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During the spread of an epidemic, individuals in realistic networks may exhibit collective behaviors.

In order to characterize this kind of phenomenon and explore the correlation between collective

behaviors and epidemic spread, in this paper, we construct several mathematical models (including

without delay, with a coupling delay, and with double delays) of epidemic synchronization

by applying the adaptive feedback motivated by real observations. By using Lyapunov function

methods, we obtain the conditions for local and global stability of these epidemic synchronization

models. Then, we illustrate that quenched mean-field theory is more accurate than heterogeneous

mean-field theory in the prediction of epidemic synchronization. Finally, some numerical simulations

are performed to complement our theoretical results, which also reveal some unexpected phenomena,

for example, the coupling delay and epidemic delay influence the speed of epidemic synchronization.

This work makes further exploration on the relationship between epidemic dynamics and synchroni-

zation dynamics, in the hope of being helpful to the study of other dynamical phenomena in the pro-

cess of epidemic spread. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4984217]

During the spread of an infectious disease in a popula-

tion, the behavioral synchronization of individuals, such

as avoiding assemblage, washing hands, etc., emerges in

some way to protect themselves. On the other hand,

this behavioral response, usually with delay, will reduce

the disease spread to some degree. In order to precisely

analyze this behavioral synchronization of individuals

and disease spreading dynamics and understand their

interplay mathematically and numerically, the first step

should be the construction of a suitable model which can

display similar properties for these real dynamical net-

works. Taking account of the behavioral synchronization

of individuals, the current manuscript investigates the

coupling dynamics of the disease spread and behavioral

changes during an epidemic. Three models are proposed

focusing on various aspects: without delay; with one

delay to incorporate the time lag in epidemic information

processing and individuals’ active response; with two

delays where the other delay representing the incubation

period of the vector-borne pathogen in the vector popula-

tion. The local and global stability of these synchroniza-

tion models is studied. Furthermore, the effects of time

delays are evaluated through numerical simulations,

which reveal some unexpected phenomena.

I. INTRODUCTION

Many natural and artificial systems, such as biological

systems, electrical power systems, and social systems, can

be described by complex networks, with each node bearing

different meanings in various fields.1–4 Complex networks,

as a subject of interdisciplinary research, have received

much attention from researchers in the fields of epidemiol-

ogy, physics, and social sciences. Complex networks have

been successfully used to study epidemic spread,5 where

each node represents an individual, while the link between

two nodes denotes the interaction between two individuals.

In general, when an epidemic occurs, individuals

adaptively change their respective behaviors to avoid being

infected based on epidemic information, such as washing

hands frequently, wearing masks, seeking medical care,

and avoiding contact with infected individuals.6 When the

infection prevalence becomes larger, individuals send/

receive safeguard information more frequently to protect

themselves. Furthermore, with the evolution of epidemics,

the risk-averse behaviors of individuals may tend to be con-

sistent.7 These consistent human behaviors, which result

from the emergence and spread of epidemics, are defined as

epidemic synchronization, independent of the actual epi-

demic pathology.8

Synchronization is a basic motion in nature that has

been studied for a long time.8–12 In the past decade, the

synchronization of complex dynamical networks, such as

small-world and scale-free dynamical networks,13,14 has

been studied extensively. Criteria for complete synchroniza-

tion of dynamical networks are derived, where the interac-

tion between network topologies and nodes’ dynamics is

crucial.15,16 Unfortunately, little work is devoted to the study

of synchronization during epidemic spread.8,17 Li et al.8 pro-

posed the models of SIS (susceptible-infected-susceptible)

and SIR (susceptible-infected-recovered) epidemic synchro-

nization based on heterogeneous mean-field (HMF) theory

and studied the dynamics of SIS epidemic synchronization.

Li et al.17 also investigated the interplay between collectivea)Author to whom correspondence should be addressed: xcfu@shu.edu.cn
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behaviors and spreading dynamics on complex networks and

analyzed the control problem of spreading behaviors.

The spread of an epidemic can trigger human behavioral

changes, which in turn affect the evolution of the epi-

demic.8,17–19 Particularly, some certain synchronization

patterns of individual behaviors can greatly weaken the

infection prevalence.17 The previous study8 focused on how

the epidemic spread influences the synchronization behaviors

of individuals, while work17 not only investigated the effects

of disease transmission on the synchronization behaviors of

individuals, but also studied the effects of behavioral syn-

chronization on the epidemic dynamics. However, these two

papers8,17 were performed based on heterogeneous mean-

field (HMF) theory. Here, we adopt a more accurate theory

—quenched mean-field (QMF) theory—in predicting epi-

demic synchronization. In order to better evaluate the influ-

ence of epidemic spread on synchronization dynamics in

complex networks, we not only consider the effects of indi-

vidual’s protective behaviors on epidemic dynamics which

change the epidemic threshold and reduce the risk of infec-

tion,17 but also incorporate the following factors:

(i) In actual information networks, due to the finiteness

of signal transmission and switching speeds, the cou-

pling delay is non-negligible and should be explicitly

incorporated into our model in order to describe more

realistic scenarios.20,21

(ii) Meanwhile, time delay also plays an important role in

the propagation process of epidemics, and temporal

delay in epidemic models can be used to describe the

effects of latency period or immunity period.22,23

Classical epidemic models with time delay have been

studied extensively, but very little attention has been

paid to the effect of the time delay on heterogeneous

networks.24,25

(iii) Some pathogens are transmitted through direct con-

tact between individuals, while some others, such as

malaria and avian flu, are transmitted to humans

through the vectors (e.g., mosquitoes, birds, etc.).

This aspect leads directly to the actions that human

beings will take to reduce the contact with vectors by

direct ways, such as using mosquito-repellent incense,

sparge agent, mosquito-curtain, screen window, or

indirect ways, such as killing mosquitos, which are

very different from human responses to a directly

transmitted disease. In this context, individuals’ pro-

tective behaviors are induced by epidemics, however,

are aiming for vectors. Moreover, the speed of behav-

ioral synchronization of individuals with respect to

vector diseases may be slower than that with respect

to directly transmitted diseases. This may be because

in vector-borne diseases, the newly infected vectors

by infectious individuals cannot directly infect

humans, while transmitting this infection to humans

after a period of time.

Therefore, in this paper, in view of the above factors

that cannot be ignored in the process of actual epidemic and

information dissemination, we construct three different

mathematical models to make a further exploration of the

correlation between collective behaviors and epidemic

spread. Here, we introduce the coupling delay between indi-

viduals’ information communications and epidemic delay in

the process of epidemic spread. Further, we investigate the

effects of double delays on synchronization dynamics in epi-

demic networks.

The rest of this paper is organized as follows. In Sec. II,

we introduce a complex dynamical network model with

time-varying coupling strength and the standard SIS (suscep-

tible-infected-susceptible) model in quenched networks. In

Sec. III, we propose three different SIS epidemic synchroni-

zation models (including without delay, with a coupling

delay, and with double delays). Then, we investigate the

local and global stability of these epidemic synchronization

models with respect to the epidemic spreading rate in Secs.

IV–VI, respectively. In Sec. VII, we discuss two theoretical

methods (heterogeneous mean-field theory and quenched

mean-field theory) to the dynamics of the SIS model in net-

works, which justify the use of a quenched mean-field model

to study epidemic synchronization. In Sec. VIII, some

numerical simulations are carried out to complement our the-

oretical results obtained in Secs. IV–VII. Finally, Sec. IX

concludes this paper and proposes interesting questions for

further investigation.

II. MODELS AND PRELIMINARIES

A. Complex dynamical network model

Consider a complex dynamical network consisting of N
linearly and diffusively coupled identical nodes, each of

which is an n-dimensional dynamical system. The state equa-

tions of the network with time-varying coupling strength can

be described by

_xi tð Þ ¼ f xi tð Þð Þ þ c tð Þ
XN

j¼1

aijC xj tð Þ � xi tð Þ
� �

; i ¼ 1; 2;…;N;

(1)

where xi tð Þ ¼ xi1 tð Þ; xi2 tð Þ;…; xin tð Þð ÞT 2 Rn is the state vari-

able of the i-th node at time t, t 2 0;þ1½ Þ. In this model, f :
Rn ! Rn is a continuously nonlinear function which

describes the local dynamics of nodes; c(t)> 0 denotes the

coupling strength; C ¼ diag c1; c2;…; cnð Þ 2 Rn�n represents

the inner-coupling matrix which is a positive definite diago-

nal matrix; A ¼ aijð ÞN�N
is the adjacency matrix of the net-

work, with element aij defined as follows: if there is a

connection between node i and node j i 6¼ jð Þ, then

aij ¼ aji ¼ 1; otherwise, aij ¼ aji ¼ 0. Based on the adja-

cency matrix A, the Laplacian matrix L ¼ lijð ÞN�N of the net-

work can be defined as follows:

lij ¼

�aij; i 6¼ j;XN

j ¼ 1
j 6¼ i

aij; i ¼ j:

8>>><>>>:
Obviously, the diagonal elements of the Laplacian

matrix L satisfy the following condition:
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lii ¼ �
XN

j ¼ 1
j 6¼ i

lij ¼ �
XN

j ¼ 1
j 6¼ i

lji ¼ ki; i ¼ 1; 2;…;N; (2)

where ki denotes the degree of node i.
Assume that L is an irreducible matrix, which means

that the network is strongly connected in the sense of

having no isolated clusters. It follows from Ref. 26 that

zero is the smallest eigenvalue of matrix L with multiplicity

1 and all the other eigenvalues are strictly positive. Since

L is an irreducible real symmetric matrix with the condition

(2), there exists a unitary matrix U such that L ¼ UKUT ,

where UTU ¼ I and K ¼ diag k1; k2;…; kNð Þ with 0 ¼ k1

< k2 � � � � � kN .

