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A Multiple Colonies Artificial Bee Colony Algorithm for a Capacitated Vehicle Routing 

Problem and Re-routing Strategies under Time-Dependent Traffic Congestion 

 

Abstract 

An Online Vehicle Routing Problem is a formation of Capacitated Vehicle Routing Problem with re-routing strategy to resolve the 

problem of inefficient vehicle routing caused by traffic congestion. A flexible delivery rerouting strategy is proposed, which aims 

at reducing the risk of late delivery. The method of terminating an exploration in a solution by the original ABC algorithm, when 

the solution is trapped in local optima, is to abandon the solution after specific tolerance limits are set. The phenomenon of local 

optimal traps will be repeated rapidly after a lengthy recursive process and will eventually result in a low quality solution, with a 

more complex combinatorial problem when the capability of the exploration is restricted by an inflexible termination criterion. 

Therefore, this paper proposes a novel scheme using a Multiple Colonies Artificial Bee Colony algorithm. The designs of the 

outstanding bee selection for colony communication show it to be superior in exploitation. The performance of the proposed 

algorithm is examined through by Capacitated Vehicle Routing instances and a case study, and the results indicate the potential of 

using real time information for data-driven vehicle scheduling. 
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1. Introduction 

The emergence of real time traffic data provides a new paradigm to solve Online Vehicle Routing Problem (OVRP), which could 

exploit this information in a more efficient way through the wireless sensor and visual image. The utilization of real time traffic 

information helps mitigate the delivery risks, especially in high-density traffic areas. Incorporating real time road surveillance is 

conducive to avoid heavy traffic congestion, so that the risk of late delivery can be decreased and reduce various uncertainties in 

the transportation cost and delivery time (Arnott et al., 1991; Kim et al., 2005). Real time vehicle scheduling is a critical component 

in city logistics, however, previous vehicle scheduling either cannot fully utilize the real time traffic conditions or even ignore it. 

Therefore, in this research, we focus on the exploitation of real time traffic conditions with the purpose of providing useful and 

valuable insights into vehicle scheduling with quick response and on time delivery. In addition, less greenhouse emission in urban 

areas will be produced by reducing the fuel consumption and travelling time during distribution.  

 

1.1. Dynamic Vehicle Routing Problem 

The classical Vehicle Routing Problem (VRP) is a combinatorial problem to meet delivery schedules and arrangements for a given 

number of available trucks, set of customers, and corresponding customer order quantities. In contrast to the classical VRP, the 

Dynamic Vehicle Routing Problem (DVRP) usually includes the evolution and the quality of input data as shown in Figure 1. In 

fact, the evolution of the VRP data refers to information that may change over time, while the quality of the VRP data denotes the 

level of uncertainty to retrieve relevant data (Pillac et al., 2013; Ritzinger et al., 2016). Stochastic VRP (SVRP) problems are 

identified by some of the known input values as arbitrary data, which are realized before the design of particular routes. The prior 

routes may change afterwards under uncertain random events. Typical examples of SVRP problems are stochastic customers 

(Gendreau et al., 1995, 1996; Waters, 1989), stochastic order quantities (Haughton, 2002, 2007; Huang & Lin, 2010; Marinakis, 

2015) and stochastic time (Ehmke et al., 2015; Errico et al., 2016; Marinakis, 2015; Zhang et al., 2012). The VRP model with known 

data, which may change time over during the implementation of routes, is characterized as the OVRP. The configuration of OVRP 

requires an online or real time approach to retrieve relevant information in continuous delivery processes, and is usually associated 

with a real time communication system to construct a rearranged route (Chen et al., 2006; Du et al., 2007; Li et al., 2009a, 2009b). 



The latest wireless and mobile technology can help to capture the real time information, and real time vehicle routing system 

architecture has been proposed for minimizing the intervention (Giaglis et al., 2004), reducing distribution risk (Ahmadi-Javid & 

Seddighi, 2013), and stabilizing the impact of transportation disruption on the overall supply chain performance (Wilson, 2007). 

The Real time stochastic VRP model is a combination of the OVRP and SVRP models given that some data are uncertain and change 

over time. Yan et. al. have presented a novel approach to develop a route with real time adjustment under the situation of uncertain 

demand and travel time (Yan et al., 2013). 
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Fig. 1: The Classification of Vehicle Routing Problems (Ritzinger et al., 2016) 

OVRP considers the real time data as references or sources of input to adjust the predefined route (Mavrovouniotis & Yang, 2015). 

The whole process of OVRP is separated into two stages, as shown in Figure 2. The first stage aims to construct the VRP solution 

with relevant real time data by the selected algorithm. Then, the route will be executed. Once the truck arrives at the destination 

area, the real time re-optimal routing will be calculated with consideration of the current traffic factors. The route rearrangement 

process is repeated until all customers are visited.  

 

 

Fig. 2: The Flowchart of OVRP Model 

 

1.2. Swarm Intelligent Algorithms applied in Vehicle Routing Problem 

The vehicle routing problem (VRP) is an NP-hard problem and the computational time for solving NP-hard problems increases 

significantly when the number of nodes increases. It is not feasible to solve the huge routing network problem by an exact algorithm  

(Bhagade & Puranik, 2012). The complexity of VRP has been widely studied, regarding different objectives, by the proposed 

heuristic algorithms, like local search method - Tabu Search(Gendreau et al., 1994) and population search based method - Genetic 



Algorithm (Baker & Ayechew, 2003) and Swarm Intelligence (SI) (Chen, Hsueh, & Chang, 2006; Zhang et. al., 2014). Swarm 

intelligence (SI), which is a distributed intelligent paradigm to determine the optimal solution by imitating the collective behavior 

of decentralized and self-organized natural systems, has been developed in vehicle routing problems, such as Ant Colony 

Optimization (ACO) techniques (Bell & McMullen, 2004), Particle Swarm Optimization (PSO) (Ai & Kachitvichyanukui, 2009)and 

Artificial Bee Colony (ABC) algorithms (Szeto et al., 2011). The ABC algorithm was designed by Karaboga (Karaboga, 2005), and 

has been widely applied to solve the various VRP models and successfully achieved better exploitation and exploration. The 

computation results conducted by Zhang et al. (2014) denoted that the ABC heuristic and the modified ABC heuristic outperform 

genetic algorithms in solving Environmental Vehicle Routing Problem (EVRP) problem (Zhang et al., 2014). An enhanced ABC 

heuristic has been developed by Szeto et al to improve the exploitation ability of the employed bee phase (Szeto et al., 2011).  

 

SI is a collective system among insect or animal behavior with a self-organizing system of interaction of the individuals, which 

turns in an effort to reach a nearly global optimum. Several update strategies for swarm intelligence have been proposed and 

integrated with SI to retain a high quality of searching output in various VRP models, which include elitism-based scheme 

(Mavrovouniotis & Yang, 2014; Yang, 2008), memory-based scheme (Mavrovouniotis & Yang, 2012, 2015; Yang, 2008), random-

based scheme (Mavrovouniotis & Yang, 2015). The exchange of individuals is named migration to maintain a restricted level of 

migration within all colonies, and the elite ants share their knowledge with other colonies. The results from the multiple colonies 

ACO algorithm are well accepted in searching for the VRP model (Mavrovouniotis & Yang, 2015; Toklu et al., 2014). The elitism-

based ABC algorithm and multiple colonies ABC algorithm were introduced a few years ago for numerical function optimization 

(Mezura-Montes & Velez-Koeppel, 2010; Xiang & Zhou, 2015; Xiang et al., 2015). However, the multiple colonies strategy in ABC 

algorithm has not been applied to solve the VRP model. Therefore, it is beneficial to study the performance of the multiple colonies 

ABC with elitism-based selection for solving the VRP model. 

 

In the extant literature, there are few studies that have implemented traffic image processing and OVRP to retrieve the latest traffic 

information from the surveillance systems in order to design optimal vehicle routing solutions. However, the current road traffic 

condition does affect the overall distribution time and may have a significant difference from the predefined delivery schedules. The 

proposed MC-ABC algorithm is proven to be effective and efficient in clarifying real time vehicle routings with the latest traffic 

information, taking account of the influence of transportation, this attempts to expedite the related research by integrating relevant 

information, such as road conditions, current traffic and traffic accidents, and real time vehicle routing problems. The contribution 

of this project significantly affects vehicle routing in a densely populated city, so as to avoid large traffic jams and provide a speedy 

delivery arrangements for practical and managerial usage in agile logistics.  

 

The rest of this paper is organized as follows. After a brief introduction in the first section, the concepts of vehicle routing and traffic 

extraction are briefly reviewed in section II. Section III contains the traffic density estimation model and the OVRP model. In section 

IV, the proposed MC-ABC is examined and evaluated by severed capacitated vehicle routing problem (CVRP) instances. The 

computational results of the referenced case study are presented in section V. Finally, the conclusions and future work are raised in 

the last section.   

