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We consider the dynamic pricing problem of perishable products in a system with
a constant production rate. Potential demands arrive according to a compound Pois-
son process, and are price-sensitive. We carry out the sample path analysis of the
inventory process and by using level-crossing method, we derive its stationary dis-
tribution given a pricing function. Based on the distribution, we express the average
profit function. By a stochastic comparison approach, we characterize the pricing
strategy given different customers willingness-to-pay functions. Finally, we provide
an approximation algorithm to calculate the optimal pricing function.

Keywords: revenue management; dynamic pricing; perishable inventory; level-crossing

1. INTRODUCTION

We consider a continuous perishable inventory system where demands arrive accord-
ing to a compound Poisson process. Inventories are replenished at a constant rate and
have a fixed lifetime. Demands are satisfied by the oldest available units. A typical
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example for such perishable inventory systems is a blood bank where new blood units
are generated through Red Cross at some average rate and can be kept only for a
fixed time, if not used, before obsolescence. Some chemical products produced by a
continuous processing plant can be regarded as another example. For such a system,
Graves [12] considers a situation where demands arrive in a Poisson process with a con-
stant rate. He modeled the inventory process in such a system as a virtual waiting time
process of an M/M/1 queue. Here, we generalize Graves’ model in two dimensions:
First, we consider an inventory-dependent pricing mechanism and allow the demand
to depend on the price, which, in turn, depends on the inventory level. The stationary
distribution for the inventory process is derived. Second, we explore the properties
of the optimal dynamic pricing function via stochastic comparison and provide an
approximate algorithm to compute the optimal pricing function. Using dynamic pric-
ing mechanism to maximize profit on perishable products is often observed in our
daily life. For example, in supermarkets, the price of bananas often varies.

The performance evaluation of such perishable inventory systems and their exten-
sions with various input (replenishment) and demand processes have been studied
in the existing literature, including [14,20,21,23,24]. Recently, Bar-Lev, David, and
Stadje [3] conducted the performance evaluation for a system with a second source
of replenishment.

The literature on ordering policies for perishable inventory systems is exten-
sive. Typical work on discrete-time review policy include [10,18,19]. Work on the
continuous review policy incudes [16,17,25,26,30].

Different from the work reviewed above, our focus here is the issue of dynamic
pricing for a perishable inventory system with compound Poisson demand, where the
demand batch size has an exponential distribution. There exist plenty of literature
on dynamic pricing. Pioneered by Gallego and van Ryzin [11], dynamic pricing of
limited inventories has been carried out by many researchers. See the recent reviews
by Bitran and Caldentey [5] and Elmaghraby and Keskinocak [9]. Recently, Zhang
and Cooper [32] studied dynamic pricing for multiple products; Elmaghraby, Gulcu,
and Keskinocak [8] and Yossi and Pazgal [31] studied dynamic pricing in the pres-
ence of strategic consumers. Aydin and Ziya [2] investigated the dynamic pricing of
promotional products under upselling. In these work, inventories are limited, whereas
in our system, they are perishable and continuously replenished.

We mainly apply stochastic comparison to explore the structure property of opti-
mal pricing strategy. We note that Cooper and Gupta [7] applied such methodology
in airline revenue management.

We first consider the sample path of inventory level process and, by using the
level-crossing method, derive its stationary distribution. Based on that, we conduct
a stochastic comparison on different pricing functions and prove that the optimal
pricing function is monotone decreasing in the inventory level when the elasticity of
customers willingness-to-pay function is larger than 1.

Cooper and Gupta [7] provided an example showing that a stochastically larger
demand need not generate a larger revenue, even with optimal pricing strategies. Here,
we show that when the distribution of customers’ willingness to pay is inelastic in a
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certain sense (the elasticity is smaller than 1), charging the same price on the group
with stochastically larger willingness-to-pay values must result in a larger average
revenue. Therefore, we obtained a sufficient condition for the stochastically larger
demand to be more beneficial.

We also show that given a linear pricing function, a more homogeneous customer
group will result in a larger probability for perishability. Therefore, dynamic pricing
tends to be more beneficial when customers are more heterogeneous.

We then show that the inventory process in this case can be approximated with
a birth–death process and the optimal pricing function can be obtained by solving
Bellman optimality equations on that birth–death process, from which we derive the
decreasing monotonicity of the optimal dynamic pricing function. Finally, we consider
a phase-type distribution of demand batch size and obtain the closed-form expression
for the inventory level distribution.