Then, the dynamical network model (1) can be reformu-

lated in terms of the Laplacian matrix L as:

_xi tð Þ ¼ f xi tð Þð Þ � c tð Þ
XN

j¼1

lijCxj tð Þ; i ¼ 1; 2;…;N: (3)

Let s tð Þ ¼ 1
N

PN
i¼1 xi tð Þ, which can be an equilibrium

point, a periodic orbit, or even a chaotic attractor, satisfying

_s tð Þ ¼ f s tð Þð Þ by Eq. (3). We define the state error variables

ei tð Þ ¼ xi tð Þ � s tð Þ for i ¼ 1; 2;…;N, obviously, we can

obtain
PN

i¼1 ei tð Þ ¼ 0. The dynamical network (3) is said to

achieve asymptotical synchronization if

lim
t!1
jjei tð Þjj ¼ 0; i ¼ 1; 2;…;N:

B. Epidemic network model

The SIS model is a paradigmatic epidemic spreading

model, in which each node can be in one of two states,

either susceptible or infected. Infected nodes become sus-

ceptible with unit rate, and each susceptible node becomes

infected by its infective neighbors with the infection rate k.

We consider the standard SIS model in a quenched network

of size N. Let qi tð Þ denote the infection probability of node

i at time t. Neglecting correlations between infected and

susceptible nodes, the evolution equation27–29 of node i can

be described by

_qi tð Þ ¼ �qi tð Þ þ k 1� qi tð Þ
� �XN

j¼1

aijqj tð Þ; i ¼ 1; 2;…;N;

(4)

where the infection rate k 2 0; 1ð � denotes the probability

that each susceptible node is infected if it is connected to one

infected node, aij is an element of the adjacency matrix

assigned with 1 if there is an edge between nodes i and j or 0

otherwise.

III. EPIDEMIC SYNCHRONIZATION MODELS

Before formulating concrete epidemic synchronization

models, we make the following basic assumptions:

(A1) There is a weakly linear coupling between individuals

in the dynamical network when an epidemic begins to

spread;

(A2) Individuals will transmit protective information more

frequently to protect themselves when the infection

prevalence (measured by the average infection density

q tð Þ ¼ 1
N

PN
i¼1 qi tð Þ) becomes larger, which implies

that the rate of change of the coupling strength, _c tð Þ, is

directly proportional to the infection prevalence q tð Þ;
(A3) When the collective protective behaviors increase sig-

nificantly, the communication of safeguard information

among individuals will become saturated because they

have come to an agreement of protection. Thus, the

proportional relationship between the rate of change of

the coupling strength, _c tð Þ, and the synchronization

error
PN

i¼1 eT
i tð Þei tð Þ always remains valid, where

ei tð Þ ¼ xi tð Þ � s tð Þ for i ¼ 1; 2;…;N.

Based on these assumptions, in Subsections III A–III C,

we propose three models in quenched networks to investi-

gate the coupling dynamics of the epidemic transmission and

behavioral changes.

A. Epidemic synchronization model without time delay

Based on the assumptions (A1)–(A3), we use model (4)

to characterize epidemic spread and model (3) to describe

the evolution process of protective behaviors of individuals

in the process of epidemic spread, then we can construct the

SIS epidemic synchronization model as follows:

_xi tð Þ ¼ f xi tð Þð Þ � c tð Þ
XN

j¼1

lijCxj tð Þ;

_qi tð Þ ¼ �qi tð Þ þ k 1� qi tð Þ
� �XN

j¼1

aijqj tð Þ;

_c tð Þ ¼ aq tð Þ
XN

j¼1

eT
j tð Þej tð Þ;

8>>>>>>>>>><>>>>>>>>>>:
(5)

where i ¼ 1; 2;…;N, parameter a > 0 and q tð Þ ¼ 1
NPN

i¼1 qi tð Þ is the infection prevalence. The initial condition

of system (5) can be set as follows: the initial state

xi 0ð Þ ¼ xi1 0ð Þ; xi2 0ð Þ;…; xin 0ð Þ
� �T 2 Rn, the initial coupling

strength c 0ð Þ > 0, and the initial infection probability

qi 0ð Þ ¼ � of node i, where 0 < �� 1.

B. Epidemic synchronization model with a coupling
delay

Sometimes, due to the limitation of the switching rate

and the physical distance between subsystems in real net-

works, the coupling delay often emerges in the procedure of

information transmission.20,21 That is, it takes non-negligible

time to receive information from its neighboring nodes. To

incorporate this reality, we set the following assumption:

(A4) The behavioral information that individuals obtain

from their neighbors may be a kind of delayed infor-

mation during the transmission of epidemics.

Therefore, it is necessary to consider the influence of the

coupling delay on epidemic synchronization. In this subsec-

tion, we consider the following linearly coupled system with

a coupling delay

063101-3 Sun et al. Chaos 27, 063101 (2017)



_xi tð Þ ¼ f xi tð Þð Þ � c tð Þ
XN

j¼1

lijCxj t� s1ð Þ; i ¼ 1; 2;…;N;

(6)

where s1 > 0 represents the coupling delay.

Based on the assumptions (A1)–(A4) and models (4)

and (6), we can construct the SIS epidemic synchronization

model with a coupling delay as follows:

_xi tð Þ ¼ f xi tð Þð Þ � c tð Þ
XN

j¼1

lijCxj t� s1ð Þ;

_qi tð Þ ¼ �qi tð Þ þ k 1� qi tð Þ
� �XN

j¼1

aijqj tð Þ;

_c tð Þ ¼ aq tð Þ
XN

j¼1

eT
j tð Þej tð Þ;

8>>>>>>>>>><>>>>>>>>>>:
(7)

where i ¼ 1; 2;…;N, parameter a > 0 and q tð Þ ¼ 1
NPN

i¼1 qi tð Þ is the infection prevalence. The initial condition

of system (7) can be set as follows: the initial state

xi hð Þ ¼ xi1 hð Þ; xi2 hð Þ;…; xin hð Þ
� �T 2 Rn; h 2 �s1; 0½ �, the

initial coupling strength c 0ð Þ > 0, and the initial infection

probability qi 0ð Þ ¼ � of node i, where 0 < �� 1.

C. Epidemic synchronization model with double
delays

During the process of epidemic spread, the influence of

the past state of individuals on the current state has been

investigated by introducing a temporal delay and construct-

ing delayed epidemic models.22–25,30 It is interesting to per-

form a comparative study by observing the difference

between the synchronization behaviors of epidemic models

with time delay and those without time delay. In this subsec-

tion, we investigate a vector-borne disease synchronization

model with a coupling delay and an epidemic delay. Before

we construct a vector-borne disease model in quenched net-

works, we first propose the assumptions, similar to those in

Ref. 30:

(A5) The pathogen can only be transmitted to host individ-

uals by a vector, such as a mosquito. That is, suscepti-

ble hosts receive the infection from infected vectors,

and susceptible vectors get infected through contact

with infectious hosts.

(A6) Hosts confer negligible immunity and the pathogen

does not result in death or isolation.

(A7) Births, deaths, and migration of individuals are

ignored, i.e., the total number of individuals is stabi-

lized at a constant state.

(A8) When a susceptible vector is infected by an infected

host, there is an incubation period (denoted by s2),

during which, the virus develops in the vector. At the

end of this time, the vector can infect a susceptible

individual.

(A9) Hosts and vectors are homogeneously mixed, and

therefore, the density of infected vectors at time t is

simply assumed to be proportional to the density of

infected hosts at a previous instant t� s2.

(A10) Infected individuals become susceptible (or healthy) at

a rate that, without loss of generality, is set to be unity.