 

2. Problem formulation 

In this research, an OVRP model is proposed to determine optimal vehicle scheduling with the objective of minimizing the total 

traveling time considering the real time travel conditions. Image processing technologies are employed to estimate the traffic density 

with regard to the real time traffic conditions. Furthermore, the traffic density estimation acts as an essential external factor affecting 

the real time vehicle scheduling. The risk of late delivery is alleviated with the incorporation of real time traffic density estimation 



in the vehicle scheduling. 

 

2.1. Traffic Extraction 

In general, the lower traffic density of a road segment implies a faster vehicle speed in the traffic flow. Statistical mapping for 

identifying the relationship between traffic density and vehicle speed is static. The approximate slope of the relationship between 

vehicle speed and road density occupation is -1% of the free-flow vehicle speed. A study found that vehicle speed could be doubled 

when there is a 20% decrease in traffic density (Sen et al., 2013). In our study, the estimated vehicle travelling speed is normalized 

as a monotone decreasing function to represent the relationship between speed and road occupation in order to determine the current 

estimated vehicle speed from the traffic density of a road segment. 

 

P(𝑋𝑡) = ∑ 𝜔𝑖,𝑡 × 𝜂(𝑋𝑡 , 𝜇𝑖,𝑡 , Σ𝑖,𝑡)𝐾
𝑖=1              (1) 

𝜂(𝑋𝑡 , 𝜇𝑖,𝑡 , Σ𝑖,𝑡) =
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|𝑋𝑡 − 𝜇𝑖,𝑡| ≤ 𝐷𝜎𝑖,𝑡−1               (4) 
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𝑤𝑖,𝑡 = (1 − 𝛼)𝑤𝑖,𝑡−1               (8) 

B = arg 𝑚𝑖𝑛𝑏 (∑ 𝑤𝑗,𝑡
𝑏
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T𝑥,𝑦 = |I𝑥,𝑦 − B𝑥,𝑦|               (10) 

TDE =
𝑇𝑥,𝑦

𝑀𝑥,𝑦
                 (11) 

  

In the method of background subtraction, a Mixture Gaussian background model (GMM) is applied in traffic extraction. Each pixel 

in the image follows a Gaussian distribution to deal with fluctuation in pixel value, which has been well developed for real time 

image tracking, especially in the road traffic (Chen et al., 2015; Lee, 2005). The probability of the current pixel value P(𝑋𝑡) in 

formula (1) is measured by the weight of Kth Gaussian distribution and the probability density function 𝜂 at the current pixel. The 

number of Gaussian distribution is set from i to K. The Gaussian distribution is calculated by formula (2), where 𝜇𝑖,𝑡 is the mean 

of the Kth Gaussian model and Σ𝑖,𝑡  is the corresponding covariance matrix, given that the matrix is formulated as a three-

independent Red-Green-Blue (RGB) channel by formula (3). The new pixel 𝑋𝑡  will then be evaluated with each ith Gaussian 

distribution and find the matching by Formula (4), where D is defined as 2.5. If the matching process is successful, the current 

Gaussian model is adjusted with the value of the new pixel 𝑋𝑡 and update method by formulas (5) to (7). The prior weight 𝑤𝑖,𝑡 is 

adjusted by formula (5) with a learning rate 𝛼, where 𝛼 is between 0 and 1. The parameters of mean μ and variance σ of ith 

Gaussian distribution are also updated by formulas (6) and (7). If the matching is unsuccessful, the prior weight 𝑤𝑖,𝑡 is then updated 

by formula (8). The real background 𝐵 is estimated by Formula (9) with a threshold value 𝑇 in Figure 3a. In figures 3b and 3c, 

formula (10) is the subtraction of foreground T between current image 𝐼 and background image 𝐵 in absolute value, given that 

the x-y coordination of the image T, I and B must be the same pixel size. Two morphological operators, which are eroding and 

dilating operators in OpenCV library, are applied to fine tune the foreground image to connect the central pixel by compass 

coordinating with surrounding pixels, which allows connection of the broken part of an object. The result of the morphological 

operation is demonstrated in Figure 3d. The traffic density estimation 𝑇𝐷𝐸 is computed by a simple density function of formula 

(11). 𝑀𝑥,𝑦 is the manual selected road area in figure 3e, while 𝑇𝑥,𝑦 is the foreground of real traffic in figure 3d. 



 

Fig. 3a: Estimated road background by GMM 

model 

 

Fig. 3b: Traffic image after filtering and converting into grey-scale model 

 

Fig. 3c: Traffic image after threshold operations 

:  

Fig. 3d: Traffic image after morphological operation 

 

Fig. 3e: Interested road region 

 

2.2. Real Time Vehicle Rerouting Problem with Traffic Congestion 

The model of VRP is constructed using a graph with customer locations, and the set of edges 𝐴 = [(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗|] represents 

the connective path between any two nodes. The settings and notations of VRP are described in Table 1. In this research, a single 

depot is denoted as node 0, while customers are represented using the remaining nodes from 1 to n. Travelling distance 𝑑𝑖𝑗   

describes the distance between node 𝑖 and node 𝑗, which is further processed with the traffic condition to calculate the travelling 

time 𝑡𝑖𝑗. Traveling time 𝑡𝑖𝑗 is a real time variable that can change with regard to the traffic condition. Each customer requests a 

nonnegative demand 𝑟𝑖(𝑖 = 1,2, … , 𝑛) , which suggests delivery plans from the depot to all customers. There are maximum m 

vehicles available. Vehicles are denoted as 𝑘 = {1,2, … , 𝑚} with the same maximum capacity 𝑄.  

 

Table 1: The Settings and Notations of OVRP 

Mathematical Model Meanings 

𝐺 = (𝑉, 𝐴) The Graph 

𝑉 = (0,1,2, … , 𝑛) The set of nodes in the graph 

𝐴 = [(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗|] The set of edges in the graph 

𝑑𝑖𝑗(∀𝑖, 𝑗, 𝑖 ≠ 𝑗) The travelling distance between i and j 

𝑟𝑖(𝑖 = 1,2, … , 𝑛) The demand of customer i 

n The number of customer 

𝑚 The maximum number of vehicle 

𝑘 = (1,2, … , 𝑚) The index of vehicle 

𝑄 The vehicle capacity 

𝑠𝑝 Vehicle speed with free-flow 

𝑇𝐷𝐸 The traffic condition estimation 

𝑡𝑖𝑗(∀𝑖, 𝑗, 𝑖 ≠ 𝑗) The travelling time between i and j 

 

Problem Formulation in Each Colony 

Decision variables 

𝑥𝑖𝑗𝑘 = {
1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑎𝑓𝑡𝑒𝑟 𝑛𝑜𝑑𝑒 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (12) 

𝑦𝑖𝑘 = {
1, 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑠 𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑦 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
             (13) 



Objective Function for OVRP 

𝑚𝑖𝑛 𝑓 = ∑ ∑ ∑ 𝑡𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘𝑘𝑗𝑖                (14) 

Constraint 

Vehicle Load: 

∑ 𝑟𝑖𝑦𝑖𝑘
𝑛
𝑖=1 ≤ 𝑄, ∀𝑘                (15) 

Sub-tour elimination 

𝑋 = (𝑥𝑖𝑗𝑘) ∈ 𝑆, (𝑆 ⊂ 𝑉[0])               (16) 

∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑆𝑖∈𝑆 ≤ |𝑆| − 1 (|𝑆| ≥ 2; 𝑖 ≠ 𝑗; ∀𝑘)             (17) 

Traffic condition, speed, time and distance 

𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝑠𝑝(1−𝑇𝐷𝐸)
, ∀𝑖, 𝑗, 𝑖 ≠ 𝑗               (18) 

Maximum Number of vehicle 

∑ 𝑥0𝑗𝑘
𝑚
𝑘=1 < 𝑚, ∀𝑗                (19) 

Vehicle usage 

∑ 𝑦𝑖𝑘
𝑚
𝑘=1 = 1, ∀𝑖                (20) 

Customer assignment: 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑗𝑘
𝑛
𝑖=0 , ∀𝑗, 𝑖 ≠ 𝑗, ∀𝑘                (21) 

∑ 𝑥𝑖𝑗𝑘 = 𝑦𝑖𝑘
𝑛
𝑗=0 , ∀𝑖, 𝑖 ≠ 𝑗, ∀𝑘                (22) 

 

Objective function (14) is designed to minimize the total travelling time. Constraint (15) indicates that the vehicle capacity cannot 

be violated by the vehicle load. Constraints (16) and (17) eliminate possible sub-tours. 𝑆 is a subset of the vertices of a graph 𝐺, 

where 𝑆 connects the set of edges having both endpoints in 𝑆, with non-trivial cut to perform subtour elimination constraints. 

Constraint (18) calculates the travelling time taking account of the traffic density estimation (TDE), where TDE if between 0 and 1. 

