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Abstract

The development of a knowledge-based design support system is a lengthy and costly process

because various computational techniques necessary for intelligent design support are not readily

available in a knowledge-based environment. The systematisation of design knowledge needs

combined e�orts from designers and knowledge engineers. Existing knowledge-based system

development tools o�er limited support to intelligent design support which require sophisticated

knowledge engineering techniques in terms of knowledge representation, inference, control, truth

maintenance and learning. In this paper, a knowledge-based architecture for intelligent design

support is described. The existing knowledge-based design system architectures are reviewed ®rst.

Five key issues in intelligent design support using knowledge engineering techniques, i.e. design

knowledge representation, structure of design knowledge base, intelligent control of design process,

consistency and context management of design knowledge, and modelling of design collaboration

are then discussed. These discussions provide a basis for a description of a knowledge-based design

support system architecture which has been implemented in a Lisp-based environment and tested in

two di�erent domains. Current application of this architecture in the development of a design

support system in the domain of mechanical engineering design at the Cambridge Engineering

Design Centre is presented and evaluated.

1 Introduction

All human workmanship contains some element of design in which knowledge and expertise play

an important role. Design is a complex knowledge discovery process in which information and

knowledge of diverse sources are processed simultaneously by a team of designers involved in the

life phases of a product. Archer stated that design is a goal-directed, problem solving activity (Archer,

1970). Feilden (1963) pointed out that ``engineering design is the use of scienti®c principles, technical

information and imagination in the de®nition of a mechanical structure, machine or system to

perform pre-speci®ed functions with the maximum economy and e�ciency''. Asimow (1962)

regarded designing as ``decision making, in the face of uncertainty, with high penalties for error''.

Matchett (1968) described the task of designing as ascertaining ``the optimal solution to the sum of

the true needs of a particular set of circumstances''. Andreasen (1991) stated that ``design is the

common term in industry for a broad range of creative activities such as problem solving, product

synthesis, product development and product planning''. Simon (1973) claimed that ``design is

perhaps best characterised as an ill-structured problem to which a solution may not be fully and

consistently speci®ed until signi®cant e�ort to understand the structure of the design problem or the

model of the artefact has been made''.

The computer is now an established factor in designers' lives. Exploration of a design problem



and ®nding its solution require knowledge across di�erent disciplines, knowledge which is usually

scattered among many experts, publications and perhaps databases. Advanced computer-based

design support systems must therefore provide support for the acquisition, manipulation and

re®nement of design knowledge throughout the life phases of a product. A knowledge-based

approach o�ers more intelligent support to design activities than conventional Computer-Aided

Design (CAD) approach (Yoshikawa et al., 1989). The conventional CAD approach o�ers limited

support to the early and crucial phases of the design process, because it is primarily concerned with

detailed drawing and the speci®cation of a geometric model of an artefact (Smithers et al., 1990).

A knowledge-based design support system is a decision support system to enable designers to

explore the structures of design problems and their solutions by combining human design expertise

with domain and design knowledge that can be stored in advance in a computer-based design

system. Knowledge-based design support systems are di�erent from traditional expert systems

which use expert knowledge to help non-experts to solve those problems for which the experts have

a good understanding and know how to ®nd their solutions. A knowledge-based design support

system aims at combining design theory, AI and computational techniques to support designers

through an integration of human intelligence and machine intelligence. As such, they must process a

wider range of data and knowledge necessary for solving unfamiliar design problems than

conventional CAD systems. The application of AI techniques in the development of knowledge-

based design support systems is a typical knowledge engineering problem, the primary purpose of

which is to help designers to gather, organise, process and re®ne design knowledge in a systematic

way, and to obtain better design solutions by e�ectively utilising this design knowledge. The

systematisation and utilisation of design knowledge require an AI architecture within which a

variety of knowledge engineering techniques can be integrated.

In the last decade, various knowledge-based design system architectures have been developed in a

variety of domains (Cater et al., 1991; Clarke et al., 1991; Ball et al., 1992; Sriram et al., 1992;

Bowen, 1992; Smithers et al., 1990). However, many fundamental issues concerning the application

of knowledge engineering techniques in design are yet to be addressed. In particular, the system-

atisation of design knowledge and the issue of exploring and maintaining multiple design contexts

within a knowledge-based design support system have not been appropriately addressed and tested

(Smither et al., 1993; Tang, 1996b). A primary source of di�culty in maintaining multiple contexts

of design is to keep track of the many constraints that necessarily exist between the function,

physical characteristics, structure, cost and reliability of the various design objects.

This paper presents a knowledge-based design support system architecture as an integrated

software kernel for the development of knowledge-based design applications. This architecture

provides integrated AI support for the representation of design knowledge, intelligent control of the

design process, and the exploration and management of multiple contexts of design. Existing

architectures for knowledge-based design are reviewed ®rst. This is followed by a discussion on the

evaluation criteria for knowledge-based design support systems. A knowledge-based design support

system architecture is then presented. It is based on an integration of several AI-based design

methods and several CAD systems that have recently been developed in Edinburgh University and

at the Engineering Design Centre of Cambridge University. The key components in this architecture

and their integration are described. The implementation of this architecture in a LISP-based

environment and its initial application in the development of an Integrated Functional Modelling

(IFM) system are presented and evaluated. Finally, some issues concerning the di�culty in

integrating knowledge-based system tools involving CLOS, Scheme and 3D solid modelling

systems for knowledge-based design applications are discussed.

2 Review of knowledge-based design system architectures

Pugh (1989) suggested that an integrated CAD system where design knowledge is aggregated into

sets of independent design knowledge sources, each of which addresses a sub-problem, is
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fundamentally sound, and that the way forward is via a system of linked knowledge modules to be

designed using multi-disciplinary teams.

In the last decade, many knowledge-based design system architectures have used a blackboard

control strategy for the control and integration of design knowledge sources to ensure their e�ective

co-operations with a single user (designer). A blackboard system allows design knowledge sources

to interact with a user via the blackboard (Hayes-Roth, 1985). A blackboard control system

provides a highly structured automatic control scheme, and a special case of opportunistic problem

solving. It consists of a number of knowledge sources, a blackboard data structure and a control

system.

