorithms, both the mean
square error (MSE) of u,,, and the relative error as de-
fined in Eqs. (24) and (25), respectively, are introduced:

N
MSE = —> (5; -p)?, (24)
Ni=1
(»i-Dy) .
ri=——— x100%, i=1,2,---,N, (25)
b

where N is the number of vertex nodes, and p; and p; are
the original pixel and reconstructed pixel values, respec-
tively.

The performance of the two algorithms in terms of the
computation time, the MSE, and the averaged absolute
value of the relative error is summarized in Table 2 for
comparison in detail, which shows a significant computa-
tion reduction of the proposed algorithm over the tradi-
tional method. It can also be observed that the quality of
reconstruction is improved using the proposed algorithm.

To illustrate the superiorities of the iteration scheme
based on multi-wavelength measurement, both recon-
structed images of g, based on the single and multi-
wavelength measurement are shown in Fig. 7, with (a),
(b), and (c) corresponding, respectively, to the results with
the excitation light, the emission light, and the multi-
wavelength measurement. Reconstructed results indicate
that making use of single wavelength measurement for
image reconstruction likely results in an incorrect shape

©

Fig. 7. Reconstructed image of absorption coefficient due to fluorophore w,, of single target phantom. (a) With excitation light mea-
surement, (b) with emission light measurement, and (c) with multi-wavelength measurement.
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Table 3. Performance Comparison for Reconstructed Results of Single Target Phantom Based on Different
Kinds of Measurement

Reconstruction with
Excitation Light

Reconstruction with
Multi-Wavelength

Reconstruction with
Emission Light

Performance Measurement Measurement measurement
MSE 4.359x107* 4.273x107* 3.861x107*
Averaged absolute value of relative error 2.284 %1072 2.236 X102 2.129 X102
Table 4. Optical and Fluorescent Properties of Double Target Phantom
Excitation Light Maxf(mm™) Mo (mm1) wl (mm1) 1) m(ns)
Background 0.01 0.06 4.0 0.2 0.5
Target 0.1, 0.15 0.06 4.0 0.2 0.5
Emission Hamf(mm™) Hami(mm™) iy (0™ @ (ns)
Light
Background 0.01 0.02 1.0 0.2 0.5
Target 0.05, 0.1 0.02 1.0 0.2 0.5

Fig. 8. Simulated phantoms for FMT of double target phantom.

Fig. 9. Model of prior image of double target phantom.

SR
@ﬁﬁw
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Fig. 10. Adaptively refined grid of double target phantom.

of the reconstructed target, while the multi-wavelength-
measurement strategy can improve the quality of the tar-
get, especially in shape and location.

The quantitative comparisons of the performance
among the reconstructed results based on different kinds
of measurements are listed in Table 3. From this table, we
can see that both the MSE and the averaged absolute
value of relative error for the reconstructed image based

Table 5. Performance Comparison for Algorithms
of Double Target Phantom

Traditional
Performance Proposed Algorithm Method
MSE 2.049 X 1074 2.814x 107
Averaged absolute 9.741x10°3 1.311x 1072
value of relative error
Computation time (s) 206 287

@ (®)

Fig. 11. Reconstructed image of absorption coefficient due to
fluorophore . of double target phanton. (a) Proposed algo-
rithm, and (b) traditional method.

on multi-wavelength measurement are smaller than
those based on the single wavelength measurement.
Thus, iteration with the measurements from different
wavelengths in turn can improve the quality of image re-
construction and lead to more accurate reconstructed re-
sults.

B. Double Fluorescent Targets

In order to further validate our proposed algorithm for
the case when there is more than one fluorescent target in
the imaging area, simulated reconstruction is performed
on the phantom as shown in Fig. 8, which contains two
targets of different shapes representing the fluorescence
centers. Table 4 outlines the optical and fluorescent pa-
rameters in different regions of the simulated phantom.
Four sources and thirty detectors are used in the follow-
ing simulation.
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Fig. 12. Reconstructed image of absorption coefficient due to fluorophore wu,, of double target phantom. (a) With excitation light mea-
surement, (b) with emission light measurement, and (¢) with multi-wavelength measurement.