Based on the assumptions (A5)–(A10), we can describe

the vector-borne disease transmission in quenched networks

through the following delay differential equations:

_Si tð Þ ¼ qi tð Þ � kSi tð Þ
XN

j¼1

aijqj t� s2ð Þ;

_qi tð Þ ¼ �qi tð Þ þ kSi tð Þ
XN

j¼1

aijqj t� s2ð Þ;

8>>>>><>>>>>:
(8)

where i ¼ 1; 2;…;N; k > 0, the variable Si tð Þ denotes the

probability of being uninfected of node i at time t and s2 rep-

resents the incubation period of the virus in infected vectors.

Initial functions of model (8) are set as follows:

_Si tð Þ ¼ qi tð Þ;
_qi tð Þ ¼ �qi tð Þ; �s2 � t � 0; i ¼ 1; 2;…;N:

�
This assumption is reasonable since no vector can infect sus-

ceptible individuals during �s2; 0½ �. Actually, there may be

some susceptible vectors that receive the infection from

infected individuals during �s2; 0½ �, but these vectors can

infect susceptible individuals only after they undergo a time

interval s2.

Based on the assumptions (A1)–(A10), models (6) and

(8), we can construct the SIS epidemic synchronization

model with double delays as follows:

_xi tð Þ ¼ f xi tð Þð Þ � c tð Þ
XN

j¼1

lijCxj t� s1ð Þ;

_qi tð Þ ¼ �qi tð Þ þ k 1� qi tð Þ
� �XN

j¼1

aijqj t� s2ð Þ;

_c tð Þ ¼ aq tð Þ
XN

j¼1

eT
j tð Þej tð Þ;

8>>>>>>>>>><>>>>>>>>>>:
(9)

where i ¼ 1; 2;…;N, parameter a > 0 and the infection

prevalence is q tð Þ ¼ 1
N

PN
i¼1 qi tð Þ. The initial condition of

system (9) can be set as follows: the initial state

xi hð Þ ¼ xi1 hð Þ; xi2 hð Þ;…; xin hð Þ
� �T 2 Rn; h 2 �s1; 0½ �, the

initial coupling strength c 0ð Þ > 0, and the initial infection

probability qi sð Þ ’ 0; s 2 �s2; 0½ � for i ¼ 1; 2;…;N.

IV. STABILITY ANALYSIS OF EPIDEMIC
SYNCHRONIZATION MODEL WITHOUT TIME DELAY

The steady state of the infection probability of system

(4) for each node i, qi, is determined by the following nonlin-

ear equation

qi ¼
k
X

j

aijqj

1þ k
X

j

aijqj

; i ¼ 1; 2;…;N:
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The existence of a positive steady state, dependent on an

epidemic threshold k ¼ kqmf
c ¼ 1=KN (KN is the largest

eigenvalue of the adjacency matrix A), has been investigated

in several papers, see, e.g., Refs. 31 and 32. Here, we state

the fundamental lemma for the N-intertwined SIS model in

Ref. 31 for reader’s convenience.

Lemma 1. There exists a value kqmf
c ¼ 1=KN > 0, and,

for k � kqmf
c , there is only the trivial steady state solution

qi ¼ 0 for all i. Apart from the trivial steady state solution
qi ¼ 0; i ¼ 1; 2;…;N, there is a second, nonzero steady
state solution for all k > kqmf

c .

By Lemma 1, it is easy to show that the zero solution

becomes unstable and for system (4) there exists a nonzero

solution qi > 0 if the effective spreading rate k is larger than

the so-called epidemic threshold kqmf
c . In this case, the final

infection prevalence q ¼ 1
N

PN
i¼1 qi is nonzero.

In Secs. IV A–IV B, we will investigate local and global

stability of the epidemic synchronization model without time

delay. Before we study the dynamical properties of the

model, we first present the definition of the synchronization

manifold for system (5).

Definition 1. The synchronization manifold for system
(5) is defined as S¼ f xT

1 ;x
T
2 ;…;xT

N

� �T 2 RnN : xi ¼ xj; i; j¼ 1;
2;…;Ng, where xi ¼ xi1;xi2;…;xinð Þ 2 Rn; i¼ 1;2;…;N, and
xT

i represents the transpose of xi.

A. Local stability of the epidemic synchronization
model without time delay

Substituting the error variable ei tð Þ ¼ xi tð Þ � s tð Þ into

equation (3), i.e., the first equation of system (5), we can obtain

the variational equation (via first order approximation) of sys-

tem (3) near the synchronization state s(t) as follows:

_ei tð Þ ¼ Dðf ðsðtÞÞeiðtÞ � cðtÞ
XN

j¼1

lijCejðtÞ; i ¼ 1; 2;…;N;

(10)

where D f s tð Þð Þð is the Jacobian matrix of f x tð Þð Þ with

respect to the synchronization state s(t).
Denote e tð Þ ¼ eT

1 tð Þ; eT
2 tð Þ;…; eT

N tð Þ
� �T 2 RnN , then the

variation equation (10) can be written as

_e tð Þ ¼ IN � D f s tð Þð Þð �e tð Þ � c tð Þ L� Cð Þe tð Þ;
�

where � represents the Kronecker product.

Let y tð Þ ¼ yT
1 tð Þ; yT

2 tð Þ;…; yT
N tð Þ

� �T ¼ UT � Inð Þe tð Þ, the

variational equation in terms of y(t) can be rewritten as

_y tð Þ ¼ IN � D f s tð Þð Þð �y tð Þ � c tð Þ K� Cð Þy tð Þ:
�

(11)

Note that k1 ¼ 0 is an eigenvalue of the Laplacian matrix

L, and its corresponding eigenvector is u1 ¼ 1ffiffiffi
N
p 1; 1;…; 1ð Þ.

Therefore, we have

y1 tð Þ ¼ 1ffiffiffiffi
N
p

XN

i¼1

xi tð Þ � s tð Þ½ � ¼ 0: (12)

According to Eq. (12), Eq. (11) can be written as

_y1 tð Þ ¼ D f s tð Þð Þy1 tð Þ ¼ 0;ð (13)

and

_yk tð Þ ¼ D f s tð Þð Þ � c tð ÞkkCð �yk tð Þ; k ¼ 2; 3;…;N:½ (14)

To proceed, we need the following result from previous

studies:33,34

Proposition 1. If all transverse Lyapunov exponents are
negative for system (14), then the synchronization manifold S
is locally exponentially stable for the coupled system (3).

When C ¼ In, the transverse Lyapunov exponents can

be calculated in the way proposed in Ref. 35. Combing the

calculation of transverse Lyapunov exponents in Ref. 35 and

Proposition 1, we have the following corollary:8

Corollary 1. Suppose that hi; i ¼ 1; 2;…; n are the
Lyapunov exponents of variational equation (13) and kk;
k ¼ 2; 3;…;N are all non-zero eigenvalues of the Laplacian
matrix L for C ¼ In. Then, the Lyapunov exponents of the
variational equation (14), denoted as li kkð Þ; i ¼ 1; 2;…; n,
are given by

li kkð Þ ¼ hi � lim sup
t!1

c tð Þkk:

If there is T> 0 such that the largest Lyapunov exponent
lmax kkð Þ ¼ hmax � c tð Þk2 < 0 for t>T, then, the synchroni-
zation manifold S is locally exponentially stable for the cou-
pled system (3).

Based on the previous corollary, we can establish the

following synchronization results:

Theorem 1. Suppose that kqmf
c ¼ 1=KN > 0 is the epi-

demic threshold of system (4). When C ¼ In, if the effective

spreading rate satisfies k > kqmf
c , then system (5) can achieve

synchronization.

Proof. If the effective spreading rate k > kqmf
c , by Lemma

1, we know there exists q	 2 0; 1ð �, such that limt!þ1 q tð Þ
¼ q	. Then, the rate of change of the coupling strength, _c tð Þ,
admits _c tð Þ ¼ aq tð Þ

PN
j¼1 eT

j tð Þej tð Þ 
 0. Assume to the con-

trary that system (5) cannot achieve synchronization,

then limt!1 _c tð Þ 6¼ 0, which implies limt!1 c tð Þ ¼ þ1.

Therefore, there exists t	 > 0 such that lmax kkð Þ ¼ hmax

� c tð Þk2 < 0 when t > t	. According to Corollary 1, the syn-

chronization manifold S is locally exponentially stable for the

coupled system (5), a contradiction. Hence, the synchroniza-

tion can be achieved. �

Theorem 2. Consider the infinite state of coupling
strength c(t) in system (5) with C ¼ In, for arbitrary
k 2 0; 1ð Þ, there is always a constant c	 > 0 such that
limt!1 c tð Þ ¼ c*.