In this section, some of the design system architectures utilising a blackboard control strategy are

reviewed and their limitations are discussed.

2.1 Review of knowledge-based design system architectures

The Edinburgh Designer System (EDS) is an AI-based design support system developed in an

Alvey project that uses a number of AI techniques to support mechanical engineering design

(Smithers et al., 1990). In the EDS, design is modelled as an exploration process, during which a

designer explores the possible ways of constructing a new design using the available module class

de®nitions in a design knowledge base, or tests di�erent values of design variables within existing

module class de®nitions.

The EDS supports the exploration of multiple design solutions using an Assumption-based Truth

Maintenance System (ATMS) (Smithers et al., 1990; de Kleer, 1986). This allows all the knowledge

(consistent or inconsistent) relevant to any design exploration attempt by a designer to be

maintained. However, the module class de®nition syntax in the EDS is not suitable for representing

complex design objects and design tasks. The EDS II system improved the EDS by developing a

view system that can create multiple contexts in the process of design exploration (Logan et al.,

1991). But the EDS II system and its view mechanism were not developed as a general design

support system architecture, and its facilities were not su�ciently tested in more than one domain.

Furthermore, in both the EDS and EDSII systems, a single user is modelled as a special design

knowledge source which may have priority over other design knowledge sources acting as inference

engines. Therefore, design collaboration activities are not explicitly modelled and supported

(Smithers et al., 1993; Tang, 1996b).

Carter andMacCallum developed a Hierarchical Object-oriented Blackboard System (HOBS) for

supporting electromagnetic design (Carter et al., 1991). In the HOBS architecture, the segments of

design expertise or resources are organised into a hierarchy of knowledge sources which are

controlled through a blackboard control system called the executive. Knowledge sources commu-

nicate with one another about a product through a common data area called the workspace.

Hierarchically structured knowledge sources enable the decomposition of a design problem or a

task by the knowledge engineer. This hierarchical structure allows normal design management

practice such as company procedure to be re¯ected in the control system. However, a drawback of

this is that a hierarchical structure is imposed on the knowledge sources rather than on the design

objects. As a consequence, the knowledge sources become less independent and less opportunistic

compared with those in a standard blackboard system (Hayes-Roth, 1985). HOBS does not

maintain justi®cations of the design results. It is therefore unable to deal with multiple context

problem solving. The workspace in HOBS had a database area, a toolbase area and a message

board, but it was not de®ned and developed as a working place sharable by a team of designers. It

therefore cannot be used to support collaborative design activities involving more than one user.

The Distributed Integrated environment for Computer-aided Engineering (DICE) is a design

system architecture developed by Sriram et al. (1992) that provides co-operation and co-ordination

among multiple designers working in separate engineering disciplines in the domain of construction

and building design. The architecture of DICE consists of a backboard, a control system and a
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number of Knowledge Modules (KM). The blackboard is divided into three partitions: a solution

blackboard, a negotiation blackboard, and a co-ordination blackboard. The solution blackboard

contains the design and construction information in the form of object hierarchy generated by

various KMs. The negotiation blackboard consists of the negotiation trace between various

engineers taking part in the design and construction process. The co-ordination blackboard

contains the information needed for the co-ordination of various KMs.

The negotiation process in DICE takes place once a con¯ict is detected by a strategy KM. In the

negotiation process, constraint relaxation is ®rst attempted for those constraints in con¯icts. A goal

negotiation is then tried when the ®rst attempt fails. The goal negotiation involves the rede®nition of

a design goal by the design team members concerned in the con¯icts. However, the negotiation in

DICE largely relies on constraint relaxation techniques and it therefore lacks a formal representa-

tion and a mechanism for negotiation in collaborative design. The issue of exploring and

maintaining multiple contexts is not addressed in DICE although the necessity for a truth

maintenance system is mentioned in Sriram et al. (1992). The negotiation process de®ned in DICE

was based on a scenario where a con¯ict must be resolved as soon as a single change is made to the

data on the solution blackboard. This de®nition of negotiation is not suitable for collaborative

design where designers may access to the system at di�erent locations and at di�erent times.

The Intelligent Front-End (IFE) is an approach that addresses the issue of intelligent human/

computer interaction in integrated knowledge based systems (Clarke et al., 1991). An IFE system

distinguishes the front-end (user end) and the back-end (system end), and emphasises the importance

of user modelling and e�ective interaction between the two ends. IFe is a typical Intelligent Front-

End system developed at Strathclyde by Clarke for computer-aided building design (Clarke et al.,

1991). The IFe system is an integration of several intelligent clients within a blackboard system. The

IFe consists of a blackboard for collecting, organising and storing data, a dialogue handler for

conversing with the user in the appropriate terminology, a knowledge handler for generating the

description of a building, a data handler for generating the program speci®c input data, an appraisal

handler for generating the program-speci®c control inputs, and an application handler for invoking

the targeted application programs.

A problem with IFe is that handlers wishing to exchange structured data on the blackboard must

all know the details of the imposed data structure. There is no explicit control of user collaboration

in the IFe system. The IFe blackboard is merely used as a data storage and communication base,

while in many other blackboard schemes this is a case of collecting and scheduling the responses of

the knowledge sources to the current situation, and on some occasions the application of a strategy.

The IFE approach focused on the relation between a user (the front end) and a system (the back

end), but did not address the problem of co-ordinating the collaboration among users.

The Integrated Design Framework (IDF) is a system developed by Ball et al. (1992) to support

mechanical engineering design. The IDF architecture has two blackboards: a control blackboard and

a domain blackboard. The IDF has the advantage of modelling the design product as well as the

design process within one computational environment by having a design strategy knowledge source,

a con¯ict policy knowledge source and a design focus knowledge source. However, the IDF does not

support the exploration and maintenance of design contexts or design alternatives. The knowledge

sources in IDF are domain-speci®c problem solving packages which do not necessarily operate on a

uni®ed product data model. It is therefore di�cult to utilise these packages for general design

problem solving.

The IDF has a process logger knowledge source that records the events on the control

blackboard. A prototype induction program is identi®ed within the IDF that can transfer these

events to product data models or design planing strategies that can be reused. However, this part of

the IDF is yet to be fully developed and tested (Wallace et al., 1995a, b). The IDF has a con¯ict

policy knowledge source which deals with the con¯icts resulting from various competing design

knowledge sources, but not the con¯icts resulted from a collaborative design team.