The image shown in Fig. 9 is employed as the prior im-
age corresponding to Fig. 8. The grid with 148 nodes and
264 triangular elements is generated as shown in Fig. 10
for the inverse problem of FMT.

Figures 11(a) and 11(b) show the reconstructed images
of w,.r using the proposed algorithm and the traditional
pixel-based reconstruction method, respectively. Recon-
structed results indicate that for the case of two fluores-
cent targets, the proposed algorithm can also provide
more exact locations of the anomalies. The reconstructed
areas with high and low absorption coefficients are also
more visually similar to the simulation model than those
resulting from the traditional method. From Fig. 11(a),
we can also see that the quality of the reconstructed area
with the high absorption coefficient is better than that
with the low absorption coefficient.

Table 5 summarizes the performance of the above two
algorithms for comparison, which demonstrates that both
the quality and the speed of reconstruction can be im-
proved with the proposed algorithm. This may be because
the proposed algorithm has significantly reduced the
number of unknowns to be solved. Therefore, the pro-
posed algorithm is also valid for such a case of two targets
in image reconstruction.

Furthermore, reconstructed results of i, for the simu-
lated phantom shown in Fig. 8 with the two single and
the multi-wavelength measurement are shown in Figs.
12(a)-12(c), respectively. Similar to the case of single tar-
get reconstruction, there also exist some errors in the re-

sulting position and shape of the targets when single
wavelength measurements are used. This may be due to
lack of enough information for reconstruction. However,
the results can be improved as in Fig. 12(c) when multi-
wavelength measurements are used, which is because
more information is introduced into image reconstruction.

The quantitative comparisons of the performance
among the reconstructed results based on different kinds
of measurement are listed in Table 6. It can be seen that
reconstruction with multi-wavelength measurement pro-
vides a better result than that with either excitation light
or emission light measurements. Hence, the multi-
wavelength measurement strategy can improve the accu-
racy of inverse solutions.

In order to investigate the impact of the termination
criterion & on the MSE, the relative error and the compu-
tation time in the proposed algorithm-simulated recon-
structions are implemented using our proposed algorithm
with different values of e. The results for the two fluores-
cent targets are shown in Table 7. From this table, we can
see that with the increment of &, the MSE and the aver-
aged absolute value of the relative error of the recon-
structed results increase, while the computation time of
the reconstruction process decreases. Simulated recon-
structions of a single fluorescent target are also per-
formed under different choices of ¢, based on which simi-
lar conclusions can also be drawn. This means that
increasing ¢ will accelerate the reconstruction process but
result in a worse reconstruction.

Table 6. Performance Comparison for Reconstructed Results of Double Target Phantom Based on
Different Kinds of Measurement

Reconstruction with
excitation light

Reconstruction with
multi-wavelength

Reconstruction with
emission light

Performance measurement measurement measurement
MSE 2.416x 1074 2.358 X 1074 2.049x 1074
Averaged absolute 1.154x 1072 1.128 X 1072 9.741x1073
value of relative error
Table 7. Impact of £ on the Reconstruction Process
& 0.02 0.06 0.10 0.14
MSE 1.712x 1074 2.049x 1074 2.281x 1074 2.772x 1074
Averaged absolute 8.239x 1073 9.741x 1073 1.103x 1072 1.304 x 1072
value of relative error
Computation time (s) 215 206 193 172
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4. CONCLUSION

In this paper, a region-based reconstruction algorithm
that can significantly reduce the number of unknowns in-
volved in reconstruction for FMT is proposed. This algo-
rithm is not to perform a pixel-based reconstruction,
which is highly underdetermined and ill-posed, but in-
stead to reconstruct the target regions and the back-
ground area with constant optical or fluorescent proper-
ties. The target areas are determined by searching for the
nearest neighbor nodes. For the region-based reconstruc-
tion method, in which the unknowns can be significantly
reduced, we propose to incorporate the Hessian matrix in
the optimization to accelerate the reconstruction process.
Additionally, we propose a multi-wavelength reconstruc-
tion strategy that employs the excitation and emission
light measurements in turn for iterative computation.
Simulation results demonstrate that the proposed algo-
rithm can not only significantly accelerate the reconstruc-
tion process but also achieve reconstructed results with
high accuracy.
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