Proof. Suppose that kqmf
c ¼ 1=KN > 0 is the epidemic

threshold of system (4), obviously, we have kqmf
c 2 0; 1ð Þ. If

the effective spreading rate k satisfies kqmf
c < k < 1, by

Theorem 1, we know system (5) can achieve synchroniza-

tion, which implies that limt!1 ei tð Þ ¼ 0 for i ¼ 1; 2;…;N.

In addition, when k > kqmf
c , it is easy to see that 0 < aq tð Þ

� a. Then, by the expression, _c tð Þ ¼ aq tð Þ
PN

j¼1 eT
j tð Þej tð Þ,

we obtain limt!1 _c tð Þ ¼ 0. Since c 0ð Þ > 0; _c tð Þ 
 0, we

know that there always exists a constant c	 > 0, such that
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limt!1 c tð Þ ¼ c	. If the effective spreading rate k satisfies

0 < k � kqmf
c , by Lemma 1, we know limt!1 q tð Þ ¼ 0 for

system (5). Moreover, a
PN

j¼1 eT
j tð Þej tð Þ is bounded. Thus,

we obtain limt!1 _c tð Þ ¼ 0. Combining the condition c 0ð Þ >
0 and _c tð Þ 
 0, we know that there always exists a constant

c	 > 0 such that limt!1 c tð Þ ¼ c	. �

Next, we study the global stability problem of epidemic

synchronization model without a time delay.

B. Global stability of epidemic synchronization model
without a time delay

The system for the error variables ei tð Þ ¼ xi tð Þ � s tð Þ;
i ¼ 1; 2;…;N with respect to equation (3), i.e., the first equa-

tion of system (5) can be written as follows:

_ei tð Þ ¼ f xi tð Þð Þ � f s tð Þð Þ � c tð Þ
XN

j¼1

lijCej tð Þ þ g tð Þ;

i ¼ 1; 2;…;N; (15)

where g tð Þ ¼ f s tð Þð Þ � 1
N

PN
i¼1 f xi tð Þð Þ.

Let F tð Þ ¼ f T x1 tð Þð Þ� f T s tð Þð Þ; f T x2 tð Þð Þ� f T s tð Þð Þ;…;
�

f T xN tð Þð Þ� f T s tð Þð ÞÞT and G tð Þ ¼ gT tð Þ;gT tð Þ;…;gT tð Þ
� �T

,

then Eq. (15) can be rewritten by using the Kronecker prod-

uct into a compact form

_e tð Þ ¼ F tð Þ � c tð Þ L� Cð Þe tð Þ þ IN � Inð ÞG tð Þ: (16)

By the definition of the error variables ei tð Þ ¼ xi tð Þ� s tð Þ,
we have

PN
i¼1 ei tð Þ ¼ 0. Therefore, the following relationship

always holds:

eT tð Þ IN � Pð ÞG tð Þ ¼
XN

i¼1

eT
i tð ÞPG tð Þ

¼
XN

i¼1

ei tð Þ
" #T

PG tð Þ ¼ 0:

We first propose an assumption on the nonlinear func-

tion f as follows:

Assumption 1. There exists a positive definite diagonal

matrix P ¼ diag p1; p2;…; pnð Þ and a constant n, such that

the nonlinear vector-valued continuous function f x tð Þð Þ
satisfies

x tð Þ � y tð Þð ÞTP f x tð Þð Þ � f y tð Þð Þ½ �
� n x tð Þ � y tð Þð ÞT x tð Þ � y tð Þð Þ;

for all x tð Þ; y tð Þ 2 Rn and t 
 0.

Under the above assumption, we can establish the global

stability result for the synchronization manifold S of system (5).

Theorem 3. Suppose that kqmf
c ¼ 1=KN > 0 is the epi-

demic threshold of system (4). If the effective spreading rate
satisfies k > kqmf

c , then the synchronization manifold S of
system (5) is globally asymptotically stable.

Proof. See Appendix A. �

Remark 1. In fact, in addition to the epidemic threshold
condition, we only need to find the constant n in assumption

1 to realize the global stability of the synchronization mani-
fold of the epidemic synchronization model without a time
delay. If the local dynamic function of human behaviors is
known, it is convenient for us to apply Theorem 3 to analyze
practical problems.

Remark 2. From the results obtained in Theorems 1
and 3, we show that the synchronization condition depends
mainly on the relationship between the transmission rate and
the epidemic threshold, which is independent of the specific
epidemic process. If we consider simultaneously the effects
of synchronization dynamics on epidemics, the synchroniza-
tion condition in Theorems 1 and 3 is still valid even when
the epidemic threshold changes.

V. STABILITY ANALYSIS OF THE EPIDEMIC
SYNCHRONIZATION MODEL WITH A COUPLING
DELAY

To discuss epidemic synchronization system (7) with a

coupling delay, the synchronization space should be revised

accordingly as follows:

Definition 2. The set ~S ¼ fx ¼ xT
1 hð Þ;…; xT

N hð Þ
� �T

:
xi hð Þ 2 Cs1

; xi hð Þ ¼ xj hð Þ; i; j ¼ 1; 2;…;N; h 2 �s1; 0½ �g is
called the synchronization space for system (7) with a
coupling delay, where Cs1

denotes the Banach space
C �s1; 0½ �;Rnð Þ. The synchronization manifold of system (7)

can be defined by U ¼ f /T ;/T ;…;/T
� �T

: / 2 Cs1
g.

A. Local stability of the epidemic synchronization
model with a coupling delay

Similar to the analysis of system (5) in Subsection IV A,

the variational equation of y(t) corresponding to equation

(6), i.e., the first equation of system (7) near the synchroniza-

tion state s(t) can be rewritten as follows:

_y tð Þ ¼ IN � Df s tð Þð �y tð Þ � c tð Þ K� Cð Þy t� s1ð Þ:
�

To study local stability problems of the epidemic syn-

chronization model with a coupling delay, we need the fol-

lowing lemma from.37

Lemma 2. Consider the delayed dynamical system (6).

If the zero solutions of the following N� 1-dimensional lin-
ear time-varying delayed differential equations are asymp-
totically stable:

_u tð Þ ¼ Df s tð Þð Þu tð Þ � c tð ÞkkCu t� s1ð Þ; k ¼ 2; 3;…;N;

(17)

then the synchronization manifold U of the coupled system
(6) is locally stable.

Based on Lemma 2, we can establish the following

theorem:

Theorem 4. Denote the Jacobian matrix D tð Þ¼: Df s tð Þð Þ.
If there exists a diagonal matrix P¼diag p1;p2;…;pnð Þ with
positive diagonal elements, and a constant d>0, such that

PD tð Þ þ DT tð ÞPþ PC � �dIn;

and
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c tð Þ < 1

kN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

kmax PCð Þ

s
;

for all t> 0, where In is an n� n identity matrix, then the
synchronization manifold U of system (6) is locally stable.

Proof. See Appendix B. �

Furthermore, we have the following result:

Theorem 5. Suppose that kqmf
c ¼ 1=KN > 0 is the epi-

demic threshold of system (4). If the effective spreading rate
satisfies k > kqmf

c and there exist d > 0 and a positive defi-

nite diagonal matrix P such that PD tð Þ þ DT tð ÞPþ PC �
�dIn and c tð Þ < 1

kN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

kmax PCð Þ

q
for all t> 0, then system (7)

can achieve synchronization.

Proof. If the effective spreading rate k > kqmf
c for system

(7), there exists q	 2 0; 1ð �, such that limt!þ1 q tð Þ ¼ q	

according to Lemma 1. Then, the rate of change of the cou-

pling strength, _c tð Þ, satisfies _c tð Þ ¼ aq tð Þ
PN

j¼1 eT
j tð Þej tð Þ 
 0.

Assume to the contrary that system (7) cannot achieve syn-

chronization, then limt!1 _c tð Þ 6¼ 0, which implies

limt!1 c tð Þ ¼ þ1. Hence, there exist positive constants l

and t	 such that c t	ð Þ ¼ l, where l ¼ 1
kN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

kmax PCð Þ

q
. Since c(t)

is strictly increasing, we have c tð Þ > c t	ð Þ ¼ 1
kN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

kmax PCð Þ

q
, a

contradiction to the condition that c tð Þ < 1
kN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

kmax PCð Þ

q
for all

t> 0. Hence, the synchronization can be achieved. �

B. Global stability of the epidemic synchronization
model with a coupling delay

The error system with respect to equation (6), i.e., the

first equation of system (7) can be written as

_ei tð Þ ¼ f xi tð Þð Þ � f s tð Þð Þ � c tð Þ
XN

j¼1

lijCej t� s1ð Þ þ g tð Þ;

i ¼ 1; 2;…;N; (18)

where g tð Þ ¼ f s tð Þð Þ � 1
N

PN
i¼1 f xi tð Þð Þ.