GALELIO2 is system that explicitly models multiple perspectives and negotiation in collabora-

tive design using a constraint language. In GALELIO2 design variables and constraints can be
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viewed from di�erent perspectives created by the people involved in design, manufacturing and

maintenance, etc. A perspective is a small set of design variables and constraints. Perspectives are

typically overlapping in that the same variable may appear in more than one perspective. The

variables within each perspective can be declared as being either local or overwritable. The local

variables within a perspective can only be modi®ed by the person who created the perspective, whilst

overwritable variables can be changed from within any other perspectives. Any change to an

overwritable variable in any perspective triggers a so-called ``negotiation process'' during which

people concerned are asked to resolve the potential con¯icts either by constraint relaxation or goal

negotiation (Bowen et al., 1992). However, in this approach the original data is deleted once some

overwritable variables are overwritten and the new values propagated throughout the constraint

network. In other words, the context associated with the overwritten variables is not maintained,

even though it could still have the potential value as being an alternative design solution. The

negotiation process assumes that there is no interdependency between perspectives. As soon as some

one changes an overwritable variable and someone else disagrees, the matter must be resolved

immediately. This makes it harder for a team of designers to collaborate on a design project over a

period of time. For true concurrency and collaboration it must be possible for two or more activities

occur simultaneously (Medland, 1995).

2.2 Current positions

Four main strategies may characterise the current approaches in developing knowledge-based

design systems (Wallace et al., 1995a): the intelligent CAD approach; the building block approach;

the prototype approach; and the constraint-based approach. Intelligent CAD aims at extending the

capability of a CAD system by employing heuristic knowledge on top of geometric models of the

artefact (MaCallum, 1990). The building block approach decomposes design process into tasks that

can be tackled by di�erent classes of CAD tools and AI methods (Brown et al., 1989; Mostow et al.,

1989). The prototype design approach divides design into three di�erent activities: prototype

re®nement, prototype adaptation and prototype creation using a library of pre-de®ned design

prototypes (Gero et al., 1989). Constraint-based design formulates design problems and require-

ments as interconnected networks in which design variables/parameters are related to each other

through constraints. The networked design variables and constraints can then be manipulated to

®nd the solutions that satisfy all the requirements (Bowen et al., 1992; Smithers et al., 1990; Tang,

1996a).

However, none of these approaches explicitly addressed the issue of providing a general

knowledge-based design support architecture for intelligent design support from a knowledge

engineering perspective. The original aim of AI techniques for intelligent design was to produce

general purpose, domain independent design tools that would automate design (non trivial) tasks

requiring intelligence. The early promise of AI systems has not been ful®lled because these tools did

not scale within and across domains, they could not adapt to new contexts, failed to handle

complexity adequately, could not acquire knowledge satisfactorily, and placed too much emphasis

on automation at the expense of assistance. (Wallace et al., 1995b). These problems are resulted

from a lack of understanding of design as an intelligent behaviour, poor or inappropriate use of

knowledge representations, loosely integrated knowledge-based architectures that were di�cult to

maintain and extend, and a lack of commitment to design knowledge acquisition and design

knowledge systematisation.

2.3 Evaluation criteria for knowledge-based design support systems

The role of a knowledge-based design support system is to extend geometric-based representation

and reasoning to knowledge-based representation and inference in order to provide wholesome

solutions to a wide range of design problems (Smithers et al., 1993). The competence of a

A knowledge-based architecture for intelligent design support 391



knowledge-based design support system architecture needs to be evaluated based on the following

criteria:

. It should help designers to construct and extend the design knowledge base within which domain

concepts, design objects, dependency information of design objects are well structured and

consistently maintained.

. It should help designers to derive solutions quickly from initial, not necessarily complete and

consistent design requirements; in other words, it should provide an e�cient mechanism to

transform an initial design requirement description to a design speci®cation.

. It should provide explicit explanations and justi®cations for any chosen aspects of the current

status of a design, not only in terms of how something has been derived, but also in terms of why

something is not happening as expected. Locating areas of di�culty and suggesting strategies for

solutions contribute to e�ective decision making in design.

. It should allow designers to vary data, design requirements, problem solving strategies or

evaluation criteria, to obtain alternative design solutions. Simply speaking, a knowledge-based

design support system must support multiple-context problem solving so that a design problem

can be explored from many di�erent perspectives by a team of designers working in a co-

operative manner.

. It should provide mechanisms for capturing and re®ning design knowledge so that the design

knowledge base can be incrementally enlarged and enhanced. In other words, it should have

some learning facilities to support conceptual design tasks and design knowledge acquisition.

. It should have easy access to visualisation tools, solid modelling tools and other analytic systems.

3 Knowledge-based design support

Knowledge engineering techniques provide knowledge representation methods that suitably

represent and manipulate di�erent types of design objects, heuristic design knowledge and design

constraints; they also provide inferencing support and control mechanisms for designers to perform

design tasks, including analysis, synthesis, evaluation and optimisation; they also provide mechan-

isms for detecting and resolving con¯icts among various design requirements and design con-

straints. This section discusses several knowledge engineering issues concerning the development of

a knowledge-based design support system architecture that can be evaluated in the above criteria.

3.1 Design knowledge representation

Design of any kind is a knowledge intensive activity. A systematisation of design knowledge is

essential for utilising general design problem solving methodologies and domain-speci®c design

knowledge throughout the design process. In design, the ability of a group of designers to identify

the design problem and its solutions is based on well organised and exchangeable design knowledge.

It is useful to classify the knowledge necessary for design support into three categories: (1) static

knowledge representing design objects and concepts (domain knowledge) that is stored in a design

knowledge base; (2) heuristic and inferential knowledge representing problem solving strategies and

methods (design knowledge) that can be invoked by di�erent types of user as design knowledge

sources for a range of design tasks; and (3) dynamic knowledge (new knowledge) generated during

design when applying (2) to (1) as a result of carrying out a design task.

Static knowledge consists of common concepts and objects in the domain of a design application.