The remainder of this article is organized as follows. In Section 2 we describe the
system and derive the stationary distribution and the performance measures. In Section
3 we analyze the structural properties of the optimal pricing function. In Section 4
we provide an approximate algorithm for dynamic pricing and presents the numerical
results to demonstrate the properties of the optimal policy. We extend our discussion
to phase-type demand sizes and conclude the article in Section 5.

2. THE MODEL

2.1. Assumptions

We make the following assumptions about production and demand processes.
Potential demands arrive according to a compound Poisson process with rate λ

and the size of each demand has an exponential distribution G(·) with rate μ.
Products are produced at a constant rate 1 and have a finite lifetime m; that is,

an unconsumed product will perish and be discarded in m time units following its
production. Unsatisfied demands are backlogged and will be satisfied first by new
production outputs.

Customers are charged a price according to a pricing function p(·), which is a
function of current inventory position I(t). Customers value the product differently
and their willingness-to-pay for the product has a distribution function H(·) across
the whole group. Hence, given a price p, only those customers with value larger than
p will purchase the product. Consequently, the probability that an arriving customer
is willing to pay is H̄(p), where H̄ = 1 − H. The effective demand arrival rate given
I(t) = i is thus

λi = λH̄(p(i)).

Figure 1 shows the sample path of inventory position process I(t). It increases at a
constant arrival rate of 1 and it jumps down by the demand batch size when there is an
effective demand arrival. This process has an upper bound at m (the oldest inventory
has an age just under m).
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FIGURE 1. Sample path of I(t).

2.2. Level Crossing and Stationary Distribution

Denote the stationary probability distribution function (p.d.f) of the inventory level i
by f (i), i ∈ (−∞, m), and the probability mass at m by Pm. Using the level-crossing
argument (e.g., Brill and Posner [6]), we can derive the integral equation for f (i):

f (i) = λmPmḠ(m − i) +
∫ m

i
λwḠ(w − i)f (w) dw, (1)

where f (w) equals the up-crossing rate of level w; the right-hand side is the down-
crossing rate of level i with the first term being the down-crossing rate of level i starting
from level m and the integration term representing the aggregate down-crossing rate
starting from all levels in (i, m). Equation (1) follows from the fact that “up-crossing
rate = down-crossing rate” (see, Brill and Posner [6]). The normalization condition is

Pm +
∫ m

−∞
f (i) di = 1. (2)

Because G is an exponential distribution with rate μ, (1) can be solved and the
solution can be expressed as

f (i) = λmPme
∫ m

i λw dw−μ(m−i), ∀i ∈ (−∞, m) (3)

in which Pm can be obtained from the normalization condition (2). Details of derivation
can be found in Appendix A.
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2.3. The Profit Function

After obtaining the stationary distribution for the inventory process I , the long-run
average revenue function can then be expressed as E[λI p(I)]/μ. Let the outdating
cost per unit be c. Then the average outdating cost is cPm.

Therefore, the average profit can be expressed as

� = (λ/μ)E[H̄(p(I))p(I)] − cPm.

In the above formula, (λ/μ)H̄(p(I))p(I) is called revenue rate function. Ziya,
Ayhan, and Foley [33] provided a discussion on the relationship of the concavity of
this function and the property of the willingness-to-pay function. Our objective is to
find an optimal pricing function p(·) that maximizes this average profit.

3. PROPERTIES OFTHE OPTIMAL PRICING FUNCTION

Admittedly, obtaining the closed-form solution for the optimal pricing function is
difficult since here the inventory state space is continuous and dynamic programming
suffers from the curse of dimensionality. Here, we conduct stochastic comparisons of
the average profits with different pricing functions to derive the structure properties
of the optimal pricing function.

3.1. Monotonicity of Optimal Pricing Function

Consider two stationary inventory distributions I1 and I2, with distribution function
F1 and F2, respectively. If F2(x) ≥ F1(x), for all x, I1 is stochastically larger than I2

(denoted I1 �st I2).
We give a lemma on the first-order stochastic order of the inventory levels under

two pricing functions and then provide results on the monotonicity of optimal pricing
functions.

Consider two systems with pricing functions p1(·) and p2(·), respectively. We use
superscripts 1 and 2 to indicate the performance measures in the corresponding two
systems.