Rewrite (18) by using the Kronecker product into a com-

pact form

_e tð Þ ¼ F tð Þ � c tð Þ L� Cð Þe t� s1ð Þ þ IN � Inð ÞG tð Þ; (19)

with F tð Þ ¼ f T x1 tð Þð Þ � f T s tð Þð Þ; f T x2 tð Þð Þ � f T s tð Þð Þ; …;
�

f T xN tð Þð Þ � f T s tð Þð ÞÞT and G tð Þ ¼ gT tð Þ; gT tð Þ; …; gT tð Þ
� �T

.

Then we can establish the following result:

Theorem 6. Suppose that kqmf
c ¼ 1=KN > 0 is the epi-

demic threshold of system (4). If the effective spreading rate
satisfies k > kqmf

c , then for a certain range of c(t), the syn-
chronization manifold U of system (7) is globally asymptoti-
cally stable.

Proof. See Appendix C. �

Remark 3. Actually, in addition to the epidemic threshold
condition, in Theorem 4, we need to determine the positive con-
stant d and positive definite diagonal matrix P in Theorem 4 to
realize the epidemic synchronization. However, in Theorem 6,
we have determined the range of the constant n. If the local

dynamic function of human behaviors is known, it is easy for us
to prove their existence.

VI. STABILITY ANALYSIS OF THE EPIDEMIC
SYNCHRONIZATION MODEL WITH DOUBLE DELAYS

Let C be the Banach space of continuous functions on

�s2; 0½ � with uniform norm. We consider model (8) in the

phase space X ¼
QN

i¼1 R� Cð Þ, and nonnegative initial con-

dition Si 0ð Þ 2 Rþ; qi0 ¼ /i 2 C;/i sð Þ 
 0 for �s2 � s � 0;
i ¼ 1; 2;…;N. It can be easily verified that solutions with

the above initial condition remain nonnegative and the fol-

lowing set C remains invariant:

C ¼ f S1; q1 �ð Þ;…; SN; qN �ð Þ
� �

2 Xj0 � Si � 1;

0 � Si þ qi 0ð Þ � 1; qi sð Þ 
 0; s 2 �s2; 0½ �;
i ¼ 1; 2;…;Ng:

Lemma 3. C is positively invariant for model (8), and if
there exists some j such that qj 0ð Þ > 0, then when t> 0, we
always have qi tð Þ > 0 for all i ¼ 1; 2;…;N.

Proof. We can get Si tð Þ þ qi tð Þ ¼ Si 0ð Þ þ qi 0ð Þ ¼ 1 by

model (8). According to the first equation of model (8), we

have

Si tð Þ ¼ Si 0ð Þe
�
Ð t

0

h
k
PN
j¼1

aijqj g�s2ð Þþ1

i
dg

þ
ðt

0

e
�
Ð t

n

h
k
PN
j¼1

aijqj g�s2ð Þþ1

i
g

dn;

which implies that when t> 0, Si tð Þ > 0; i ¼ 1; 2;…;N.

When 0 < t � s2, by the second equation of model (8),

we get

qi tð Þ ¼ qi 0ð Þe�t þ
ðt

0

kSi gð Þ
XN

j¼1

aijqj g� s2ð Þe� t�gð Þdg:

It shows that if there exists some j, qj 0ð Þ > 0; 1 � j � N,

then when 0 < t � s2, we always have qi tð Þ > 0.

We can extend this procedure to the intervals

r�1ð Þs2; rs2

� �
for all r¼1;2;…. Therefore, qi tð Þ>0 for all

t and any i2 1;N½ � if there exists j such that qj 0ð Þ>0. �

The above results show that our model is biologically

meaningful. Then, we will analyze the epidemic threshold of

model (8) by the next generation matrix.39

Let

C8 ¼ f S1; q1 �ð Þ;…; SN; qN �ð Þ
� �

2 Xj0 < Si < 1;

0 < Si þ qi 0ð Þ < 1; qi sð Þ > 0; s 2 �s2; 0½ �;
i ¼ 1; 2;…;Ng:

It can be shown that C8 is the interior of C. In C, model

(8) has the disease-free equilibrium E0 ¼ f1; 0;…; 1; 0g, and

possibly an endemic equilibrium E	 ¼ fS	1; q	1; � � � ; S	N; q	Ng
satisfying S	i ; q

	
i > 0 with

q	i ¼ kS	i
XN

j¼1

aijq
	
j : (20)
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Linearizing at the disease-free equilibrium E0 and con-

sidering the infectious compartments only, then the matrix of

new infection is F ¼ kA, and the transfer matrix is V¼E.

Clearly, F is non-negative and V is a non-singular M-matrix.

Let w �s2ð Þ be the initial number of infected individuals, and

w tð Þ be the number of these initially infected individuals

remaining after t time units. By the second equation of sys-

tem (8), we know w tð Þ satisfies _w tð Þ ¼ �Vw tð Þ, which has

the unique solution w tð Þ ¼ e�V tþs2ð Þw �s2ð Þ.
Since F is the infection rate matrix, Fe�V tþs2ð Þw �s2ð Þ

gives the new infection rate reproduced by remaining infected

members at time t. Next, we consider the number of new

infections, which contains two scenarios: (1) for �s2 � t < 0,

there are no new infections; (2) for t 
 0, the new infection

rate at t is Fw t� s2ð Þ ¼ Fe�Vtw �s2ð Þ. Therefore, the total

number of new infections is given byð1
0

Fw t� s2ð Þdt ¼
ð1

0

Fe�Vtw �s2ð Þdt;

¼
ð1
�s2

Fe�V tþs2ð Þw �s2ð Þdt;

¼ FV�1w �s2ð Þ:

The basic reproduction number R0 of model (8) can be

defined as R0 ¼ q FV�1ð Þ ¼ kq Að Þ ¼ kKN , the spectral

radius of FV�1.

Using the relation R0 ¼ k=kc between the epidemic

threshold kc and the basic reproduction number R0, we have

kc ¼ k=R0 ¼ 1=KN ¼ kqmf
c . The following result is standard

and its proof is omitted.

Proposition 2. Assume that the matrix A ¼ aijð Þ is irre-
ducible. Then, the following results hold:

(1) If R0 � 1, i.e., k � kqmf
c , then E0 is the unique equilib-

rium of model (8) and it is globally stable in C;

(2) If R0 > 1, i.e., k > kqmf
c , then E0 is unstable and there

exists a unique endemic equilibrium E	 for model (8).

Based on Proposition 2, the main result of model (8) is given

in the following:

Theorem 7. Assume that the matrix A ¼ aijð Þ is irreduc-
ible. If R0 > 1, i.e., k > kqmf

c , then there exists a unique
endemic equilibrium E	 for model (8) which is globally
asymptotically stable in C8.

Proof. See Appendix D. �

According to Theorem 7, the following theorems of the epi-

demic synchronization model with double delays hold. Since

the proof is similar to that in Sec. V, we omit the proof here.

Theorem 8. Suppose that kqmf
c ¼ 1=KN > 0 is the epi-

demic threshold of system (4). If the effective spreading rate
satisfies k > kqmf

c (R0 > 1) and there exist d > 0 and a posi-
tive definite diagonal matrix P such that PD tð Þ þ DT tð ÞP
þPC � �dIn and c tð Þ < 1

kN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

kmax PCð Þ

q
for all t> 0, then sys-

tem (9) can achieve synchronization.

We also have the global stability result for the synchro-

nization manifold U of system (9):

Theorem 9. Suppose that kqmf
c ¼ 1=KN > 0 is the epi-

demic threshold of system (4). If the effective spreading rate
satisfies k > kqmf

c (R0 > 1), then for a certain range of c(t),

the synchronization manifold U of system (9) is globally
asymptotically stable.

VII. DISCUSSIONS

Many real networks exhibit a heterogeneous degree distri-

bution, scaling as a power-law (PL) P kð Þ � k�c.2,43,44 The het-

erogeneous pattern of the network can have dramatic effects

on the behavior of dynamical processes running on top of it.45

The first approach to the dynamics of the SIS model in

networks46 was based on the so-called heterogeneous mean-

field (HMF) theory,45,47 which neglects both dynamical and

topological correlations. According to HMF theory, the epi-

demic threshold of the SIS model in uncorrelated networks

takes the form khmf
c ¼ hki=hk2i,46 where hkni ¼

P
k knP kð Þ

are n-th moment of the network’s degree distribution P(k).2

While HMF theory represents an exact result in the case

of annealed networks,48,49 its validity for real (quenched)

networks is limited. Recently, a more refined approach

than HMF theory, incorporating the effects of the quenched

topological structure of the network, while neglecting

dynamical correlations, is given by the quenched mean-field

theory (QMF).27–29 Within this framework, the epidemic

threshold for SIS is predicted to be kqmf
c ¼ 1=KN , where KN

is the largest eigenvalue of the adjacency matrix. Given the

scaling of KN with the maximum degree, KN � maxf
ffiffiffiffiffiffiffiffiffi
kmax

p
;

hk2i=hkig,50 the threshold value becomes51

kqmf
c ’

1ffiffiffiffiffiffiffiffiffi
kmax

p ; c > 5=2;

hki
hk2i ; 2 < c < 5=2:

8>>><>>>:
This threshold value implies that QMF theory predicts

the same result as HMF theory for 2 < c < 5=2, while the

threshold becomes larger, that is kqmf
c < khmf

c when c > 5=2.