There may be spare vehicles for delivery. The number of used vehicles cannot exceed the maximum number under Constraint (19). 

Each customer can be visited and served by only one vehicle with Constraint (20). Constraints (21) and (22) confirm that the visiting 

vehicle and the serving vehicle for each customer have to be the same. 

 

3. Methodology 

3.1. Proposed Multiple Colonies Artificial Bee Colony Algorithm  

The conventional ABC algorithm uses random operators to maintain the diversity within the population, while the modified ABC 

algorithm in our previous research applies knowledge transfer for every employed bee to achieve a better exploitation ability from 

a previous iteration (Zhang et al., 2014). Although the modified ABC algorithm shows its significant and distinguishable value in 

exploitation, the premature convergence can happen and lead to the loss of diversity under an intensive sub-route exchange strategy. 

In order to balance the ability between exploitation and exploration, a multiple colonies artificial bee colony (MC-ABC) algorithm 

is proposed. The fundamental concept of multiple colonies is to apply parallel procedures with the programming scheme to uphold 

the divergence of the population with the random exploitation method, but allow satisfactory information exchange among colonies 

to avoid premature convergence. The parameter settings of the MC-ABC algorithm are denoted in Table 2. The flow chart of the 

MC-ABC algorithm is shown in Figure 4. The numbers of solutions are fixed to the half size of the bee colony, i.e. 𝑆𝑁 = 𝐶𝑆
2⁄ . In 

addition, the criterion of termination of neighbor searching and abandoning a solution, called 𝑙𝑖𝑚𝑖𝑡, is defined as the number of 

solutions multiplied by the dimension of an individual solution 𝑙𝑖𝑚𝑖𝑡 = 𝑆𝑁 × 𝐷𝑖𝑚.  An extra parameter is introduced here: the 

number of colonies C. Each of the colonies contains the same number of solutions, and the maximum number of colonies is 

equivalent to 𝐶. Employed bees, and onlooker bees carry out the same neighbor search operation as the original ABC algorithm. 

The major contribution of the MC-ABC algorithm is to provide elitism-based or random-based information exchange in the scout 



bee phase, which lead to a better exploitation and exploration of overall ABC performance. 

 

Table 2: Notation for Multi-Colonies Artificial Bee Colony Algorithm 

Notations Explanation 

𝐶𝑆 The size of bee colony 

𝑆𝑁 The number of solutions 

𝐶 The number of colonies 

𝑀𝑎𝑥𝐼𝑡𝑒𝑟ations The maximum number of iterations 

𝑙𝑖𝑚𝑖𝑡 The criterion of termination for neighbor searching, and abandoning a solution 

𝐷im The dimension of an independent solution 

𝑥𝑙,𝑙 = 1,2, … , 𝐶 The lth position of a multi-colonies solution 

𝑥𝑙𝑖 , 𝑖 = 1,2, … , 𝑆𝑁 The solution representation of an individual food source 

𝑥𝑙𝑖𝑗 , 𝑗 ≤ 𝐷𝑖𝑚 The jth position in a sequential solution 𝑥𝑖 

 𝑓𝑢𝑛(𝑥𝑙𝑖) The objective value of solution 𝑥𝑖 

𝑓𝑖𝑡(𝑥𝑙𝑖) The fitness value of solution 𝑥𝑖 

𝑃𝑟𝑜𝑏𝑙𝑖 The probability of an individual solution being selected in the population 

𝐶𝑢𝑚𝑢_𝑃𝑟𝑜𝑏𝑙𝑖 The cumulated probability of an individual solution in ascending order in the population 

𝑥�̅� The neighbor solution of solution 𝑥𝑖 

𝑡𝑟𝑖𝑎𝑙(𝑥𝑙𝑖) The accumulated value in which the quality of a solution 𝑥𝑖 cannot be enhanced 

𝜔 Random number, 0 ≤ 𝜔 ≤ 1 

𝜑 Random number, −1 ≤ 𝜔 ≤ 1 

 

3.1.1. Multiple Colonies Strategy 

The multiple colonies strategy is incorporated in the ABC algorithm, which is one of the major elements in constructing the MC-

ABC algorithm. The operation in the employed bees phase, onlooker bees phase among all colonies is an independent process, 

which denotes the same exploitation ability in each colony without any interference during the iterative process by other colonies. 

Information sharing among colonies is involved when the trial of any solution is greater than the maximum tolerance of neighbour 

searching. Moreover, a tactic to replace a solution across colonies is introduced in section 3.1.5. The number of colonies is simply 

defined as 3 for an ease of evaluation. The approach of the Elitism-based Multiple Colonies ABC algorithm (EBMC-ABC) and the 

Random-based Multiple Colonies ABC algorithm (RBMC-ABC) is to select a solution from other colonies based on elitism-based 

selection or random-based selection. The selection criteria in elitism-based approach and random-based approach are discussed in 

section 3.1.5.1 and 3.1.5.2 correspondingly.  



 

Fig. 4: The Flowchart of Multiple Colonies Artificial Bee Colony Algorithm 

 

3.1.2. Initialization Phase 

In the standard ABC algorithm, the initial paths are constructed from continuous variables within a range. However, the dimensional 

variables are discrete and identical in value to represent the specific customer. With the purpose of facilitating the arrangement of 

feasible solutions for VRP, each set of solutions is generated randomly as initial food sources. In Figure 5a, each customer will 



randomly be assigned to the 𝑘 vehicle route. The capacity of vehicles is considered at the initial stage to provide a feasible solution 

for each food source. A total of 𝐶 × 𝑆𝑁 initial solutions are randomly constructed by the above arrangement for all bee colonies, 

where each colony contains a predefined number of solutions 𝑆𝑁  by the following food source matrix 𝑥𝑙𝑖 , 𝑙 = 1,2, … , 𝐶; 𝑖 =

1,2, … , 𝑆𝑁.  

 

Fig. 5a: The Generation of Initial Solution 

In determining the approximate and feasible solution, the random approach on assigning customers to the current vehicle scheduling, 

with regard to their maximum vehicle load, is then solved iteratively by the MC-ABC algorithm. The randomized solution will then 

be checked the any violation of the constraints, i.e. maximum load of truck capacity constraint. If any violation of constraint found 

in the stage, the generation process will be repeated until a feasible solution is found. This approach has the advantage of 

guaranteeing a feasible solution and facilitating the computation in recursive procedures, as each customer can be placed freely in 

the dimension space, which is the delivery schedule, under the influence of searching heuristics. In the event that the updated solution 

violates the VRP constraint, the previous solution will be considered as a current best solution and proceeds to the next stage to 

guarantee a feasible solution. Once all the food sources in each colony have been generated, the fitness value 𝑓𝑖𝑡𝑙𝑖 of each solution 

is calculated by equation (23). Then, the corresponding termination criterion 𝑡𝑟𝑖𝑎𝑙 is initialized as zero. 𝑡𝑟𝑖𝑎𝑙 is the parameter to 

accumulate the number of unsuccessful updates by the neighbor search operators, and is able to provide an adaptive approach for 

scout bees to realize the chance of being trapped in local optima of some solutions 𝑥𝑖  . In the proposed algorithm, this control 

parameter becomes an important control parameter in information exchange among all the colonies. 

𝑓𝑖𝑡(𝑥𝑙𝑖) =
1

1+𝑓𝑢𝑛𝑙𝑖
, ∀𝑙, ∀𝑖              (23) 

3.1.3. Employed Bee Phase 

Neighborhood operators of the ABC heuristic, which are performed by employed bees, are used to create a new solution �̅�𝑖  from 𝑥𝑖. 

The set of pre-defined neighborhood operators is applied once for each food source solution. In each neighbor search, the algorithm 

compares the objective function between the original solution 𝑥𝑖 and neighbor solution 𝑥�̅�. If a better objective value or no violation 

of any constraints are found after the neighbor operation, the new route will replace the previous one; otherwise, the solution 𝑥𝑖 

remains unchanged. The crossover operator is still preserved in the MC-ABC algorithm. However, the candidate option of sub-route 

exchange is restricted within the same colony’s solution. According to this arrangement, the diversity of all bee colonies is sustained 

to prevent the occurrence of premature convergence. In addition, the neighbor search operators include: 

 

(A) Neighbor Search - Swap Operator 

This operator selects a random position in each food source to apply the swapping of two sub-sequence on the positions i, j. 

The length of the selected sub-sequence is a random number from 1 to 2 in our proposed algorithm to enhance the convergence 

of the neighborhood search (Szeto et al., 2011).  

 

Fig.5b: Swap Operator 

(B) Neighbor Search – Insert Operator 



This operator chooses positions i, j. Customer i is extracted from position i and inserted in position j. 

 

Fig. 5c: Insert Operator 

(C) Neighbor Search – Reverse Operator 

This operator selects a range at random, which is smaller than the size of the dimension, and applies reverse order to the 

selected region.  