These concepts and objects can be used to build product data models (Yoshikawa et al., 1989). A

product data model contains descriptive product information in terms of speci®cations, function,

attributes, behaviour, documentation, geometry, history, context, variables and constraints, etc.

Figure 1 illustrates such a product data model at an abstract level in the domain of mechanical

engineering design. In this product data model a product has an assembly, an interface, a context

and a history. An assembly consists of parts each of which has sub-parts. A subpart is itself an
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instances of another part. This recursive use of part and subpart allows the development of uniform

inferencing programs capable of reasoning on di�erent levels of a complex product data model.

A sub-part has components, each of which has in turn functional, geometric and behavioural

models. Shaft, lever, tie-rod and screw, etc. are, for example, all sub-classes of a component. These

sub-classes inherit general attributes associated with a component and also have their own speci®c

attributes. For example, the function of a shaft is to transform an input torque to an output torque.

The shaft has variables such as speed s, diameter d, length l, bearing force Fb, torque T, power P and

mass m. Well de®ned constraints such as the relation P = sT and m = rd
2
pl/4 can be associated

with the shaft in advance. At a symbolic level, functional, geometric and behavioural models all

have variables and constraints of di�erent types. It is important to establish a mapping between

these models and their symbolic representation. At a symbolic level, design variables and constraints

can be easily manipulated by AI-based programs, whilst at functional, geometric and behavioural

levels, knowledge can be more e�ectively associated with domain dependent contexts for the

purpose of analysis and visualisation.

Heuristic and inferential knowledge is mainly for exploring the solutions of design problems. It is

knowledge about the design process and design problem solving. This kind of knowledge includes

mainly design standards, guidelines, prototypes or documents of previous designs, heuristics and

management strategies. It also includes generic knowledge such as mathematics, chemistry and

physics that can be used in di�erent stages of the design process. In a knowledge-based design

support system, this kind of knowledge is used to manipulate static knowledge to generate the

knowledge of a new design. This knowledge is inferential and it needs to be constantly re-organised

as design knowledge sources to perform various design tasks. A design knowledge source is an

encapsulation of inferencing methods, rules or programs representing an autonomous piece of

design expertise for a speci®c design task such as kinematic analysis, or a general design task such as

satisfying a set of functional or geometric constraints imposed on a set of design variables.

A design knowledge source is self-contained and independent because it de®nes inferencing

methods for a class of design objects, as well as the conditions that must be satis®ed before these

methods can be invoked. It needs to be opportunistic and adaptive in the sense that it can invoke a

rule, a procedure or an external software system to perform a design task according to the levels or

Figure 1 Class de®nition of a product data model
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versions of the product data model speci®ed by the designers. The action of a design knowledge

source needs to be justi®ed by the satisfactory matching of its preconditions against the available

data in the system. These preconditions can be recorded together with the results generated so that

when a design session is concluded, it is possible to trace the results that have been derived by the

system.

3.2 The structure of a design knowledge base

There are four levels upon which domain and design knowledge can be structured in a design

knowledge base using an object-oriented approach:

1. an element (or component) level,

2. a task-independent level,

3. a task dependent level, and

4. an interface level.

At the lowest level, i.e. element level, domain concepts and static information in terms of design

components and parts are represented as object classes. These object classes are self-contained and

they encapsulate reasoning methods to determine their behaviour in normal situations. The

elements at this level may be linked to external material or CAD databases. The knowledge at this

level provides basic building blocks for the construction of more complex knowledge structures.

At the second level, i.e. task-independent level, there are objects which connect those elementary

building blocks at the element level through their structural, functional, and causal relationships

(Tang, 1996b). A structural relationship between design objects determines how elements are

geometrically or physically related to each other and how, for example, the characteristics of a

power train can be derived from its constituent components such as piston, crank pin, crank web,

crank shaft and bearing, etc.; a functional relationship between elements relates them in terms of

their performances or behaviour such as input/output transmission, or their relevance to a general

design requirement and a design task; a causal relationship between two elements decides how they

depend upon each other and what the consequences are of a change in either of them (Iwasaki et al.,

1986). The knowledge at this level provides common sense and qualitative relations with which the

building blocks at the element level can be associated with each other meaningfully. The knowledge

at this level is task independent because it is mainly used for the system to perform general design

support tasks such as: assembling design components, deriving design variable/parameter values,

predicting the consequences of design modi®cations, searching for a set of design variable values

that satis®es a set of design constraints, etc.

At the task dependent level (or design process level), there are speci®c product or process

modules, with which the elements and relations at the element and task-independent levels can be

dynamically constructed and controlled to form special process-based design models for solving

new design problems. The knowledge at this level provides embodied process-based or task-oriented

modules for planning, scheduling and controlling speci®c design tasks. Therefore, the knowledge at

this level is particularly domain dependent.

At the highest level is the interface level that provides straightforward answers to design enquiries

from di�erent types of user. It also provides graphical explanation and interface management

facilities for the designers to see what knowledge is available in the system, what the current status of

the design problem is, and what solutions can be derived by the system, giving a functional

requirement of a new design. At this level, the user is treated as a special source of knowledge. That

is, a user may dynamically re-organise the knowledge in the system for solving speci®c design

problems or for adding new knowledge into the system.

3.3 Intelligent control of design process

Knowledge-based design support systems are often developed for working in an environment
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where: groups of designers work co-operatively to complete a complex and frequently large design;

close interaction exists between group members through shared design data and information;

interdependent design knowledge sources or programs exist and need to be controlled and co-

ordinated; use of databases, solid modelling and CAD tools is commonplace; and management of

multiple design contexts is necessary for a group of designers. The control and integration of design

knowledge sources to ensure their e�ective co-operations with human designers are the main tasks

of an intelligent control system (or a design manager) in a knowledge-based design support system

architecture.

A blackboard is a ¯exible control system that allows a design support system's design knowledge

sources to interact with users' inputs via the blackboard (Hayes-Roth, 1985). The blackboard

control strategy contributes to design support tasks in the following aspects:

. it allows a knowledge-based design support system to work as a self-organising system whose

problem solving design knowledge sources can respond dynamically to new design situations;

. it allows the development of independent and self-contained design knowledge sources, thus

making it easy to integrate and modify design knowledge; and

. it is suitable for di�erent knowledge representation schemes, i.e. anything that can be treated as a

black box such as a rule set, a procedure, or an external software package can be regarded as a

design knowledge source.