Lemma 1: If p1(i) ≥ p2(i), ∀i ∈ (−∞, m], I1 �st I2 and P1
m ≥ P2

m.

Proof: Since p1(i) ≥ p2(i), ∀i ∈ (−∞, m], H̄(p1(i)) ≤ H̄(p2(i)), ∀i ∈ (−∞, m] and,
thus, λ1

i ≤ λ2
i , ∀i ∈ (−∞, m].

From (3), we obtain

f 1(i)/P1
m

f 2(i)/P2
m

= λ1
m

λ2
m

e
∫ m

i (λ1
w−λ2

w) dw.
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Additionally, from Appendix A, we know that f (m) = λmPm. Hence, the above
equation becomes

f 1(i)/f 1(m)

f 2(i)/f 2(m)
= e

∫ m
i (λ1

w−λ2
w) dw.

This ratio is increasing in i and reaches 1 at m. Clearly, f 1(m) > f 2(m). Otherwise, if
f 1(m) ≤ f 2(m),

f 1(i)

f 2(i)
<

f 1(m)

f 2(m)
≤ 1, ∀i < m;

and the normalization condition is violated.
Since the ratio f 1(i)/f 2(i) is increasing in i and larger than 1 at m, it must cross 1

once from below; that is, there exists a number k < m such that f 1(i)/f 2(i) < 1 when
i < k; =1 when i = k and >1 when i > k. (It is not possible that the ratio f 1(i)/f 2(i)
is always larger than 1, as the normalization condition will be violated.)

Therefore, f 1 singly crosses f 2 from below; that is, there exists a number k < m
such that f 1(i) < f 2(i) when i < k, = when i = k; and > when i > k.

Since p1(m) ≥ p2(m), λ1
m ≤ λ2

m. Therefore,

P1
m

P2
m

= f 1(m)/λ1
m

f 2(m)/λ2
m

> 1.

We can then conclude that I1 �st I2, as the above inequalities on pdfs imply that
F1(i) ≤ F2(i), for all i ≤ m. �

Intuitively, the lemma tells us that charging a higher price will result in more
inventory in the system.

Before introducing the monotonicity conclusion of the optimal pricing function,
we define the generalized failure rate function of H (denoted as e(x))

e(x) = xh(x)

H̄(x)
,

where h is the p.d.f. of H. See [15] for a detailed discussion of this function. It is also
understood to be the elasticity of the willingness-to-pay function. It can be shown that
the condition e(x) ≤ (≥)1 implies that the revenue rate function H̄( p)p is increasing
(decreasing) in p.

We have the following proposition about the monotonicity of optimal pricing
function.

Proposition 2: If e(x) > 1 for all x ≥ 0, the optimal pricing function p(·) is (weakly)
decreasing in the inventory level.

Proof: Suppose pricing function p(·) is optimal and strictly increasing in x over
[i1, i2]. Since e(x) > 1, H̄(x)x is decreasing in x. Thus, H̄(p(i))p(i) is decreasing in
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i on [i1, i2]. Consider another pricing function p2, which is identical to p except that
p2(i) = p(i1), ∀i ∈ [i1, i2]. Then I �st I2 and Pm ≥ P2

m by Lemma 1. We can derive that

E[(λ/μ)H̄(p(I))p(I)] − cPm ≤ E[(λ/μ)H̄(p(I2))p(I2)] − cP2
m

< E[(λ/μ)H̄(p2(I2))p2(I2)] − cP2
m.

where the first inequality follows from the property of I �st I2; the second inequality
follows from the decreasing property of the function H̄(x)x. Thus p is not an optimal
pricing function because the pricing function p2 generates a higher profit than p. �

Therefore, by a novel stochastic comparison approach, we proved the monotone
decreasing property of the optimal pricing function when e(x) > 1. Unfortunately,
we could not apply this approach to the case when e(x) ≤ 1 as the first inequality
can not be guaranteed in the proof of Proposition 2. We realize this limitation and
hence provide an approximation algorithm for dynamic programming in Section 4,
in which we show that the approximately optimal price is always decreasing in the
inventory level.

3.2. A Necessary Condition

Here, we restrict our attention to a linear pricing function and obtain a necessary opti-
mality condition. We first give the stochastic order between the inventory distributions
under two pricing functions and then give the necessary optimality condition.

Consider two linear pricing functions p1 and p2.