 

Fig. 5d: Reverse Operator 

(D) Neighbor Search – Crossover Operator 

This operator selects a sub-route by proportionate reproduction scheme, which is smaller than the size of the dimension, and 

retains the position of the selected cells. The remained dimension is filled up by another food source in sequence. The selection 

criteria of the neighborhood food source is based on their fitness value using the proportionate reproduction scheme (Goldberg 

& Deb, 1991).  

 

 

Fig. 5e: Crossover Operator 

 

3.1.4. Onlooker Bee Phase 

The information provided by employed bees is shared in the hive with onlooker bees. The onlooker bees select the food sources 

based on the abundance of nectar. In the MC-ABC algorithm, the selection rule is according to the probability of each food source 

and is computed by the roulette wheel mechanism using equation (24), which encourages the reproduction of favorable solutions in 

the iterative procedure. With known probability, certain abundant food sources may be selected by onlooker bees several times. 

With this mechanism, good solutions are amended by neighborhood operators to speed up the convergence, and it helps establish 

efficient and intensive searching.  

𝑝𝑙𝑖 =
𝑓𝑖𝑡(𝑥𝑙𝑖)

∑ 𝑓𝑖𝑡(𝑥𝑙𝑖)𝑆𝑁
𝑖=1

, ∀𝑖                                                                                           (24) 

 

3.1.5. Proposed Modified Scout Bee Phase 

In the traditional ABC algorithm, the food source may be abandoned by the employed bees on the condition that there is 

improvement of the fitness value of the corresponding food source after numerous iterations. An employed bee, then, becomes a 

scout bee to assign another food source randomly, which is constructed the same as the process described in the initialization phase, 

if there is no update on the objective function from several iterations. In the aforementioned phase of the MC-ABC algorithm, 

communication among colonies is prohibited to ensure independent searching by the employed bee, and onlooker bee. Even with 

the same tactic of neighbor searching practices in multiple colony, the solutions from each colony are still diversified. The pseudo 



code is described in Table 3. 

 

With regard to the views of the probabilistic algorithm, the ABC algorithm does not guarantee the same near optimal solution every 

time. In order to reduce the heterogeneity of the optimal solution, the MC-ABC algorithm is introduced herein with two solution 

amendment methods – Elitism-based selection, Random-based selection - that contribute to the scaling down of the solution gap, 

delivering a better solution. The global exchange tactics of elitism-based selection is to replace the worst solution by the best solution 

from other colonies, while the approach of random-based selection is to substitute the unfavorable solution from a random solution 

in a separate colony. The approach of abandoning a solution still takes part in the scout bee phase, when the worst solution and the 

selected candidate for the replacement are from the same colony. In other multiple colonies strategies, the immigration parameter 𝑟 

is an adaptive information exchange method for the problem of poor and dominated solutions, but this parameter is not suggested 

in the MC-ABC algorithm. The scout bee performs a negative feedback mechanism to abandon a solution, which is a similar 

mechanism to the others to avoid excessive domination. Therefore, the control parameter 𝑙𝑖𝑚𝑖𝑡 is already an adaptive replacement 

rule. With the purpose of minimizing excessive information exchange among colonies, the maximum tolerance of neighbor 

searching is defined as 𝑙𝑖𝑚𝑖𝑡 = 𝐶 ∗ 𝑆𝑁 ∗ 𝐷𝑖𝑚.  

 

The global exchange method is to replace the entire known solution with the worst solution rather than a replacement of a certain 

sub-route. In the employed bee phase, we apply the crossover operator instead of whole solution substitution to avoid premature 

convergence, allowing diversity of the whole solution space. Nevertheless, the logic of global information exchange is to transfer 

knowledge when it is necessary, and is not more frequent than the crossover operator in the employed bee phase. From this point of 

view, there must be a certain feasibility of exploitation in an intermediate solution by the signal of the control parameter 𝑙𝑖𝑚𝑖𝑡 with 

the supreme fitness value. Therefore, the global exchange method is only considered with a tightened criterion for abandoning a 

solution. 

 

3.1.5.1. Elitism-based Multiple-Colonies ABC algorithm (EBMC-ABC) 

The preference of a solution is defined by the duration of a solution without being updated – 𝑡𝑟𝑖𝑎𝑙 in VRP model. The elite solution 

is interpreted as an intermediate solution with the least value of 𝑡𝑟𝑖𝑎𝑙, and, at the same time, the worst solution is defined as a 

solution which is overwhelmed by the maximum resistance of local searching. As mentioned, there are two possible outcomes of 

elite selection: an initialized solution or a better intermediate solution. The probability of selecting candidates from an intermediate 

solution is in large proportion due to the intensive inside-colony searching implemented by employed bees and onlooker bees. Hence, 

this selection criterion guarantees further exploitation from the best current intermediate solution, and contributes to an overall best 

solution.  

 

3.1.5.2. Random-based Multiple-Colonies ABC algorithm (RBMC-ABC) 

Random-based selection falls into another dimension in generating “best-fit” solutions. The way to define the best fit is too 

subjective to interpret the appropriateness of an intermediate solution. It is hard to understand the true meaning of trapping in local 

optima, since the definition of elite in the previous section refers to the intermediate solution, with the near stage of being mature 

that leads to subjectivity. Thus, a random-based selection approach is a programming scheme to select an intermediate from any 

iterative stage. Although this approach does not guarantee the best current intermediate solution to be selected, at least the possibility 

of being trapped in local optima is greatly reduced, and allows the iterative process to move the way from subjective to stochastic 

selection. 

 



Table 3: The Pseudo Code of Scout Bee Phase in overall Colonies Selection 

Enhanced Scout Bee Phase with Elite Selection among All Colonies Enhanced Scout Bee Phase with Random Selection among All Colonies 

Integer 𝐵𝑒𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 ← 0; 𝐵𝑒𝑠𝑡𝐹𝑜𝑜𝑑 ← 0 

       𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 ← 0; 𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑 ← 0 

Integer 𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑙𝑜𝑛𝑦 ← 0; 𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑜𝑑 ← 0 

       𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 ← 0; 𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑 ← 0 
Integer 𝑘 ← 0; 𝑖 ← 0; Integer 𝑘 ← 0; 𝑖 ← 0; 

𝑙𝑖𝑚𝑖𝑡 = 𝐶 ∗ 𝑆𝑁 ∗ 𝐷𝑖𝑚 𝑙𝑖𝑚𝑖𝑡 = 𝐶 ∗ 𝑆𝑁 ∗ 𝐷𝑖𝑚 

For 𝑘 < 𝐶 For 𝑘 < 𝐶 

    For 𝑖 < 𝑆𝑁     For 𝑖 < 𝑆𝑁 

        If 𝑇𝑟𝑖𝑎𝑙(𝑥𝑘𝑖) ≥ 𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑)         If 𝑇𝑟𝑖𝑎𝑙(𝑥𝑘𝑖) ≥ 𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) 

        Then         Then 

            𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 = 𝑘             𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 = 𝑘 

            𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑 = 𝑖             𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑 = 𝑖 

        End If         End If 

        If 𝑇𝑟𝑖𝑎𝑙(𝑥𝑘𝑖) ≤ 𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑)   End For 

        Then End For 

            𝐵𝑒𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 = 𝑘 Integer RN 

            𝐵𝑒𝑠𝑡𝐹𝑜𝑜𝑑 = 𝑖 RandomColony ← RN, RN = 1,2, … , C 

        End If RandomFood ← RN, RN = 1,2, … , SN 

    End For If 𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ≥ 𝑙𝑖𝑚𝑖𝑡 

End For     If 𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑙𝑜𝑛𝑦 ≠ 𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 

If 𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ≥ 𝑙𝑖𝑚𝑖𝑡     Then 

    If 𝐵𝑒𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦 ≠ 𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦          𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑 ← 𝑥𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑙𝑜𝑛𝑦,𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑜𝑑 

    Then          𝑓𝑖𝑡(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 𝑓𝑖𝑡(𝑥𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑙𝑜𝑛𝑦,𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑜𝑑) 

         𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑 ← 𝑥𝐵𝑒𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝐵𝑒𝑠𝑡𝐹𝑜𝑜𝑑          𝑓𝑢𝑛(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 𝑓𝑢𝑛(𝑥𝑅𝑎𝑛𝑑𝑜𝑚𝐶𝑜𝑙𝑜𝑛𝑦,𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑜𝑑) 

         𝑓𝑖𝑡(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 𝑓𝑖𝑡(𝑥𝐵𝑒𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝐵𝑒𝑠𝑡𝐹𝑜𝑜𝑑)          𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 0 

         𝑓𝑢𝑛(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 𝑓𝑢𝑛(𝑥𝐵𝑒𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝐵𝑒𝑠𝑡𝐹𝑜𝑜𝑑)     Else 

         𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 0 Generate a random feasible solution with the consideration of vehicle 

capacity as 𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑     Else Calculate the functional value, 𝑓𝑢𝑛(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) 