Given the integrated and complex nature of knowledge-based design support systems, the

integration and control of a large number of diverse design knowledge sources are important. The

blackboard control strategy has been widely adopted in knowledge-based design support system

architectures, especially integrated system architectures as reported in Smithers et al. (1990), Carter

et al. (1991), Clarke et al. (1991), Sriram et al. (1992) and Ball et al. (1992). However, none of these

systems has been developed as a generic knowledge-based design support system architecture.

Furthermore, few systems have developed a mechanism for consistency maintenance and context

management within a blackboard control system. In DICE, for example, the role of truth

maintenance in its architecture is identi®ed as providing justi®cations for a knowledge module. But

the use of an assumption-based truth maintenance in the exploration and maintenance of multiple

contexts of design is not explored in DICE (Sriram et al., 1992). The suitable integration of a truth

maintenance system with a blackboard control strategy allows the development of a design context

management system to support the exploration of multiple design contexts by a design team.

3.4 Truth maintenance and design context management

In design, multiple design solutions arise in the presence of under-constrained design variables

and parameters. Multiple design solutions are derived from a space in which design requirements,

design methods and design criteria are subject to frequent change. This means that the exploration of

multiple design solutions is context dependent. The management of design contexts in a knowledge-

based design support system is concerned with the following issues:

. maintaining the consistency of design knowledge in the system;

. representing newly derived design objects, their dependants and antecedents; and

. supporting the exploration of multiple design solutions based on di�erent design decisions made

by the designers.

This section discusses computer-based exploration and maintenance of multiple contexts of

design and describes the role of a design context management system based on an integration of a

blackboard control strategy and an ATMS.

3.4.1 Modelling context in design

One of the frequently carried out tasks in design is to make plausible modi®cations to part of an

initial design solution to observe the repercussions to ®nd alternative design solutions. The design
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decision making process is typically nonmonotonic, constructive and incremental in that even

experienced designers cannot guarantee to get it right ®rst time. More often, designers need to

make changes when information about the consequence of earlier decisions becomes available, and

the design solution space has become more and more constrained. Most design tasks are likely to

create new design objects and concepts rather than simply modifying existing designs. This view is

supported by noting that:

. design activities are often undertaken simultaneously by a group of designers;

. designers explore the design solution space rather than systematically search in it;

. it is important for incompatibility in design requirements, constraints and evaluation criteria to

be discovered early during the design process;

. designers need to know the consequences and implications of any change either in input data,

design method or design evaluation criteria; and

. designers need explicit explanations of the design results derived from any design decisions, or the

reasons for any di�culties in ®nding a satisfactory design solution.

These issues can be dealt with in a knowledge-based design support system using a consistency

maintenance and design context management system, the central role of which is to maintain the

consistency of the knowledge generated during design and to support the exploration of this

knowledge when design context changes.

In engineering design, a product data model (or structure of a design problem) is often de®ned by

design objects and their relations. Design objects contain attributes which can be classi®ed as design

variables and dependent design parameters. The values of design variables and dependent design

parameters are determined by the constraints in which these variables and parameters are

functionally, structurally or causally related. Design variables and dependent design parameters

are used in order to distinguish the part of a design problem that is ¯exible to change (described by

the design variables) from other parts of the design problem (described by the dependent design

parameters) that are relatively dependent on the design variables (Tang, 1996b).

A design solution is a complete set of values for all the design variables and dependent design

parameters which satis®es all the constraints. The space of potential design solutions is determined

by the constraints between all the design variables and dependent design parameters. The

constraints are typically combinations of mathematical equations, rules, and qualitative reasoning

modules. When designers explore this space of potential design solutions, many plausible choices

may arise in the presence of under-constrained design variables, giving rise in turn to many plausible

values of dependent design parameters. Furthermore, the way in which design variables and

dependent design parameters are related and explored may depend on what design strategies (or

methods) are employed by the designers. In other words, using a di�erent design problem solving

strategy (or method) may result in the same set of design variables and dependent design parameters

being constrained di�erently.

Design exploration involves exploring the convergence of all the design variables using the most

appropriate design methods (or design knowledge sources) available in the system. The exploration

of a design solution in a knowledge-based design support system is usually carried out by the

designer making decisions (or assumptions) by way of selecting or constructing a product data

model containing design variables and dependent design parameters using the available building

blocks in a design knowledge base, assuming the values of these design variables, or selecting design

knowledge sources that manipulate the design variables and the constraints. The system processes

these decisions in a systematic way by invoking the necessary design knowledge sources that

propagate the assumed values of design variables throughout the constraint network associated

with the product data model.

A design context is a design solution (or a partial design solution) that is derived as a result of the

system's inferencing from the designer's choices of initial data, design method (or design procedure)

and design evaluation criteria. Because a designer's assumption is part of a design context, di�erent
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designers working on sets of overlapping design variables can explore design solutions within their

own design contexts simultaneously.

3.4.2 Design context management using an ATMS

The co-existence of potentially con¯icting assumptions and their derivatives in a computer-based

design system presents a problem for maintaining the truth of the knowledge and for modelling

design context within a knowledge-based design support system. The role of a design context

management system is therefore:

. to maintain the design results and their justi®cations generated during the design process;

. to provide easy access to, and a good explanation of, the existing knowledge in the system;

. to make the best use of the knowledge already held in the system to generate new knowledge

without performing redundant inferences; and

. to help designers compare di�erent, sometimes con¯icting design solutions.

A number of truth maintenance techniques have been developed in AI to deal with the problem of

consistency and context management. While some of the truth maintenance systems are concerned

only with maintaining the justi®cation of derived knowledge, Assumption-based Truth Mainte-

nance System (ATMS), based upon de Kleer's work, o�ers su�cient facilities for working with

inconsistent information, and for multiple context problem solving (de Kleer, 1986). An ATMS is

preferable to other truth maintenance systems when di�erent design knowledge sources, including

users, hold distinct perspectives over the same problems. An ATMS is particularly suitable for

design exploration because of its incremental updating of a dependency network and its ability to

maintain a multi-contextual environment to allow di�erent design solutions to be explored

simultaneously.