Here, we consider the SIS epidemic synchronization

model based on the heterogeneous mean-field (HMF) the-

ory,8 and make a comparison with the SIS epidemic synchro-

nization system based on the quenched mean-field (HMF)

theory in the form of the following system:

_xi tð Þ ¼ f xi tð Þð Þ � c tð Þ
XN

j¼1

lijCxj tð Þ;

_qk tð Þ ¼ �qk tð Þ þ kk 1� qk tð Þ
� �

H t; kð Þ;

_c tð Þ ¼ aq tð Þ
XN

j¼1

eT
j tð Þej tð Þ;

8>>>>>>><>>>>>>>:
(21)

where i ¼ 1; 2;…;N; k ¼ 1; 2;…; kmax, parameter a > 0;

H t; kð Þ ¼ 1
hki
P

k0 k
0P k0ð Þqk0 tð Þ and the infection prevalence is

q tð Þ ¼
Pkmax

k¼1 qk tð ÞP kð Þ. The initial condition of system (21)

can be set as follows: the initial state xi 0ð Þ¼ xi1 0ð Þ;
�

xi2 0ð Þ;…;xin 0ð ÞÞT 2Rn, the initial coupling strength c 0ð Þ>0,

and the initial density qk 0ð Þ¼ � of infected nodes with

degree k, where 0<��1.

Through a similar discussion to Sec. IV, we can obtain

the condition k > khmf
c such that system (21) can achieve
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synchronization, which has been predicted through QMF the-

ory for 2 < c < 5=2. However, system (21) cannot achieve

synchronization if kqmf
c < k < khmf

c when c > 5=2, which is

totally different from the result through QMF theory.

VIII. NUMERICAL SIMULATIONS

In order to illustrate the main results of the above theoret-

ical analysis, in this section, we consider the scale-free net-

works with size N¼ 100 which are generated by the Barab�asi-

Albert (BA) preferential attachment algorithm.52 Starting with

m0 ¼ 4 fully connected nodes, at each time step a new node is

added and connected to m¼ 3 existing nodes in the network

with the probability
Q

i ¼ ki=
P

j kj, which is a linear prefer-

ential attachment strategy.

From the point of view of the physical propagation pro-

cess, so far, it is very difficult for us to identify the behavior

dynamics of individuals within a community. Without loss of

generality, we assume that the local dynamics of the dynami-

cal behavior network are identical and take the node’s dynam-

ics to be the three-dimensional classical Lorenz systems in the

following simulations. Here, a single Lorenz oscillator, as the

desired orbit, can be described from the system

_s1 ¼ r s2 � s1ð Þ;
_s2 ¼ rs1 � s2 � s1s3;
_s3 ¼ s1s2 � bs3;

8<:
where r ¼ 10, r¼ 28, and b¼ 8/3.

In the following simulations, we choose the inner-coupling

matrix C ¼ In, the initial coupling strength c 0ð Þ ¼ 0:001;
a ¼ 0:001, and define the synchronization error as E tð Þ
¼ 1=ðN � 1Þ

PN
i¼2 x1 tð Þ � xi tð Þ½ �2.

From Fig. 1, we can see that the infection prevalence q tð Þ
reaches a peak, then rapidly drops and finally converges to zero

for different effective spreading rates k whenever k < kqmf
c .

This shows that the disease will not spread out if the effective

spreading rate k < kqmf
c . However, a larger effective spreading

rate implies slower convergence speed of q tð Þ towards zero.

When k < kqmf
c , the synchronization error E(t) does not con-

verge to zero, which means that the epidemic dynamics cannot

successfully induce behavioral synchronization of individuals

under small spreading rates. In addition, when k < kqmf
c , the

larger effective spreading rate k, the greater steady state value

that the coupling strength c(t) reaches.

From Fig. 2, we can see that q tð Þ converges to different

positive numbers and E(t) converges to zero for different

effective spreading rates k when k > kqmf
c , which implies

that the epidemic dynamics can successfully induce behav-

ioral synchronization of individuals with large spreading

rates. The larger spreading rate k implies the faster conver-

gence speed of q tð Þ towards the positive prevalence value

and the larger steady state value, q	. Increasing the spreading

rate k from 0.12 to 0.20, we find that the epidemic dynamics

not only induce behavioral synchronization of individuals,

but also accelerate the speed of synchronization.

We notice from Fig. 3 that under the same generating

network structure, parameters, and initial condition, QMF

and HMF theoretical approaches have different epidemic

thresholds kqmf
c and khmf

c . When the effective spreading rate

is set as k ¼ 0:1105 (kqmf
c < k < khmf

c ), we observe that qq tð Þ
experiences a valley and then gradually increases, but qh tð Þ
converges to zero. The synchronization error Eq tð Þ with

respect to quenched mean-field theory converges to zero,

while the synchronization error Eh tð Þ with respect to hetero-

geneous mean-field theory converges to a positive number,

which indicates that quenched mean-field theory is more

accurate compared with the heterogeneous mean-field theory

in the prediction of epidemic synchronization.

We can see from Fig. 4 that under the same generating

network structure, parameters, and initial condition, the cou-

pled delayed system (7) can achieve synchronization eventu-

ally for different coupling delays s1 if the effective spreading

rate k > kqmf
c . Furthermore, the synchronization speed of the

coupled delayed system (7) is slower than system (5) without

delay, and the coupling delay s1 can enhance the speed of

synchronization for delayed system (7). We also find that

FIG. 1. When the effective spreading rate k < kqmf
c , the influence of the

effective spreading rate k on the epidemic synchronization for model (5)

with kqmf
c ¼ 0:1040.

FIG. 2. When the effective spreading rate k > kqmf
c , the influence of the

effective spreading rate k on the epidemic synchronization for model (5)

with kqmf
c ¼ 0:1040.

063101-9 Sun et al. Chaos 27, 063101 (2017)



with the increase of the coupling delay s1 (s1 6¼ 0), the

steady state value of the coupling strength c(t) becomes

smaller.

From Fig. 5, we can see that q tð Þ converges to the same

positive number for different epidemic delays s2 if the effec-

tive spreading rate k > kqmf
c , and the convergence speed of

the infection prevalence q tð Þ becomes slower with a larger

delay s2. The synchronization error E(t) converges to zero

for different epidemic delays s2 whenever k > kqmf
c , which

means that when k > kqmf
c , the epidemic delay size does not

affect synchronization. However, we can observe that the

time taken to synchronization is different, with the increase

of the epidemic delay s2, the time that system (9)

(s1 ¼ 0; s2 6¼ 0) takes to arrive synchronization becomes

longer, while the steady state value for the coupling strength

c(t) becomes smaller. It is obvious that the synchronization

speed of system (9) (s1 ¼ 0; s2 6¼ 0) is slower than that of

system (5) without a delay.

From Fig. 6, we can observe the apparent phenomenon

that the synchronization speed of system (9) with double

delays is slower than that of system (5) without delay if the

effective spreading rate k > kqmf
c . When k > kqmf

c , if we fix

the epidemic delay s2 ¼ 1, with the increase of the coupling

delay s1, the infection prevalence q tð Þ converges to the same

positive number with the same convergence speed, and the

synchronization error E(t) converges to zero. Hence, system

(9) can achieve synchronization. However, the coupling

strength c(t) reaches a higher steady state with larger s1,

which is different from system (7) without epidemic delay. If

we fix the coupling delay s1 ¼ 0:010, with different values

of epidemic delay s2, q tð Þ converges to the same positive

value and the synchronization error E(t) converges to zero.

The steady state value that the coupling strength c(t) reaches

becomes smaller, and the convergence speed of q tð Þ and the

speed of synchronization become slower with larger s2,

which is the same as system (9) with epidemic delay s2

(s1 ¼ 0; s2 6¼ 0).

FIG. 5. The influence of the epidemic delay on the epidemic synchronization

for model (9) with s1 ¼ 0. Here, kqmf
c ¼ 0:1040 and the effective spreading

rate k ¼ 0:2.

FIG. 6. The influence of double delays on the epidemic synchronization.

Here, kqmf
c ¼ 0:1040 and the effective spreading rate k ¼ 0:2.