Generate a random feasible solution with the consideration of vehicle 

capacity as 𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑 

Evaluate new solution through the fitness value 

 𝑓𝑖𝑡(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) 
Calculate the functional value, 𝑓𝑢𝑛(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑)         𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 0 

Evaluate new solution through the fitness value 

 𝑓𝑖𝑡(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) 

    End If 

End If 
        𝑇𝑟𝑖𝑎𝑙(𝑥𝑊𝑜𝑟𝑠𝑡𝐶𝑜𝑙𝑜𝑛𝑦,𝑊𝑜𝑟𝑠𝑡𝐹𝑜𝑜𝑑) ← 0 Iteration ← Iteration + 1 

    End If  

End If  

Iteration ← Iteration + 1  

End of Scout Bee Phase with Elite Selection End of Scout Bee Phase with Random Selection 

 

3.2. Rerouting strategies 

The local search mechanism is involved in rerouting strategies once the drivers arrive the next node. The exchange of certain 

remaining customers with the consideration of traffic factor allows a more precious and agile delivery plan to reduce the uncertain 

of road traffic. The method herein is to extract the latest traffic information once the truck is arrived to the next customers and apply 

local search to the remaining node for optimization, as shown in Figure 5f. Due to a small solution space in each sub-route, the 

approaches of local search optimizing the remaining node through the exchange of certain elements to reduce the time-length of the 

corresponding sub-route is sufficient (Zhang et al., 2014). By incorporating the local search mechanism, the solution quality can be 

improved and guided by latest traffic in order to achieve a minimized travel time by receding horizon control. The rerouting strategy 

is applied to sub-route exchange in the same vehicle in order to reduce the impact on other delivering vehicles in our model. The 

exchange of global elements is not limited to same vehicle or other vehicles. The rule of element exchanges depends on the business 

model and technological availability of the company. The availability of real time information and location tracking system allow 

rerouting strategies in fleet management.  



 

Fig. 5f: Re-routing strategy 

4. Numerical Experiment 

In this section, the performance of the proposed MC-ABC algorithm is evaluated by using several CVRP instances from the literature 

in comparison with the benchmark ABC algorithm and modified ABC algorithm. All algorithms were coded in C++ language with 

visual studio 2013, and all numerical experiments were performed on a computer with Intel Core i7 3.60 GHz CPU and 16.0 GB 

Ram under Window 7 Enterprise 64-bit operating environment. 

 

The test running is done based on classical CVRP instances called sets A, B, M and P, as proposed by Augerat (1995). The instance 

data can be retrieved at http://www.coin-or.org/. The MC-ABC algorithm outperforms the OABC and MABC for the above test 

instances. In the problem formulation, the objective is to minimize the travel time 𝑚𝑖𝑛 𝑓 = ∑ ∑ ∑ 𝑡𝑖𝑗 ∗ 𝑥𝑖𝑗𝑘𝑘𝑗𝑖 , which is the composition 

of travel distance, vehicle speed and traffic factor, using the formula of 𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝑠𝑝(1−𝑇𝐷𝐸)
. For the purpose of performance comparison, 

the vehicle speed 𝑠𝑝 is set as 1 and traffic density estimation 𝑇𝐷𝐸 as 0 to compare with the best-known solutions from the 

literature. Hence, the total travel distance 𝑑 is assumed to be identical as the total travel time 𝑡. The differences in parameters 

between ABC and MC-ABC are shown in Table 4. For the parameter setting, the number of employed bees and onlooker bees is 

equivalent to the half of the colony size, which is 25. Karaboga (2005) mentions that it given an acceptable convergence speed for 

exploitation and exploration with a bee colony size of 50. Based on the research conducted by Szeto et al, the maximum iteration 

time 𝑀𝑎𝑥𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  is equal to the multiplication of a fixed integer number 2000 and the number of customers 𝑛 , which is 

sufficient to converge a near optimal solution (𝑀𝑎𝑥𝑙𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 = 2000𝑛). Each instance was run 20 times to summarize an average 

performance. As for the single bee colony algorithm (OABC and MABC), the 𝑙𝑖𝑚𝑖𝑡 is formulated as the multiplication of food 

source 𝑆𝑁  and dimension size 𝐷𝑖𝑚 . As for the multiple colonies algorithm (EBMC-ABC and RBMC-ABC), the number of 

colonies 𝐶 equal to 3, that is sufficient to converge the solution in a single objective model, and the 𝑙𝑖𝑚𝑖𝑡 is 𝐶 ∗ 𝑆𝑁 ∗ 𝐷𝑖𝑚 to 

reduce excessive information exchange among all colonies. Other parameters remain unchanged to reduce the parameter tuning. 

These results are also evaluated together with best-known results from the literature, collected from literature to measure the 

deviation between exact algorithms and proposed heuristics algorithms (Blecker et al., 2008; Nemhauser & Bienstock, 2005; Toth 

& Vigo, 2014; Wang, 2013). 

 

Table 4: Parameter Comparison between ABC, Modified ABC and MC-ABC Algorithms 

Algorithm Number 

of colony 

Number of solutions 

in each colony, 𝑆𝑁 

Neighbor search operators in 

employed bee phase 

Criterion to abandon a 

solution, 𝑙𝑖𝑚𝑖𝑡  

Tactics to create new 

solution 

OABC 1 𝐶𝑆
2⁄  Swap, Insert, Reverse Operators 𝑆𝑁 × 𝐷𝑖𝑚 Random generated 

MABC 1 𝐶𝑆
2⁄  Swap, Insert, Reverse, 

Crossover Operators 

𝑆𝑁 × 𝐷𝑖𝑚 Random generated 

http://www.coin-or.org/


EBMC-ABC/ 

RBMC-ABC 

C 𝐶𝑆
2⁄  Swap, Insert, Reverse, 

Crossover Operators 

𝑆𝑁 × 𝐷𝑖𝑚 × C Elitism-based selection, or 

Random-based selection 

 

4.1. Operator Analysis 

With an aim of evaluating the effectiveness of the multiple colonies strategy in the ABC algorithm, the single colony approach 

(SCA), the multiple colonies elitism-based approach (EB-MCA) and the multiple colonies random-based approach (RB-MCA) are 

initially evaluated on an instance of B-n78-k10, taking into account only one operator at a time: the swap, insert, reverse and 

crossover operators with 100,000 iteration. The three operators provide randomness exchange in the solution 𝑥𝑖 space to exploit 

the current solution to find a better neighbor solution 𝑥�̅�. The performance of each operator is indicated by comparing the maximum 

value, minimum value, average value, standard deviation and deviation from best-known solution (DFBK) over 20 runs. The best-

known objective value of B-n78-k10 is 1221 (Blecker et al., 2008). In accordance with the numerical result, no matter whether the 

single or multiple colony ABC algorithm, no operators are able to converge to the best-known solution and no significant 

improvement was found after the 60,000 iterations. According to Figures 6a, 6b and 6c, it can be observed that the MC-ABC 

algorithm converges rapidly after 10,000 iterations, except the crossover operator in Figure 6d when only a single operator is 

involved. This is because the knowledge transfer at the initial stage is immature, which leads to a spread of the intermediate solutions. 

After a certain learning progress of each individual colony, a wise information exchange shows significant value, which contributes 

to the global bee colonies performance rather than single colony operation. Although the single colony ABC algorithm gradually 

exploits and explores a better solution, the multiple colonies ABC algorithm yields a more attractive solution after it reaches critical 

mass, which shows the diversity and enhancement of the exploitation with massive searching.  

 



 

Fig.6a: Comparison of single and multiple colonies with swap operator 

 

Fig.6b: Comparison of single and multiple colonies with insert operator 

 

Fig.6c: Comparison of single and multiple colonies with reverse operator 

 

Fig.6d: Comparison of single and multiple colonies with crossover operator 

In general, the deviation from best known solution (DFBK) of the above operators’ analysis indicates that MC-ABC algorithm 

provides a better solution than the single colony ABC algorithm. 𝑓∗ denoted the best known solution from the literature, while 𝑓 

is the approximate solution generated by meta-heuristics. 𝐷𝐹𝐵𝐾 is an indicator to measure the variation of the results between 

proposed algorithm and exact method under the same instance. A small value in 𝐷𝐹𝐵𝐾 denoted a narrow gap between approximate 

and optimal values.   

𝐷𝐹𝐵𝐾 =
𝑓−𝑓∗

𝑓∗ × 100                (25) 

 

In Table 5, the solution quality produced by the MC-ABC algorithm with reverse operator achieves a closer value from the best-

known solution. The best known result of each instance is shown in section 4.4. The MC-ABC algorithms with reverse operator 

surpass the other operators with 7.31% and 7.85% deviation from optimum respectively, while the insert operator in the MC-ABC 

algorithms have 13.52% and 12.57% DFBK over the original ABC algorithm for the B-n78-k10 instance. A-n80-k10, M-n200-k10 

and P-n101-k4 share the similar pattern. In addition, the proposed algorithms are able to develop attractive solutions with the same 

iteration time for all operators, except the crossover operator in other instances. 