The application of ATMS in design has been reported in Smithers et al. (1990, 1993), Logan et al.

(1991), Sriram et al. (1992) and Banares-Alcantara (1991). But none of these systems has formulated

design context in such a way that a design context management system can be developed based on a

blackboard control strategy to support the exploration of multiple design contexts as part of a

general knowledge-based design support system architecture (Tang, 1996a).

A blackboard control system works mostly in an opportunistic way. The integration of an ATMS

with a blackboard control system provides a unique facility for knowledge-based design applica-

tions by building a multi-contextual justi®cation network to maintain the consistency of the derived

knowledge, and to support the exploration of multiple design solutions. In such a so-called truth

maintained blackboard system (Logan et al., 1991), the ATMS builds a justi®cation network in the

form of assumption nodes representing decisions or assumptions made by the designers, and derived

nodes representing the results inferred by the design knowledge sources in the system. The ATMS

maintains the dynamic growth of this justi®cation network by updating the information associated

with each node whenever a piece of new information is derived by the design knowledge sources.

This ensures that all the newly derived knowledge is justi®ed in the context of basic design decisions

(user assumptions), and maintained throughout a design session.

The design context management system based on an integration of a blackboard control strategy

and an ATMS (Tang, 1996b; Ross, 1989) performs the following operations: control the creation of

design contexts for individual designers, support the exploration of the design problem in these

contexts using design knowledge sources, sort out alternative design solutions from all the design

contexts, maintain the justi®cation of the knowledge generated within individual design context,

provide explanations of any chosen aspect of the system status, and control the negotiation process

and con¯ict resolution.

3.5 Modelling of design collaboration

A knowledge-based design support system needs to model the close co-operation between the

designers and the system by providing explicit explanations of the system's behaviour, and by

A knowledge-based architecture for intelligent design support 397



providing ways for designers to intervene in the design process at various stages of design

exploration. Designers' expertise, intuition and understanding of the design problems play an

important role in this co-operation.

A design di�culty may arise when an expected design solution cannot be derived by the system

given the available information in the system, or when a designer's choice of some design variable

values results in some of the constraints set by other designers being violated. In these situations the

designers need to consult each other to ®nd out the source of the di�culty and to negotiate to ®nd a

solution. However, few of the existing knowledge-based design system architectures explicitly

address the issue of providing design collaboration management facilities for a team of designers.

The reasons why these architectures cannot support design collaboration include:

. Nomechanism has been developed to model design collaboration between a team of designers. In

almost all of the reviewed system architectures in section 2, a single designer is modelled in the

design process which may be treated in some architectures as a special high priority knowledge

source. The focus of research has been on how to deal with the problem of one user interacting

with a number of design knowledge sources, rather than how di�erent users interact with each

other to solve a design problem.

. No system had a design process model with which necessary design collaboration operations may

be de®ned. Design collaboration takes place throughout the design process, not just on some

isolated speci®c design tasks. There is a need to de®ne what a design collaboration process is in a

knowledge-based design support system, especially within the context of a networked association

across the world wide web.

. No system provided good facilities for documenting the design information as well as the

decision process that has led to the speci®cation of this information. There has been no explicit

modelling of a design collaboration history that could be used to explain what has been done, or

what are being done by the others involved.

The widespread use of world wide web on the Internet makes it more urgent to solve these

problems concerning user modelling and HCI. User modelling in knowledge-based design is

concerned with data input, inferencing control and result explanation. A knowledge-based design

support system must be able to answer user questions such as What has been derived?, How is

something derived? and What could be done next?, etc. In design collaboration, an additional issue

needs to be addressed. That is, the issue of knowledge-based communication and negotiation.

Negotiation during a design project can take place in two ways:

1. In the design exploration process, during which the designers consult with each other whenever

they need to change the value of a design variable set by others.

2. After the design exploration process, at which time a design context management system sorts

out all the alternative design solutions from the multiple design context network maintained by

the system, and then ranks them based on the preferences of most designers.

It is believed by the author that the ®rst approach may create unnecessary communications and

delay the design project, whilst the second approach is more suitable for collaborative design as it

supports concurrency and maintains multiple design solutions. The selection of a ®nal design

solution ultimately depends on a collective decision that has to be made after both approaches are

exhausted. But by identifying the areas where there are still con¯icts in the multiple design context

network, the system is well placed to explain the source of di�culty and help the designers to reach a

®nal design solution.

In a knowledge-based design support system, repeating a particular design session or restoring an

interrupted design session is particularly useful for design collaboration, especially when a design

project lasts for a long time. The traceability of a long term design project can be maintained by

repeating any previous design session using recorded design history ®les. In this way, the knowledge

of an experienced designer can be monitored and recorded, allowing design knowledge to be
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accumulated and shared by the others. A design history ®le is best stored in such a format that it can

be replayed (Mostow, 1989).

4 Implementation of the architecture

The mechanism for consistency maintenance of design knowledge was ®rst developed in

Edinburgh in the EDS system as part of the Alevy large scale demonstrator Design to Product

(Smithers et al., 1990, 1993) using an Assumption based Truth Maintenance System (ATMS) (de

Kleer, 1986; Ross, 1989). It was extended in the EDSII project by adding a view mechanism that

allows the creation of multiple views of design de®ned by designers (Logan et al., 1991). It was

further formalised by the author as a design context management system within a lisp-based

knowledge-based design support architecture (Tang, 1996a, b). This Lisp-based architecture as an

integrated AI tool consists of components or sub-systems of a software system for developing

knowledge-based design applications. It consists mainly of a design knowledge base, a design

concept learning system, an assumption-based truth maintained blackboard control system, a design

context management system, a design documentation system, and a graphical user interface (Tang,

1996b).

A Knowledge Based System (KBS) development tool called GoldWorks III
TM

was used to

implement this architecture. GoldWorks III is a Lisp-based KBS tool whose facilities are based on

di�erent types of objects, namely, frame, instance, assertion, relation, attempt, sponsor, agenda

item, message passing handlers and daemon, etc., with which reasoning and control programs can

be developed (Tang, 1995). Rule- and frame-based knowledge representations, forward, backward,

goal-directed forward chaining, dynamic object-oriented graphics are general functions available

within GoldWorks III.