Lemma 3: Suppose p1 singly crosses p2 from above; that is, there exists î > 0 such that

p1(i) > p2(i), ∀i ≤ î,

and the inequality is reversed for i ≥ î. Then f 1(i)/f 2(i) is unimodal.

Proof: From (3), we obtain that

f 1(i)/P1
m

f 2(i)/P2
m

= λ1
m

λ2
m

e
∫ m

i (λ1
w−λ2

w)dw.

λ1
i − λ2

i is negative for i ≤ î but positive for i ≥ î. So
∫ m

i (λ1
w − λ2

w) dw is
unimodal, and, therefore, so is f 1(v)/f 2(v). �

If p1 singly crosses p2 and the resulting two systems have the same expected
inventory level (i.e., E[I1] = E[I2]), we call the crossing as mean-preserving crossing.
We first provide some concepts on stochastic orders indicating the dispersion of the
distribution function F. If

∫ m
v F̄1(i) di ≤ ∫ m

v F̄2(i) di for all v ∈ (−∞, m], I1 is smaller
than I2 in the increasing convex order (denoted I1 �icx I2). If their expectations are
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equal, I1 is smaller than I2 in the convex order (denoted I1 �cx I2). This condition
implies that I1 has a smaller variance than I2. Detailed discussions on these concepts
can be found in [27].

We have the following lemma.

Lemma 4: If p1 mean-preserving crosses p2 from above, then I1 �cx I2 and P1
m < P2

m.

Proof: From Lemma (3), we know that f 1(i)/f 2(i) is unimodal; thus, f 1 crosses
f 2 at least once and at most twice, first from below then from above. If crossing
happens just once, we can derive that either I1 <st I2 holds or I1 >st I2 holds. In either
way, E[I1] 	= E[I2]. Thus, the crossings must happen twice and, hence, F1(i) crosses
F2(i) exactly once from below, which implies that P1

m < P2
m. Since E[I1] = E[I2], we

conclude that I1 �cx I2. �

We now give the necessary condition for a pricing function to be optimal.

Proposition 5: When −xh
′
(x)/h(x) < 2, H̄(p)p is strictly concave in p and, hence,

strictly concave in i. Suppose the mode is î. The optimal linear pricing function
p must satisfy the condition that there is no other linear pricing function that can
mean-preserving crosses p from above at î .

Proof: Condition −xh
′
(x)/h(x) < 2 implies the strict concavity of the revenue rate

function H̄(p)p; see [33]. Since the price function is a linear function of inventory
level, the revenue rate function H̄(p(i))p(i) is also strictly concave in inventory with
the mode to be î.

Now, suppose p1 mean-preserving crosses p2 from above at î. Then

H̄(p1(i))p1(i) > H̄(p2(i))p2(i), ∀ i 	= î,

and the inequality becomes = at point î.
By Lemma 4, we can derive that

E[(λ/μ)H̄(p1(I1))p1(I1)] − cP1
m ≥ E[(λ/μ)H̄(p1(I2))p1(I2)] − cP2

m

> E[(λ/μ)H̄(p2(I2))p2(I2)] − cP2
m.

The first ≥ follows from the concavity of H̄(p)p and I1 �cx I2.
Thus, the mean-preserving crossing increases the expected profit. �

This proposition shows that the optimal linear pricing function must be the steep-
est, in the sense that no other steeper linear functions can mean-preserving cross it at
î. See Figure 2 for illustration.
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FIGURE 2. Mean-preserving crossing.

3.3. Sensitivity Analysis of H

In this subsection, we consider specific conditions on two willingness-to-pay distri-
butions Hk , k = 1, 2. We consider two scenarios. In the first scenario, customers in
one group have stochastically larger willingness-to-pay values than those in another
group. In the second scenario, customers in one group are more concentrated on
willingness-to-pay dimension than the other group. We are interested in the average
profit performance with different groups of customers.

3.3.1. Impact of average willingness-to-pay value We first consider the
situation that H1 �st H2. This means that system 2’s customers have stochastically
larger willingness-to-pay values than those in system 1. Cooper and Gupta [7] showed
that a stochastically larger demand need not bring a larger profit for the firm. It is then
interesting to know when it does. Here, we will provide a sufficient condition for a
stochastically larger demand to be more beneficial for the firm.

We first give a conclusion on the stochastic comparison of the inventory levels
with different groups of customers.

Proposition 6: If H1 �st H2, then I1 �st I2 and P1
m ≥ P2

m.