Table 5: Experimental results by different operators for the A-n80-k10, B-n78-k10, M-n200-k17 and P-n101-k4 Instances 

In st a n c e O p er at o
r Swap Insert Reverse Crossover 



ABC EBMC-ABC RBMC-ABC ABC EBMC-ABC RBMC-ABC ABC EBMC-ABC RBMC-ABC ABC 

EBMC-

ABC 

RBMC-ABC 
A

-n
8
0

-k
1

0
 

Min 1990 2029 2028 2000 1977 1961 1905 1875 1899 3530 3656 3536 

Max 3889 3889 3889 3889 3889 3889 3889 3889 3889 3889 3910 3889 

Avg 2189.85 2161.80 2165.60 2156.35 2120.55 2110.95 2045.70 2016.30 2026.90 3717.10 3789.60 3722.05 

SD 401.89 407.37 406.32 408.93 416.97 419.96 434.30 441.14 438.53 78.56 65.25 85.04 

DFBK 24.21% 22.62% 22.84% 22.31% 20.28% 19.74% 16.04% 14.37% 14.97% 110.84% 114.95% 111.12% 

B
-n

7
8

-k
1
0
 

Min 1396 1425 1354 1362 1329 1346 1310 1286 1286 2846 3002 2876 

Max 1558 1514 1515 1467 1423 1418 1364 1326 1337 3129 3260 3179 

Avg 1500.40 1460.55 1457.20 1414.00 1386.05 1374.50 1333.75 1310.30 1316.80 3036.25 3116.55 3051.25 

SD 39.56 25.22 36.66 26.60 23.18 19.34 12.62 12.88 12.84 69.73 78.15 83.44 

DFBK 22.88% 19.62% 19.34% 15.81% 13.52% 12.57% 9.23% 7.31% 7.85% 148.67% 155.25% 149.90% 

M
-n

2
0

0
-k

1
7
 Min 1852 1861 1838 1646 1560 1622 1507 1462 1468 5303 5470 5304 

Max 2030 1941 1979 1825 1741 1729 1591 1541 1544 5637 5740 5705 

Avg 1955.50 1899.05 1917.45 1747.50 1673.65 1670.60 1552.10 1510.55 1501.65 5508.00 5596.60 5544.05 

SD 44.37 22.86 35.92 44.04 41.97 31.99 21.88 20.96 20.62 89.51 84.41 98.78 

DFBK 53.37% 48.95% 50.39% 37.06% 31.27% 31.03% 21.73% 18.47% 17.78% 332.00% 338.95% 334.83% 

P
-n

1
0

1
-k

4
 

Min 897 890 876 780 763 775 721 725 715 2391 2452 2374 

Max 994 976 965 859 829 834 767 742 750 2534 2605 2581 

Avg 957.85 939.65 931.80 824.05 804.15 805.25 747.40 734.50 734.70 2471.55 2525.95 2476.80 

SD 28.49 20.00 25.65 23.71 15.86 16.55 13.24 5.54 7.64 45.11 37.84 49.51 

DFBK 40.65% 37.98% 36.83% 21.01% 18.08% 18.25% 9.75% 7.86% 7.89% 262.93% 270.92% 263.70% 

 

4.2. Algorithms Performance Analysis 

To evaluate the performance of the MC-ABC algorithms, the original ABC algorithm is selected for benchmarking in algorithm 

analysis. The ABC algorithm is a well-known algorithm, which has been shown to be competitive with other swarm intelligence-

based and population-based algorithms. In this experiment, the original ABC algorithm and modified ABC algorithm are selected 

for evaluation, as all the selected algorithms share similar natures in exploitation and exploration techniques, by honeybee swarm 

behavior, and are able to provide a strong support to illustrate the robustness of multiple colonies strategies. The converging 

processes of all the selected algorithms are demonstrated in Figure 6e and Table 6. The corresponding DFBK of EBMC-ABC and 

RBMC-ABC algorithms are 3.61% and 4.12%, is less divergence than the original ABC and modified ABC algorithms. A more 

detail performance analysis for hybrid model is shown in section 4.4. 

Table 6: Experimental results by hybrid operators for the B-n78-k10 Instance 

Instance Operator 
Hybrid 

OABC MABC EBMC-ABC RBMC-ABC 

B-n78-k10 

Min 1299 1256 1246 1225 

Max 1330 1296 1291 1292 

Avg 1314.05 1281.45 1265.05 1271.30 

SD 8.28 10.59 15.43 17.83 

DFBK 7.62% 4.95% 3.61% 4.12% 

 

Similar iteration results are given in Figure 6e. The MC-ABC algorithms require a learning process after attaining the critical mass 

after around 8,000 iterations. The multiple colonies help the ABC algorithm to escape from local optima, and are able to introduce 

better intermediate solution to other colonies, which help to search more precisely for the global optimum. In addition, the actual 

population of solutions is multiplied in conducting an extensive searching, and it is possible to exploit better intermediate or optimal 

solutions, and then share with other colonies. With this collective approach in searching, the overall performance of the MC-ABC 

algorithm can be improved by enhancing the ability of exploitation and utilizing the exploration capacity.   



 

Fig.6e: Comparison between single and multiple colonies with hybrid opreators by iteration 

In order to provide a fair judgement on the performance of the proposed algorithm, the computational result based on the same 

computational time (60 seconds) are given in Figure 6f. Although the algorithm structure of EBMC-ABC and RBMC-ABC 

algorithms are more complex comparing with OABC and MABC algorithms, the performance of proposed algorithms by given a 

maximum computational time and maximum iterations are similar. Figure 6f indicates that OABC and MABC algorithms are not 

able to convergence to the optimal after 40 seconds computational time.  

 

Fig.6f: Comparison between single and multiple colonies with hybrid opreators by CPU 

 

4.3. Computational Results 

In this study, four classical VRP instance models (Set A, B, M and P) following Augerat (1995) are adopted to evaluate the proposed 

algorithms and help summarize the overall performance. The best objective value, and mean of objective value over 20 runtimes 

are included to illustrate the strength of exploitation and the average performance. The results generated from the original ABC 



algorithm are treated as a benchmark to study the percentage of improvement 𝐼𝑚𝑝 % of the proposed algorithms. The highest 

value of 𝐼𝑚𝑝 %  implies a better average performance than the others. The computation time 𝐶𝑃𝑈  is measured in minutes. 

Minimum improvement 𝑀𝑖𝑛 𝐼𝑚𝑝 and maximum improvement 𝑀𝑎𝑥 𝐼𝑚𝑝 measure the minimum and maximum percentage gap 

of the objective values between the selected algorithm and the benchmarked ABC algorithm, while the average improvement 

𝐴𝑣𝑔 𝐼𝑚𝑝 denotes the gap of the standard performance between two algorithms over 20 runtimes. The average improvements for 

all VRP class models solved by the EMBC-ABC algorithm are 3.245%, 2.58%, 9.48% and 2.78%. Obviously, EBMC-ABC and 

RBMC-ABC algorithm are capable of discovering a better solution, especially the EBMC-ABC algorithm. The results in Table 7 

indicate that the selection criterion of elite candidates using the control parameter 𝑙𝑖𝑚𝑖𝑡 was able to extract better intermediate 

solutions from neighbor bee colonies, share the prosperity and contribute to the entire bee colonies society. 

 

Table 7: The summary of the improvement of experimental result of OABC, MABC, proposed EBMC-ABC and RBMC-ABC algorithms 

VRP Class 
Modified ABC Elitism-based MC-ABC Random-based MC-ABC  

Min Imp Avg Imp Max Imp Min Imp Avg Imp Max Imp Min Imp Avg Imp Max Imp  

A-Class 0.07 2.90 5.47 0.08 3.25 6.67 0.08 3.12 6.12  

B-Class 0.16 2.14 5.43 0.16 2.58 7.70 0.16 2.45 7.70  

M-Class 5.98 7.60 9.01 8.45 9.48 10.27 8.14 9.11 10.55  

P-Class 0.00 2.43 5.80 0.00 2.78 6.87 0.00 2.68 6.66  

 

 

4.4. Exploitation ability analysis 

In Tables 8a to 8d, the best solutions found by selected algorithms, within 20 runtimes, are extracted, and compared with the best-

known solution BKS to examine the ability of selection algorithm in balancing exploitation and exploration. CPU time in minutes 

is included in the same table. In Figure 7, the deviation from the best-known solution as a percentage of each selected algorithm, in 

studying the ability of exploitation and the mean of DFBK from all subclass with 95% confidence level, are measured. The results 

demonstrate that the MC-ABC algorithms have the ability to escape from local optimal and further exploit the result in moving 

towards the optimal solution. The confidence interval for the mean of DFBK % from the MC-ABC algorithms outperform the 

OABC and MABC, especially in the A, B, and P Class problems, with less than 1% error of the confidence interval. It is shown that 

the MC-ABC algorithms are able to maintain the balance of exploitation and exploration to have a better determination in searching 

for the near optimal.  