The implemented architecture on top of GoldWorks III is intended to provide a Lisp-based

environment with enhanced design support functions, including mainly:

. management of a design knowledge base,

. control of design knowledge sources,

. creation and maintenance of multiple design contexts,

. documentation of design history, and

. graphical explanation of design results.

The integration of a blackboard control strategy and an ATMS forms the core of this architecture

(Ross, 1989; Tang, 1996b). This integration is done by creating a special Knowledge Source

Activation Record (KSAR) within the blackboard control circle. When a KSAR is proposed by any

design knowledge source, it carries the necessary information for the ATMS to establish the link

between consequence and precondition of a proposed inference action. This link is then passed to

the ATMS for building the justi®cation and context for any inferred results.

Figure 2 illustrates this control process that is not available as a generic design support function in

any other knowledge-based system development tools.

. AKSAR is ®rstly checked for its format by the system. If the format is right, and the new KSAR

is not a duplicate of any KSARs already in the agenda, it is placed onto the blackboard agenda.

Otherwise the KSAR is ignored.

. Before a KSAR is executed, it is checked again to see whether its preconditions still hold, i.e. to

see whether the antecedents of the KSAR remain consistent. The system does this by checking

whether the KSAR has a valid set of ATMS nodes and assumptions as the justi®cation for the

proposed action.

. When a KSAR has been executed, the generated result is placed on the blackboard. The system

creates a new ATMS node for the result and adds its justi®cation to the ATMS database.

The main di�erence between a standard blackboard control system and a truth maintained

blackboard control system is that in the latter system, the inference is based on justi®ed
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preconditions, and these preconditions are used as the antecedents to build up the network of

justi®cations from which multiple design contexts can be established using the ATMS. In this way,

the ATMS safeguards the blackboard as well as e�ectively creating multiple contexts for the data on

the blackboard. The detailed speci®cation and integration of this architecture and its application in

the domain of small molecule drug design can be found in Tang (1996b).

Figure 2 Truth maintained blackboard control process
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5 Applications

The architecture described in this paper has been successfully applied to the domain of small

molecule drug design in the Castlemaine project (Smithers et al., 1990, 1993). However, to be used as

a general tool for knowledge-based design applications, it needs to be tested in more than one

domain. The recent development of an Integrated Functional Modelling (IFM) system by the

author at the Cambridge Engineering Design Centre (EDC) is an attempt to further enhance the

capability of this architecture. The IFM is an integration of this architecture with other systems that

have been developed in the Cambridge EDC recently to build an intelligent design tool for

mechanical engineering design (Wallace et al., 1995a, b; Tang, 1996a, b).

5.1 IFM

The IFM combines functional, symbolic and geometric knowledge to support functional

synthesis of design concepts, embodiment generation of product design and dynamic simulation of

product behaviour within a knowledge-based environment. The IFM system also aims at establish-

ing a knowledge-based framework that enables design process management, design product

speci®cation and design knowledge capturing in the domain of mechanical engineering design.

The development of IFM is focused on three areas of knowledge engineering techniques:

systematisation of engineering design knowledge at the early stage of the design process; develop-

ment of several general support systems for computer-based engineering design activities; and

integrated application of AI techniques including inductive learning techniques in engineering

design (Tang, 1996a). Figure 3 illustrates a demonstrator of the IFM developed using the

architecture described in section 4.

In the IFM demonstrator, the design knowledge base contains a library of functional components

and parts, a design object hierarchy representing the relationships between these functional

components and parts, a set of constraints on the assembly of these functional components and

parts, and a database containing detailed information about these functional components and parts

such as material, geometry, etc.

The IFM system supports engineering design tasks in an incremental way. The functional

components can be selected and synthesised ®rst using a functional synthesis system to form a set

of solution concepts (Chakrabarti et al., 1994). The solution concepts are then clustered using an

inductive learning system to allow easy browsing and selection by the designers. A selected solution

concept forms a so-called conceptual product data model. A conceptual product data model

contains abstract information in terms of functional components and their topological arrangement

to the satisfaction of a stated functional input/output requirement. A conceptual product data

model can then be transferred into a constraint-based product data model containing design

variables, dependent design parameters and constraints required for embodiment design, kinematic

analysis and dynamic simulation. This constraint-based product data model can be manipulated by

any member of a design team using a symbolic constraint manager until a satisfactory embodiment

solution is found.

The constraints associated with a complex product data model need to be partitioned in a number

of ways so that AI methods can be used more easily to satisfy them. This partition is largely based on

the structural relationships of the product data model such as parts, components and assemblies, or

based on the algebraic relationships of the design variables. Any partition identi®es a small region in

the design space which might be usefully searched for partial solutions using either simulated

annealing or genetic algorithms, both of which treat a design problem as a goal-directed search, the

goal being to minimise the number of constraints that are violated (Thornton, 1993).

The use of symbolic computation techniques such as constraint propagation, constraint

simpli®cation and symbolic equation solving (for removing equality constraints) ensures that this

search space is well identi®ed and con®ned before any automatic search methods such as genetic
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algorithms and simulated annealing are used. Therefore, a symbolic constraint manager can be seen

as a system integrating heuristic-based AI methods with automatic methods for design optimisation.

Collectively, the designers, the functional synthesis system, the inductive learning system and the

symbolic constraint manager allow the embodiment generation of an artefact from a functional

requirement statement using a selected set of basic functional components. The result generated

provides su�cient information for 3D kinematic analysis (Johnson, 1988; Johnson et al., 1993).

In exploring the constraint network, many alternative solutions may be created by di�erent

members of a design team. These contexts are maintained in the system throughout the design

Figure 3 Integrated functional modelling system
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process, which is easily accessible through a graphical user interface by any member of a design

team. The graphical explanation system is also used to provide visual links between the 3Dmodel of

an artefact and its underlying constraint network. That is, what is done by the computer system at a

symbolic level is actually visualised in a 3D model. A design documentation system records the

evolving product data model in terms of its speci®cations and the design history that has led to these

speci®cations. The recorded design history can be reviewed and replayed by any member of a design

team after the design session has concluded (Tang, 1996a). Part of the implemented IFM

demonstrator is being evaluated by experienced designers within the Cambridge EDC (Chakrabarti

et al., 1994).