Proof: The condition H1 �st H2 means H1(p) ≥ H2(p), for all p in [0, ∞). Hence,
λ1

w ≤ λ2
w for all w ≥ 0.
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From (3), we obtain that

f 1(i)/P1
m

f 2(i)/P2
m

= e
∫ m

i (λ1
w−λ2

w) dw.

This ratio is increasing in i. Considering the normalization condition and the above
monotonicity, it can be shown that f 1 singly crosses f 2 from below and P1

m ≥ P2
m. Thus,

we can derive I1 �st I2. �

Therefore, when system 2’s customers have stochastically larger willingness-to-
pay values than system 1’s, system 2 has lower inventory than system 1 stochastically
and the chance of perishability is smaller.

Next, we compare the average profit for the two systems.

Proposition 7: If ei(x) < 1 for all x ≥ 0 (i = 1, 2), condition H1 �st H2 implies that
�1 ≤ �2, given a decreasing pricing function.

Proof: By the definition of Hk , we have H̄1(p)p ≤ H̄2(p)p. Additionally, the con-
dition that e(x) < 1 for all x ≥ 0 implies that H̄(p)p is increasing in p. Since p is a
decreasing function, H̄(p(i))p(i) is decreasing in i. Hence,

E[(λ/μ)H̄1(p(I1))p(I1)] − cP1
m ≤ [E(λ/μ)H̄2(p(I1))p(I1)] − cP1

m

≤ E[(λ/μ)H̄2(p(I2))p(I2)] − cP2
m,

where the first inequality follows from the fact H̄1(p)p ≤ H̄2(p)p; the second follows
from the property of I1 �st I2 obtained in Proposition 6. �

Therefore, when customers’ distribution on willingness to pay is inelastic in a
certain sense (the elasticity is smaller than 1), charging the same price on the group
with stochastically larger willingness-to-pay values must bring a larger average profit.
Hence, we find a sufficient condition for a stochastically larger demand to be more
beneficial for the firm.

3.3.2. Impact of dispersion of willingness-to-pay value. We now con-
sider the condition that H1 �icx H2. Intuitively, it means that system 1’s customers
are less heterogeneous than system 2’s.

Proposition 8: If H1 �icx H2, then P1
m ≥ P2

m, given a linear and decreasing pricing
function.
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Proof: H1 �icx H2 implies that
∫ n

l H̄1(x) dx ≤ ∫ n
l H̄2(x) dx for all l ≤ n. Let x =

p(i). Then dx = p(i)
′
di. We can write the above as∫ p−1(n)

p−1(l)
H̄1(p(i))p(i)

′
di ≤

∫ p−1(n)

p−1(l)
H̄2(p(i))p(i)

′
di.

Since p(·) is a decreasing and linear function, the above inequality can be rewritten as∫ p−1(l)

p−1(n)

H̄1(p(i)) di ≤
∫ p−1(l)

p−1(n)

H̄2(p(i)) di.

Therefore,
∫ m

v λ1
w dw ≤ ∫ m

v λ2
w dw for all v ≤ m. From the normalization condition,

we can obtain P1
m ≥ P2

m. �

Therefore, when customers are more homogeneous in their willingness-to-pay
behavior, the inventory system will endure a higher perishability with a linear pric-
ing function. We can go a little bit further to claim that when customers are more
homogeneous in their willingness-to-pay behavior, a more aggressive pricing strategy
should be applied to cut down the loss from perishing, for example, using 20% mark-
down rate instead of 5% when inventory level is high. Note that Proposition 8 only
tells us the impact of customers’ heterogeneity on the perishability, not the impact on
the expected profit. The latter one, unfortunately, could not be obtained here with a
stochastic comparison approach.

4. APPROXIMATE ALGORITHM FOR DYNAMIC PRICING

Here, we develop an approximate algorithm for dynamic pricing.

4.1. Converging Birth–Death Processes

We first show that we can construct from the inventory process a series of discrete-
time birth–death processes, which are Markovian, that asymptotically converge to the
original inventory process.

First we divide the state space of the inventory level into discrete pieces with
equal interval length �. Define state in = m − n�, n = {0, 1, 2, . . . , }. The space for
in is {m, m − �, m − 2�, . . . , }. Assume that the arrival rate in the interval [m − (n +
1)�, m − n�] equals the arrival rate at in (denoted as λn).