Table 8a: The comparison between the best-known solution and computational result for A class model 

Instance BKS 
Original ABC Modified ABC Elitism-based MC-ABC (EBMC-

ABC) 

Random-based MC-ABC 

(RBMC-ABC) 
Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU 

A-n32-k5 784 a 784 0.00% 0.05  784 0.00% 0.20  784 0.00% 0.54  784 0.00% 0.56  

A-n33-k5 661 a 661 0.00% 0.07  661 0.00% 0.21  661 0.00% 0.61  661 0.00% 0.61  

A-n33-k6 742 a 742 0.00% 0.08  742 0.00% 0.21  742 0.00% 0.63  742 0.00% 0.63  

A-n34-k5 778 a 780  0.26% 0.08  778 0.00% 0.22  778 0.00% 0.65  778 0.00% 0.65  

A-n36-k5 799 a 811  1.50% 0.09  799 0.00% 0.25  799 0.00% 0.72  799 0.00% 0.71  

A-n37-k5 669 a 669 0.00% 0.10  669 0.00% 0.26  669 0.00% 0.73  669 0.00% 0.73  

A-n37-k6 949 a 955  0.63% 0.10  949 0.00% 0.26  949 0.00% 0.72  949 0.00% 0.71  

A-n38-k5 730 a 730 0.00% 0.10  730 0.00% 0.26  730 0.00% 0.75  730 0.00% 0.74  

A-n39-k5 822 a 828  0.73% 0.11  822 0.00% 0.28  822 0.00% 0.78  822 0.00% 0.78  

A-n39-k6 831 a 833  0.24% 0.11  831 0.00% 0.28  831 0.00% 0.79  831 0.00% 0.79  

A-n44-k6 937 a 958  2.24% 0.13  937 0.00% 0.34  937 0.00% 0.96  937 0.00% 0.95  

A-n45-k6 944 a 966  2.33% 0.14  948  0.42% 0.36  949  0.53% 0.99  944 0.00% 0.98  

A-n45-k7 1146 a 1175  2.53% 0.14  1146 0.00% 0.36  1146 0.00% 1.00  1146 0.00% 0.99  

A-n46-k7 914 a 925  1.20% 0.14  914 0.00% 0.38  914 0.00% 1.04  914 0.00% 1.05  



A-n48-k7 1073 a 1095  2.05% 0.15  1073 0.00% 0.37  1073 0.00% 1.13  107  0.00% 1.11  

A-n53-k7 1010 a 1026  1.58% 0.18  1015  0.50% 0.38  1010 0.00% 1.36  101  0.00% 1.34  

A-n54-k7 1167 a 1191  2.06% 0.18  1172  0.43% 0.38  1167 0.00% 1.36  1167 0.00% 1.36  

A-n55-k9 1073 a 1088  1.40% 0.19  1073 0.00% 0.40  1073 0.00% 1.41  1073 0.00% 1.41  

A-n60-k9 1354 a 1406  3.84% 0.22  1358  0.30% 0.45  1355  0.07% 1.66  1354 0.00% 1.63  

A-n61-k9 1034 a 1078  4.26% 0.23  1035 0.10% 0.41  1035 0.10% 1.69  1035 0.10% 1.67  

A-n62-k8 1288 a 1360  5.59% 0.23  1299  0.85% 0.44  1300  0.93% 1.82  1292 0.31% 1.84  

A-n63-k9 1616 a 1650  2.10% 0.24  1636  1.24% 0.44  1627 0.68% 1.87  1627 0.68% 1.84  

A-n63-

k10 

1314 a 1375  4.64% 0.24  1320  0.46% 0.44  1319 0.38% 1.83  1320 0.46% 1.83  

A-n64-k9 1401 a 1473  5.14% 0.25  1425  1.71% 0.46  1412 0.79% 1.91  1416  1.07% 1.89  

A-n65-k9 1174 a 1221  4.00% 0.25  1181  0.60% 0.46  1178  0.34% 1.87  1174 0.00% 1.87  

A-n69-k9 1159 a 1196  3.19% 0.27  1166 0.60% 0.51  1166 0.60% 2.04  1170  0.95% 2.02  

A-n80-

k10 

1763 a 1896  7.54% 0.30  1810  2.67% 0.68  1774 0.62% 2.74  1786  1.30% 2.76  

a Obtained from the literature (Wang, 2013) 

Table 8b:  The comparison between the best-known solution and computational result for B class model 

Instance BKS 
Original ABC Modified ABC Elitism-based MC-ABC (EBMC-

ABC) 

Random-based MC-ABC 

(RBMC-ABC) 
Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU 

B-n31-k5 672 b 672 0.00% 0.06  672 0.00% 0.16  672 0.00% 0.55  672 0.00% 0.55  

B-n34-k5 788 b 788 0.00% 0.08  788 0.00% 0.19  788 0.00% 0.63  788 0.00% 0.63  

B-n35-k5 955 b 955 0.00% 0.09  955 0.00% 0.20  955 0.00% 0.68  955 0.00% 0.68  

B-n38-k6 805 b 807  0.25% 0.10  805 0.00% 0.23  805 0.00% 0.79  805 0.00% 0.79  

B-n39-k5 549 b 550  0.18% 0.10  549 0.00% 0.24  549 0.00% 0.79  549 0.00% 0.79  

B-n41-k6 829 b 836  0.84% 0.12  829 0.00% 0.26  829 0.00% 0.83  829 0.00% 0.84  

B-n43-k6 742 b 746  0.54% 0.12  742 0.00% 0.29  742 0.00% 0.91  742 0.00% 0.91  

B-n44-k7 909 b 924  1.65% 0.13  909 0.00% 0.29  909 0.00% 0.95  909 0.00% 0.93  

B-n45-k5 751 b 751 0.00% 0.13  751 0.00% 0.31  751 0.00% 1.00  751 0.00% 1.01  

B-n45-k6 678 b 699  3.10% 0.13  680  0.29% 0.30  678 0.00% 0.99  678 0.00% 0.98  

B-n50-k7 741 b 742  0.13% 0.17  741 0.00% 0.38  741 0.00% 1.21  741  0.00% 1.22  

B-n50-k8 1312 b 1328  1.22% 0.16  1316  0.30% 0.36  1313 0.08% 1.17  1316  0.30% 1.18  

B-n51-k7 1032 b 1032 0.00% 0.17  1032 0.00% 0.38  1032 0.00% 1.22  1032 0.00% 1.23  

B-n52-k7 747 b 752  0.67% 0.17  747 0.00% 0.40  747 0.00% 1.29  747 0.00% 1.29  

B-n56-k7 707 b 718  1.56% 0.19  707 0.00% 0.38  707 0.00% 1.46  707 0.00% 1.45  

B-n57-k7 1153 b 1153 0.00% 0.20  1153 0.00% 0.33  1153 0.00% 1.47  1153 0.00% 1.49  

B-n57-k9 1598 b 1637  2.44% 0.20  1602  0.25% 0.33  1600 0.13% 1.49  1604  0.38% 1.49  

B-n63-k10 1496 b 1569  4.88% 0.25  1508  0.80% 0.41  1507  0.74% 1.81  1497 0.07% 1.81  

B-n64-k9 861 b 896  4.07% 0.25  868  0.81% 0.39  862  0.12% 1.89  861 0.00% 1.86  

B-n66-k9 1316 b 1355  2.96% 0.26  1320  0.30% 0.37  1319 0.23% 2.03  1322  0.46% 2.03  

B-n67-k10 1032 b 1077  4.36% 0.27  1036 0.39% 0.38  1037  0.48% 2.05  1037  0.48% 2.04  

B-n68-k9 1272 b 1315  3.38% 0.27  1289  1.34% 0.39  1279  0.55% 2.06  1277 0.39% 2.05  

B-n78-k10 1221 b 1299  6.39% 0.35  1241  1.64% 0.51  1236 1.23% 2.57  1239  1.47% 2.55  

b Obtained from the literature (Giaglis et al., 2004) 

Table 8c:  The comparison between the best-known solution and computational result for M class model 

Instance BKS 
Original ABC Modified ABC Elitism-based MC-ABC (EBMC-

ABC) 

Random-based MC-ABC 

(RBMC-ABC) 
Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU 

M-n101-k10 820 c 877  6.95% 0.53  837  2.07% 1.38  827  0.85% 4.34  824 0.49% 4.33  

M-n121-k7 1034 d 1244  20.31% 0.73  1127  8.99% 2.20  1078 4.26% 6.66  1082  4.64% 6.70  

M-n151-k12 1015 d 1142  12.51% 1.15  1054  3.84% 2.36  1048 3.25% 9.44  1056  4.04% 9.56  

M-n200-k16 1274 d 1477  15.93% 1.91  1363  6.99% 3.17  1335  4.79% 10.03  1333 4.63% 10.03  