5.2 Integration issue

The development of the IFM system is motivated by the need to systematise engineering design

knowledge at a functional level using the best available knowledge engineering techniques, and to

form a prototype of a new generation of CAD systems that makes extensive use of this systematised

knowledge (Chakrabarti et al., 1996). The implementation of the initial IFM demonstrator involves

complex software integration in a Lisp-based environment. It involves the integration of a Lisp-

based functional synthesiser system called FuncSION by Chakrabarti et al. (1996) with ACIS 3D

toolkit
TM

; the integration of a genetic algorithm for constraint optimisation developed by Thornton

(1993); the development of a Lisp-based constraint manager and a design context management

system.

A di�culty arises from the fact that none of the currently available knowledge-based system

development tools is able to support sophisticated 3D graphics. However, 3D modelling is an

essential part of any computer-based design system even in the stage of conceptual design. Most

knowledge-based system development tools such as KEE
TM

, ProKappa
TM

, ArtEnterprise
TM

,

GoldWorks III
TM

, KnowledgeWorks
TM

, LispWorks
TM

, etc. only have limited facilities for

developing 2D graphics. To reduce the complexity of software integration, the IFM is now being

further developed using CLOS and ACIS 3D toolkit via a Scheme interface (Martin, 1995). The

feasibility of such a platform for the commercialisation of the complete version of the IFM in the

near future is being evaluated. Other approaches involving the integration of other commercially

available tools such as ICAD, ProEngineer for the further development of IFM system are also

currently being explored.

6 Evaluations and discussion

The integration of a blackboard control system and an assumption-based truth maintenance

system in the architecture described in this paper provides an e�ective mechanism for the

exploration and management of multiple contexts of design, which is absent from many of the

design systems such as HOBS, IFe, DICE and IDF, etc. (Carter et al., 1991; Clarke et al., 1991;

Sriram et al., 1992; Ball et al., 1992). This mechanism is suitable for intelligent design support

because the design decision process is typically nonmonotonic, i.e. some later decisions may

contradict the earlier ones.

The following features are uniquely associated with the architecture presented in this paper:

. It combines rule-based and object-oriented knowledge representation for the development of

design knowledge bases and design knowledge sources.

. It has been designed and implemented as a self-contained AI software kernel with basic and

essential components, including an inductive conceptual learning system, for intelligent design

support.

. It provides ¯exibility for the designer to explore multiple contexts of design by making di�erent

design decisions (even con¯icting decisions). A design context can be created by any member of a
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design team by making assumptions. The design context management system maintains the

justi®cations of any derivations based on these assumptions.

. It has the potential for support concurrent engineering design and web-based design. The

knowledge on the blackboard can be shared by members of a design team and explored from

di�erent perspectives. Negotiation can be delayed until such a time when it is necessary to

evaluate a number of alternative design contexts (or solutions). The negotiation decisions can

also be added to the system as assumptions, resulting in some of the undesirable design results

becoming eliminated.

. It provides facilities for documenting design results and design history that can be replayed. Any

derived knowledge can be graphically explained using the information kept in the design

document.

. It provides a good basis for web-based systematisation of engineering design knowledge and for

supporting web-based design collaboration.

The architecture described in this paper has been tested in the domain of small molecule drug

design. It has proved to be e�ective in this domain, and it supported the task of identifying

alternative design solutions (pharmacophore descriptions) (Smithers et al., 1990, 1993). However, a

number of limitations have been observed:

In the current implementation of the design context management system, a design context is

de®ned based on a constraint-based approach to design. That is, a design context is de®ned on a

domain independent basis, i.e. on the basis of the design data, the design method (constraints), and

the design variable values. The di�culty arises from the fact that some issues, such as the question of

what forms the context of a design, and how the designers explore design contexts, are not

necessarily domain independent. A more general design context de®nition should take into account

a wider range of issues such as the design process, the design product data model, the manufacturing

constraints, the materials, and the user type, etc. The de®nition of a design context in the current

design context management system needs to be extended in order to support design applications

where multiple solutions need to be explored simultaneously by a team of designers, each of which

may have di�erent priorities and concerns;

The architecture described in this paper does not provide an explicit partition of the blackboard

like other design systems such as HOBS, IFe, DICE and IDF (Carter et al., 1991; Clarke et al., 1991;

Sriram et al., 1992; Ball et al., 1992). The current implementation of the architecture only supports

an implicit partition of the information available on the blackboard by means of creating design

contexts. It is possible to create more than one blackboard within the current implementation of the

architecture because the blackboard itself is an object class. However, the issue concerning the co-

operation between di�erent blackboard instances has not been addressed. This may appear to be

over restrictive for systems in which di�erent software packages must operate on di�erent data

structures (Tang, 1996b).

In the current implementation of the architecture, all user actions are treated as assumptions upon

which the system's inferences depend. It is therefore unable to deal with di�erent types of users, each

of which may be concerned with only one part of an integrated system and may have to carry out

domain speci®c design tasks using the data created by others involved in the design process. The

inability of the current architecture to model di�erent types of user restricts its application in

concurrent engineering design, especially in web-based design where it is customary for di�erent

types of users to work collaboratively to solve a complex design problem (Tang, 1996b).

7 Conclusions

In conclusion, an integrated application of knowledge engineering techniques is important for the

successful development of a knowledge-based design support system. A knowledge-based architec-

ture provides a computational platform for the integration of knowledge engineering techniques.

The architecture presented in this paper is for providing support for knowledge-based design system
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development, and it is based on an integration of a blackboard control system and an assumption-

based truth maintenance system. Apart from providing general support for the acquisition of design

concepts, design knowledge representation, intelligent control of design process and design

documentation, this architecture provides a unique mechanism for the exploration and maintenance

of multiple design contexts. It is thus particularly suitable for design collaboration and design

knowledge systematisation. This architecture has been implemented in a Lisp-based environment

and successfully tested in the domain of small-molecule drug design and the domain of mechanical

engineering design. The limitations of the current architecture have been identi®ed. These

limitations are being addressed further in the current development of an Integrated Functional

Modelling system in the domain of mechanical engineering design, and in the development of a

design collaboration management system using the World Wide Web (WWW) as an enabling

technique.
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