From the expression of f (i), we obtain

f (in+1)

f (in)
= e

∫ in
in+1

λw dw−μ�. (4)

When � is sufficiently small,
∫ in

in+1
λw dw ≈ λin� = λH̄(p(in))�. Therefore, (4)

can be rewritten as
f (in+1)

f (in)
≈ eλH̄(p(in))�−μ�. (5)
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Define

P̃n =
{

Pm, n = 0

f (in−1)�, n ≥ 1.

At level m, the level-crossing theory generates Pmλm = f (m). We can rewrite it as

P̃0λm� = P̃1. (6)

Define

λ̃n =
{

λm�, n = 0

eλH̄(p(in))�, n ≥ 1
(7)

and

μ̃n =
{

1, n = 1

eμ�, n > 1.
(8)

Then from (4) and (6), we obtain

P̃nλ̃n = P̃n+1μ̃n+1, ∀n ≥ 0.

The above equations are exactly the balance equations for a birth–death process
with state-dependent arrival rates λ̃n and service rate μ̃n, and P̃n can be seen as the
stable probability for state n. The system converges to the original system when �

goes to zero. The average profit is then approximately

� =
∞∑

n=0

P̃nλin p(in) − cP̃0.

Therefore, the dynamic pricing problem is reduced to an occupancy-based pric-
ing problem in a birth–death process that has Markovian property. The quality of
approximation with this constructed birth–death process depends on how small � is.

4.2. Algorithm

To obtain this optimal solution, we can begin with standard optimality equation or
Hamilton–Jacobi–Bellman equation, obtained by applying the uniformization method
to a semi-Markov decision process with average-cost criterion (see, e.g., [4]).

We first provide the optimality equations for a truncated system with a large upper
bound K on the queue length.
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Suppose the arrival rate is ξm at the state m. As there is a one-to-one mapping
between price and arrival rate as stated in (7), the price can be expressed as

p(ξm) =
{

H̄−1(ξm/(λ�)), m = 0

H̄−1(ln(ξm)/(λ�)), m ≥ 1.

Define Rm(ξm) as the average profit associated with state m, given the state-dependent
arrival rate ξm. It can be expressed as follows:

Rm(ξm) =
{

ξmH̄−1(ξm/(λ�))/� − c, m = 0

ln(ξm)H̄−1(ln(ξm)/(λ�))/�, m ≥ 1.

The average profit maximization problem is to choose an arrival rate vector

ξm, m ∈ {0, 1, . . . , }

that maximizes the average profit

� =
∑

m∈{0,1,...}
Rm(ξm)P̃m.

Using the uniformization technique, the average profit maximization problem can be
transformed into solving the following optimality equations:

v0 = max
ξ

{
R0(ξ) − γ

λ + μ̃1
+ ξ

λ + μ̃1
v1 + λ + μ̃1 − ξ

λ + μ̃1
v0

}
,

vm = max
ξ

{
Rm(ξ) − γ

λ + μ̃m
+ ξ

λ + μ̃m
vm+1 + μ̃m

λ + μ̃m
vm−1

+λ + μ̃m − ξ − μ̃m

λ + μ̃m
vm

}
, ∀m ∈ {1, . . . , K − 1},

vK = max
ξ

{
RK(ξ) − γ

λ + μ̃K
+ μ̃K

λ + μ̃K
vK−1 + λ

λ + μ̃K
vK

}
.

In the above equations, γ is a guess of the maximal average profit and the vector of
unknowns (vm) is the relative value function. Take the first equation as example to
explain the uniformization: Consider the rate for all events happening is λ + μ̃1. The
chance for the next event to be the transition from state 0 to state 1 is ξ/(λ + μ̃1); the
chance for the system to stay at 0 is 1 − (ξ/(λ + μ̃1)).
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Define new notation ym as

ym = vm − vm−1, m = 1, 2, . . . , K .

Using the new notation, the optimality equations can be rewritten as

γ = max
ξ

{R0(ξ) + ξy1} , (9)

γ = max
ξ

{Rm(ξ) + ξym+1 − μ̃mym} , ∀m ∈ {1, 2, . . . , K − 1}, (10)

γ = max
ξ

{RK(ξ) − μ̃K yK} . (11)

We can numerically solve these equations.

4.3. Structural Properties

Proposition 9: The optimal state-dependent arrival rate ξ ∗
m is monotone decreasing

in state m.