M-n200-k17 1275 d 1489  16.78% 1.43  1369  7.37% 4.64  1344  5.41% 11.56  1328 4.16% 11.61  

c Obtained from the literature (Nemhauser & Bienstock, 2005) 

d Obtained from the literature (Toth & Vigo, 2014) 



Table 8d:  The comparison between the best-known solution and computational result for P class model 

Instance BKS 
Original ABC 

  

Modified ABC Elitism-based MC-ABC Random-based MC-ABC  

Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU Best DFBK % CPU 

P-n16-k8 450 e 450  0.00% 0.02  450  0.00% 0.06  450  0.00% 0.22  450  0.00% 0.21  

P-n19-k2 212 e 212  0.00% 0.03  212  0.00% 0.07  212  0.00% 0.25  212  0.00% 0.25  

P-n20-k2 216 e 216  0.00% 0.03  216  0.00% 0.08  216  0.00% 0.27  216  0.00% 0.27  

P-n21-k2 211 e 211  0.00% 0.04  211  0.00% 0.09  211  0.00% 0.28  211  0.00% 0.29  

P-n22-k2 216 e 216  0.00% 0.04  216  0.00% 0.09  216  0.00% 0.31  216  0.00% 0.32  

P-n22-k8 603 e 603  0.00% 0.05  603  0.00% 0.10  603  0.00% 0.33  603  0.00% 0.33  

P-n23-k8 529 e 529  0.00% 0.05  529  0.00% 0.11  529  0.00% 0.36  529  0.00% 0.35  

P-n40-k5 458 e 458  0.00% 0.11  458  0.00% 0.26  458  0.00% 0.82  458  0.00% 0.82  

P-n45-k5 510 e 516  1.18% 0.13  510  0.00% 0.31  510  0.00% 0.90  510  0.00% 0.87  

P-n50-k7 554 e 565  1.99% 0.16  554  0.00% 0.37  554  0.00% 0.88  554  0.00% 0.87  

P-n50-k8 631 e 633  0.32% 0.16  633  0.32% 0.36  631  0.00% 0.88  631  0.00% 0.87  

P-n50-k10 696 e 713  2.44% 0.17  702  0.86% 0.37  700  0.57% 0.89  698  0.29% 0.88  

P-n51-k10 741 e 768  3.64% 0.17  741  0.00% 0.39  741  0.00% 0.93  742  0.13% 0.92  

P-n55-k7 568 e 587  3.35% 0.19  570  0.35% 0.44  568  0.00% 1.05  568  0.00% 1.06  

P-n55-k8 576 e 588  2.08% 0.19  576  0.00% 0.44  576  0.00% 1.05  577  0.17% 1.05  

P-n55-k10 694 e 708  2.02% 0.20  694  0.00% 0.43  695  0.14% 1.04  699  0.72% 1.03  

P-n60-k10 744 e 773  3.90% 0.22  746  0.27% 0.37  744  0.00% 1.09  745  0.13% 1.09  

P-n60-k15 968 e 1002  3.51% 0.24  971  0.31% 0.38  972  0.41% 1.23  968  0.00% 1.21  

P-n65-k10 792 e 828  4.55% 0.25  801  1.14% 0.43  792  0.00% 1.37  792  0.00% 1.37  

P-n70-k10 827 f 875  5.80% 0.29  831  0.48% 0.43  836  1.09% 1.57  840  1.57% 1.54  

P-n76-k4 593 e 625  5.40% 0.31  596  0.51% 0.59  595  0.34% 2.10  593  0.00% 2.08  

P-n76-k5 627 e 662  5.58% 0.31  630  0.48% 0.56  630  0.48% 1.89  628  0.16% 1.93  

P-n101-k4 681 e 721  5.87% 0.50  691  1.47% 1.14  684  0.44% 3.80  685  0.59% 3.82  

e Obtained from the literature (Blecker et al., 2008) 

f Obtained from the literature (Toth & Vigo, 2014)  

 

 



 

Fig.7: The confidence level for the mean of DFBK from A, B, M, P class model 

5. Numerical study on OVRP with Traffic Factors with a Case Study 

The methodology is discussed to generate the CVRP solution in offline performance in the test instances, for benchmarking purposes. 

In this section, traffic factors are examined with a real case scenario. Logistics companies always encounter the OVRP when the 

optimal delivery schedule is needed. A logistics service provider in Hong Kong, which has 128 clients, is employed as a case study. 

Most of the clients are located at high traffic network spots. In the current vehicle scheduling process of the company, the routes are 

constructed manually at regular periods. The company management noticed that customer loyalty might be easily affected by the 

risk of late delivery due to traffic congestion. A particular vehicle fleets with 35 customers is selected to demonstrate the OVRP 

model in Figure 8. The vehicle speed 𝑠𝑝 under free-flow condition is defined as 50 km/hr. 

 

 

Fig. 8: Location of warehouse, customer and surveillance system in case study 

5.1. Traffic Density Estimation 

The traffic density fluctuates, and depends on the current traffic flow and the number of vehicles. Figure 9 shows an example of 

traffic density estimation in the Hung Hom Cross Harbor Tunnel, between Hong Kong Island and Kowloon. Figure 10 shows the 

demo application of OVRP system and provide real time solution for local search. The real time arrival and processing information 

are upload to the server for real time operation with mobile technology. The system evaluates the traffic density 𝑇𝐷𝐸  of the 

corresponding traffic images, and this information provides a reference point to the OVRP model to measure the current traffic 

condition and travel time. Each sub-route is selected in order to evaluate the sub-route traveling time with the help of a local search. 

If there is a significant traffic jam in a pre-planned sub-route, the local search operators tries to find a possible solution by swapping 

the sub-route sequences (Zhang et al., 2014). In our model, a global exchange method in real time system is prohibited, as the carried 

items on a specific truck are homogeneous to the other truck. The business nature of the case company is to provide equipment 



hygienic service. Each truck carries the corresponding items to serve the customers before the start of delivery. Therefore, it is not 

feasible to process global exchanges, but local search is allowed. 

 

Fig. 9: Traffic density estimation on 24rd December, 2014 

 

 

Fig. 10: The real time experimental environments for OVRP 

The pre-planned solution and simulated routing performance from 11am to 5pm on 24rd December, 2014 are shown in Table 9. The 

estimated delivery time without traffic consideration is 332.05 minutes, while the simulated delivery time are usually larger than 

640 minutes. This shows a very large difference in travel time between the pre-planning and real-time schedules. The dynamic 

behavior of the traffic status is uncontrollable, however, OVRP maintains a better performance with traffic environmental changes. 

Table 9: Online performance of real time vehicle routing result 

Time frame Pre-planned solution Estimated Time 

Free-flow Route 1: [0,1,2,3,4,5,6,0]; Route 2:[0,7,8,9,10,15,14,0]; Route 3: [0,13,12,11,17,16,0];  

Route 4: [0,18,20,19,21,0]; Route 5: [0,24,22,31,32,34,35,33,0]; Route 6: [23,25,28,26,29,27,30,0] 
332.05 minutes 

Date 24th Dec 25th Dec 26th Dec 27th Dec 28th Dec 29th Dec 30th Dec 



Total travel time estimated by 

initial static traffic  
738 mins 790 mins 797 mins 803 mins 875 mins 879 mins 867 mins 

Total travel time with periodic 

rerouting strategy 
674 mins 657 mins 664 mins 635 mins 646 mins 677 mins 744 mins 

Percentage of improvement -8.67% -16.84% -16.69% -20.92% -26.17% -22.98% -14.19% 

 

 

6. Conclusions and future work 

In this research, the approach for traffic density estimation is considered and is processed to meet the real time needs for retrieving 

historical and current traffic conditions in various applications. A focus is put on the real time approach between traffic density 

estimation and modern vehicle routing problems. Referring to the dynamic changes of the road traffic information, the routing 

schedules can be re-planned and re-scheduled to reduce the impact of logistics risk. In addition, two MC-ABC algorithms are 

presented for solving the re-optimization process of OVRP under time-dependent traffic congestion. The experimental results 

indicate that MC-ABC algorithms outperform the original ABC and modified ABC, and achieve better results, particularly the 

EBMC-ABC. The proposed algorithms are evaluated on a set of well-known CVRP instances in term of total travel distance, has 

and is compared with benchmarked ABC and modified ABC algorithms to show the ability of exploitation and exploration in the 

searching space. The proposed MC-ABC algorithms have exploitation ability after the iteration reaches to the critical mass by 

selecting the best-known intermediate solution. The EBMC-ABC algorithm generally converges well in exploitation, while 

maintaining solution diversity. Future research is recommended in the following aspects. (1) Obtain more accurate vehicle 

scheduling using information on anticipated and unanticipated events, like weather predict and road construction. (2) Extend a 

similar approach to study a global sub-route exchange method to retain flexibility in agile delivery. 
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