FIG. 3. The comparison of QMF and HMF theoretical approaches in the pre-

diction of epidemic synchronization for models (5) and (21) under the same

generating network structure, parameters, and initial condition. Here,

kqmf
c ¼ 0:1102, khmf

c ¼ 0:1130 and the effective spreading rate k ¼ 0:1105.

FIG. 4. The influence of the coupling delay on the epidemic synchronization

for model (7). Here, kqmf
c ¼ 0:1040 and the effective spreading rate k ¼ 0:2.
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IX. CONCLUSIONS

With special focus on behavioral synchronization of

individuals induced by epidemic dynamics in real epidemic

networks, this paper constructs several epidemic synchroni-

zation models for different types of infections. We investi-

gate the relationship between the epidemic spreading rate

and synchronization stability for model (5) without delay,

and obtain an explicit condition k > kqmf
c for local and global

synchronization with respect to the epidemic spreading rate,

that is, if the epidemic breaks out more easily, then the epi-

demic dynamics can induce behavioral synchronization of

individuals more effectively, which accords very well with

the characteristics of real epidemic networks. For model (7)

with a coupling delay and model (9) with double delays, we

identify the conditions to ensure local and global synchroni-

zation, which are independent of time delays. These theoreti-

cal analyses can be applicable to networks with an arbitrary

topological structure and size. The results illustrate the rela-

tionship between behavioral synchronization and model

parameters, such as the effective spreading rate k, the cou-

pling strength c(t), the coupling delay s1, and the epidemic

delay s2. Then, we employ heterogeneous mean-field theory

and quenched mean-field theory to the dynamics of the SIS

model in networks, and illustrate that quenched mean-field

(QMF) theory is much more accurate than heterogeneous

mean-field (HMF) theory in predicting epidemic synchroni-

zation. Finally, some numerical simulations are performed to

complement the above theoretical analysis. The simulations

also reveal some complicated inherent characteristics for the

speed of epidemic synchronization. When an epidemic starts

to spread, if there is a delay in individual’s communication,

in order to facilitate individual’s behaviors to achieve syn-

chronization, individuals need to strengthen the frequency of

communication about protective behaviors.

There are still some deficiencies in our models, and we

will extend our future work in the following aspects: (i)

Seeking a statistic to describe the speed of synchronization;

(ii) Network modeling with different delays of nodes, and

with the time-varying coupling delays, as well as their

dynamics and control; (iii) Network modelling with both

community structure and distinct individual behaviors, and

the dynamics, and control of such models.
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APPENDIX A: PROOF OF THEOREM 3

We consider the following Lyapunov functional candidate:

V tð Þ ¼ 1

2
eT tð Þ IN � Pð Þe tð Þ þ b

2a
c	 � c tð Þ½ �2;

where b ¼ k2kmin PCð Þ > 0. Then, the derivative of V(t)
along the trajectory of system (16) admits

dV tð Þ
dt
¼ eT tð Þ IN � Pð ÞF tð Þ � c tð ÞeT tð Þ L� PCð Þe tð Þ

þ eT tð Þ IN � Pð ÞG tð Þ � b
a

_c tð Þ c	 � c tð Þ½ �;

¼
XN

i¼1

eT
i tð ÞP f xi tð Þð Þ � f s tð Þð Þ½ �

�c tð ÞeT tð Þ L� PCð Þe tð Þ þ bc tð Þq tð Þ

�
XN

i¼1

eT
i tð Þei tð Þ � bc	q tð Þ

XN

i¼1

eT
i tð Þei tð Þ

� n
XN

i¼1

eT
i tð Þei tð Þ � c tð ÞeT tð Þ L� PCð Þe tð Þ

þbc tð Þ
XN

i¼1

eT
i tð Þei tð Þ � bc	q tð Þ

XN

i¼1

eT
i tð Þei tð Þ:

Introducing a transformation y tð Þ ¼ yT
1 tð Þ; yT

2 tð Þ;…;
�

yT
N tð ÞÞT ¼ UT � Inð Þe tð Þ in Subsection IV A, then we have

XN

i¼1

eT
i tð Þei tð Þ ¼

XN

i¼1

yT
i tð Þyi tð Þ:

Thus, we can obtain the following inequality

eT tð Þ L� PCð Þe tð Þ ¼ yT tð Þ K� PCð Þy tð Þ;

¼
XN

i¼1

kiy
T
i tð ÞPCyi tð Þ


 k2kmin PCð Þ
XN

i¼1

yT
i tð Þyi tð Þ;

¼ k2kmin PCð Þ
XN

i¼1

eT
i tð Þei tð Þ: (A1)

By inequality (A1), we have

dV tð Þ
dt
� n
XN

i¼1

eT
i tð Þei tð Þ � c tð Þk2kmin PCð Þ

XN

i¼1

eT
i tð Þei tð Þ

þbc tð Þ
XN

i¼1

eT
i tð Þei tð Þ � bc	q tð Þ

XN

i¼1

eT
i tð Þei tð Þ;

¼ n� bc	q tð Þ½ �
XN

i¼1

eT
i tð Þei tð Þ

þ c tð Þ b� k2kmin PCð Þ
� �XN

i¼1

eT
i tð Þei tð Þ;

¼ n� bc	q tð Þ½ �
XN

i¼1

eT
i tð Þei tð Þ:

If the effective spreading rate k > kqmf
c for system (5),

then there exists q	 2 0; 1ð �, such that limt!þ1 q tð Þ ¼ q	,
which implies that there exist e 2 0; q	ð � and t0 > 0, such

that q tð Þ > q	 � e 
 0 for all t > t0. Therefore when t > t0,

we have
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dV tð Þ
dt
� n� bc	 q	 � eð Þ½ �

XN

i¼1

eT
i tð Þei tð Þ:

Thus, we can select a sufficiently large constant c	 such

that
dV tð Þ

dt � 0, which implies that V(t) is non-increasing.

Furthermore, we have the following inequalities:

kmin Pð Þ
2

XN

i¼1

eT
i tð Þei tð Þ þ b

2a
c	 � c tð Þ½ �2 � V tð Þ

� kmax Pð Þ
2

XN

i¼1

eT
i tð Þei tð Þ þ b

2a
c	 � c tð Þ½ �2:

By the LaSalle-Yoshizawa theorem,36 we conclude that

the solutions of system (16) at e(t)¼ 0 and c	 � c tð Þ ¼ 0 are

globally uniformly stable, that is, the synchronisation mani-

fold S of system (5) is globally asymptotically stable. �

APPENDIX B: PROOF OF THEOREM 4

We choose the following Lyapunov-Krasovskii func-

tional candidate

Vk tð Þ ¼ uT
k tð ÞPuk tð Þ þ

ðt

t�s1

uT
k hð ÞPCuk hð Þdh: (B1)

The derivative of Vk tð Þ along the solution of system (17)

satisfies

dVk tð Þ
dt
¼ _uT

k tð ÞPuk tð Þ þ uT
k tð ÞP _uk tð Þ þ uT

k tð Þ

� PCuk tð Þ � uT
k t� s1ð ÞPCuk t� s1ð Þ;

¼ D tð Þuk tð Þ � c tð ÞkkCuk t� s1ð Þ
� �T

Puk tð Þ
þuT

k tð ÞP D tð Þuk tð Þ � c tð ÞkkCuk t� s1ð Þ
� �

þuT
k tð ÞPCuk tð Þ � uT

k t� s1ð ÞPCuk t� s1ð Þ;
¼ uT

k tð Þ PD tð Þ þ DT tð ÞPþ PC
� �

uk tð Þ
� c tð Þkku

T
k t� s1ð ÞCTPuk tð Þ � c tð Þkkuk tð ÞT

� PCuk t� s1ð Þ � uT
k t� s1ð ÞPCuk t� s1ð Þ

� �duT
k tð ÞInuk tð Þ � c tð Þkku

T
k t� s1ð ÞCT

� Puk tð Þ � c tð Þkkuk tð ÞTPCuk t� s1ð Þ
�uT

k t� s1ð ÞPCuk t� s1ð Þ;

¼ uT tð Þ uT t� s1ð Þ
� � B11 B12

BT
12 B22

" #
u tð Þ

u t� s1ð Þ

" #
;

where B11 ¼ �dIn;B12 ¼ �kkc tð ÞPC and B22 ¼ �PC.