Proof: Following the approach as in [28], we can rewrite the optimality equation for
state m (m ∈ {2, . . . , K − 1}) as

ym = max
ξ

{
Rm(ξ) − γ + ξym+1

μ̃m

}
. (12)

If we can show that the function ξym+1 is submodular in (ξ , m), then the optimal
arrival rate ξ ∗ is decreasing in m (see [29]). The condition that ξym+1 is submodular in
(ξ , m) is again reduced to the proof of decreasing monotonicity of ym+1 in m, which can
be proved by following the induction approach in the proof of Theorem 2 of [1]. �

Therefore, the optimal price function must be increasing in state m in the approx-
imation problem. This implies that it is decreasing in the inventory level in the original
problem. This is consistent with Proposition 2.

Let us consider the following example: Consider H to be a gamma distribution
with parameters (3, 1) and assume λ = 1, μ = 1, c = 2, and m = 3. Our numerical
result shows that the maximal average profit is 0.7141. Figure 3 shows the optimal
state-dependent arrival rates and Figure 4 shows the optimal pricing function. We can
see that the optimal pricing function is an inventory-level-dependent step function and
so is the optimal arrival rate.Additionally, we observe that there is not much difference
between the results with � = 0.01 and � = 0.001.

5. CONCLUDING REMARKS

In this article we consider a production–inventory system with inventory-level-
dependent prices. The products are totally perishable after a fixed lifetime. By applying
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the level-crossing technique, we obtain the closed-form expression for the distribu-
tion of inventory and, hence, can express the expected profit for the company given a
pricing function. We can then apply stochastic comparison technique to examine the
structure properties of optimal pricing function.

The approach can be extended on several dimensions. First, we can consider the
demand sizes having a phase-type distribution G(·) with representation (β, B) (see
[22] for details on this distribution). It is well known that the phase-type distribution
can approximate any other distribution. The complementary cumulative distribution
function is

Ḡ(i) = βT eBi1,

where 1 denotes a column vector of 1’s.
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It can be shown that the distribution for f (i) can still be expressed explicitly, as
in [13]. We omit the detail here and give the final result:

f (i) = λmPmβT e(
∫ m

i λwdw)1β
T +B(m−i)1, ∀i ∈ (−∞, m), (13)

where Pm can be obtained from the normalization condition (2). Dynamic pricing with
this general inventory level distribution is worthy of further explorations.

Second, it is not hard to include inventory-related costs in the objective function.
Denote the unit holding cost by h and unit penalty cost by s. The average holding cost
can be expressed as

h

(∫ m

0
if (i) di + mPm

)
= h

∫ m

0
F̄(i) di.

The average penalty cost can be expressed as

s

(
−

∫ 0

−∞
if (i) di

)
= s

∫ 0

−∞
F̄(i) di.

The approximate algorithm for the dynamic pricing still holds and one only needs to
change the profit rate function into a more general form with the inventory-related
costs embedded.

Third, we assume that the price affects the effective arrival rate only in the paper.
In reality, it may also affect the demand size. This could be an interesting future
research question.

Our model can also describe an production–inventory system using a base-stock
policy where potential demands arrive in a Poisson process with inventory-level-
dependent arrival rates and demand sizes have a phase-type distribution. The system
stops producing when inventory hits a base-stock level. Conclusions in this article
may be generalized to this production–inventory system.
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APPENDIX A

Details of Derivation of Solution (3)
Equation (1) with an exponential G function can be expressed as

f (i) = λmPme−μ(m−i) +
∫ m

i
λwe−μ(w−i)f (w) dw.

Differentiating both sides of the above equation with respect to i yields the ordinary differential
equation

f
′
(i) = λmμPme−μ(m−i) − λif (i) + μ

∫ m

i
λwe−μ(w−i)f (w) dw, i ≤ m

which can be rewritten as

f
′
(i) = λmμPme−(m−i) − λif (i) + μ(f (i) − λmPme−μ(m−i)), i ≤ m

or

f
′
(i) = (μ − λi)f (i), i ≤ m. (A.1)

The solution can be expressed as

f (i) = Ae
∫ m

i λw dw−μ(m−i), i ≤ m.

Constant A is determined by letting i ↑ m in (1). That is,

A = f (m) = λmPm.

Hence, the pdf of inventory level process I is

f (i) = λmPme
∫ m

i λwdw−μ(m−i), ∀ i ∈ (−∞, m).