From Schur complements theorem,38 we know B< 0 if

and only if B11 � B12B�1
22 BT

12 < 0. Clearly, the condition can

be further rewritten as

B11 < B12B�1
22 BT

12 ¼ �k2
kc2 tð ÞPC:

By the specific expressions of B11, B12, and B22, we have

�k2
Nkmax PCð Þc2 tð ÞIn � B12B�1

22 BT
12

� �k2
2kmin PCð Þc2 tð ÞIn:

Since c tð Þ < 1
kN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d

kmax PCð Þ

q
for all t> 0, then we have

B< 0, namely,
dVk tð Þ

dt � 0. Therefore, the synchronization man-

ifold U is locally asymptotically stable. �

APPENDIX C: PROOF OF THEOREM 6

We consider the following Lyapunov functional candidate

V tð Þ ¼ eT tð Þ IN � Pð Þe tð Þ þ
ðt

t�s1

eT sð Þ IN � Inð Þe sð Þds

þ 1

2a
c0 � c tð Þ½ �2:

The derivative of V(t) along the trajectory of system (19)

satisfies

dV tð Þ
dt
¼ 2eT tð Þ IN � Pð Þ F tð Þ � c tð Þ L� PCð Þe t� s1ð Þ

�
þ IN � Inð ÞG tð Þ� þ eT tð Þ IN � Inð Þe tð Þ

� eT t� s1ð Þ IN � Inð Þe t� s1ð Þ �
1

a
_c tð Þ c0 � c tð Þ½ �

� 2n
XN

i¼1

eT
i tð Þei tð Þ � 2c tð ÞeT tð Þ L� PCð Þe t� s1ð Þ

þ eT tð Þ IN � Inð Þe tð Þ þ c tð ÞeT tð Þ IN � Inð Þe tð Þ
� c0q tð ÞeT tð Þ IN � Inð Þe tð Þ
� eT t� s1ð Þ IN � Inð Þe t� s1ð Þ:

If the effective spreading rate k > kqmf
c for system (7),

then there exists q	 2 0; 1ð �, such that limt!þ1 q tð Þ ¼ q	,
which implies that there exist e 2 0; q	ð � and t0 > 0, such

that q tð Þ > q	 � e¢ ~q	 
 0 for all t > t0. Hence when t > t0,

we have

dV tð Þ
dt
� 2n

XN

i¼1

eT
i tð Þei tð Þ� 2c tð ÞeT tð Þ L�PCð Þe t� s1ð Þ

þeT tð Þ IN � Inð Þe tð Þþ c tð ÞeT tð Þ IN � Inð Þe tð Þ
�c0

~q	eT tð Þ IN � Inð Þe tð Þ� eT t� s1ð Þ IN � Inð Þe t� s1ð Þ

¼ eT tð Þ eT t� s1ð Þ
� � H11 H12

HT
12 H22

" #
e tð Þ

e t� s1ð Þ

" #
;

where H11 ¼ 2nþ 1� c0
~q	 þ c tð Þ

� �
INn;H12 ¼�c tð Þ L�PCð Þ

and H22 ¼�INn.

From Schur complements theorem,38 we know H< 0 if

and only if H11 � H12H�1
22 HT

12 < 0. Clearly, this condition

can be further written as

H11 < �H12HT
12 ¼ �c2 tð Þ LLT � PC2Pð Þ: (C1)

By the specific expressions of H12, the right-hand side

of inequality (C1) satisfies

�k2
N max

i
f picið Þ2gc2 tð ÞINn � �H12HT

12 � 0:

In order to ensure H< 0, we have

2nþ 1� c0
~q	 þ c tð Þ < �k2

N max
i
f picið Þ2gc2 tð Þ: (C2)

063101-12 Sun et al. Chaos 27, 063101 (2017)



By solving inequality (C2), we obtain the range of c(t)
as follows:

c tð Þ <
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4k2

N max
i
f picið Þ2g 2nþ 1� c0

~q	
� �q

2k2
N max

i
f picið Þ2g

;

where n < � 1
2

and positive constant c0 satisfies

0 < c0 �
bq	 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibq	2 � 4k2

N max
i
f picið Þ2g 2nþ 1ð Þ

r
2k2

N max
i
f picið Þ2g

;

where bq	 ¼ q	 � e� 1.

Thus, we have
dV tð Þ

dt � 0. By the LaSalle-Yoshizawa the-

orem,36 we conclude that the solutions of system (19) at

e(t)¼ 0 and c tð Þ ¼ c0 are globally uniformly stable, that is,

the synchronization manifold U of system (7) is globally

asymptotically stable. �

APPENDIX D: PROOF OF THEOREM 7

Let E	 ¼ fS	1;q	1; � � � ;S	N;q	Ng with S	i ;q
	
i > 0 for 1� i�N,

and denote the unique endemic equilibrium of model (8). We

construct the following Lyapunov functional:

Vi tð Þ ¼ Si tð Þ � S	i � S	i ln
Si tð Þ
S	i

þ qi tð Þ � q	i � q	i ln
qi tð Þ
q	i

þ k
XN

j¼1

aijS
	
i q
	
j

ðt

t�s2

qj sð Þ
q	j
� 1� ln

qj sð Þ
q	j

" #
ds:

Next, we show that Vi tð Þ satisfies the assumptions of

Theorem 3.1 in Ref. 40.

dVi tð Þ
dt
¼ 1� S	i

Si tð Þ

� 	
dSi tð Þ

dt
þ 1� q	i

qi tð Þ

� 	
dqi tð Þ

dt

þk
XN

j¼1

aijS
	
i q
	
j

qj tð Þ
q	j
�

qj t� s2ð Þ
q	j

þln
qj t� s2ð Þ

qj tð Þ

" #
;

¼ 1� S	i
Si tð Þ

� 	
1� Si tð Þ � kSi tð Þ

XN

j¼1

aijqj t� s2ð Þ

24 35
þ 1� q	i

qi tð Þ

� 	
�qi tð Þ þ kSi tð Þ

XN

j¼1

aijqj t� s2ð Þ

24 35
þk
XN

j¼1

aijS
	
i q
	
j

qj tð Þ
q	j
�

qj t� s2ð Þ
q	j

þln
qj t� s2ð Þ

qj tð Þ

" #
:

Using the equilibrium equations (20) and

1 ¼ S	i þ kS	i
XN

j¼1

aijq
	
j ;

we can obtain

dVi tð Þ
dt
¼ 1� S	i

Si tð Þ

� 	
S	i þkS	i

XN

j¼1

aijq
	
j �Si tð Þ

24
�kSi tð Þ

XN

j¼1

aijqj t�s2ð Þ

35þ 1� q	i
qi tð Þ

� 	

� �q	i þkS	i
XN

j¼1

aijq
	
j �qi tð ÞþkSi tð Þ

XN

j¼1

aijqj t�s2ð Þ

24 35
þk
XN

j¼1

aijS
	
i q
	
j

qj tð Þ
q	j
�

qj t�s2ð Þ
q	j

þ ln
qj t�s2ð Þ

qj tð Þ

" #

¼� 1

Si tð Þ Si tð Þ�S	i
� �2þk

XN

j¼1

aijS
	
i q
	
j 2� S	i

Si tð Þ�
qi tð Þ
q	i

"

�
Si tð Þqj t�s2ð Þq	i

S	i q
	
j qi tð Þ þ

qj tð Þ
q	j
þ ln

qj t�s2ð Þ
qj tð Þ

#
:

Let ~aij¼kaijS
	
i q
	
j ;Gi qið Þ¼� qi

q	i
þ ln

qi

q	i
;U að Þ¼1�aþ lna and

Fij Si; Ii; Ij �ð Þ
� �

¼ 2� S	i
Si tð Þ �

qi tð Þ
q	i
�

Si tð Þqj t� s2ð Þq	i
S	i q

	
j qi tð Þ

þ
qj tð Þ
q	j
þ ln

qj t� s2ð Þ
qj tð Þ :

Then
dVi tð Þ

dt �
PN

i;j¼1 ~aijFij Si; Ii; Ij �ð Þ
� �

with

Fij Si; Ii; Ij �ð Þ
� �

¼ Gi qið Þ � Gj qjð Þ þ U
S	i
Si


 �
þU

Siqj t� s2ð Þq	i
S	i q

	
j qi

 !
� Gi qið Þ � Gj qjð Þ:

Therefore, Vi;Fij;Gi; ~aij satisfy the assumptions of

Theorem 3.1 and Corollary 3.3 in Ref. 40, and the functional

V ¼
PN

i¼1 ciVi as defined in Theorem 3.1 in Ref. 40 is a

Lyapunov functional for system (8), namely, dV
dt � 0 for

S1; q1 �ð Þ;…; SN; qN �ð Þ
� �

2 C8. It can be verified by a similar

argument as in Sec. IV of Ref. 40 that the only compact

invariant set where dV
dt ¼ 0 is the singleton fE	g. By the

LaSalle’s Invariance Principle for delayed systems (see

Theorem 5.3.1 of Ref. 41 or Theorem 3.4.7 of Ref. 42) we

can conclude that E	 is globally asymptotically stable in C8
if R0 > 1 (k > kqmf

c ). �
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