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ABSTRACT 

Based on measurements of VHF radiation sources and VLF electric fields with a broadband 

interferometer system, the spatial evolution of leader processes and K-breakdowns and 

M-components involved in a classically-triggered negative lightning discharge have been 

analyzed. While a normal classically-triggered negative discharge usually starts with a positive 

leader initiates from the tip of the ascending triggering-wire and moves upward, there was no 

such an initial upward positive leader (UPL) being observed for the present discharge, probably 

due to low resolution and sensitivity of the measurements. Instead, there was a downward 

negative leader (PDL) at the preliminary stage of the discharge being observed, followed by a 

173-ms-long lasting M-component-wise process and two leader/return-stroke processes. The 

PDL was most likely a leader process along the channel trace possibly built by the undetected 

UPL, as its speed which ranged from 3.7×106 m/s to 0.3×106 m/s is similar to that of a dart 

leader in literature. The long lasting M-component-wise process consisted of a slow 

negative-going change stage (Ma), followed by a fast negative-going change stage (Mb) and then 
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a slow positive-going change stage (Mc). Ma was found to be intra-cloud negative breakdowns 

moving towards overhead position of the PDL trace. Mb would be considered as a common 

M-component (channel brightening), which starts with a K breakdown in cloud (Mb1) moving 

horizontally towards overhead position of the previous PDL, followed by an event (Mb2) 

moving up from ground to cloud along PDL trace. As Mb2 reaching the cloud, more new K 

breakdowns (Mc) appeared in cloud around extremities of the pre-built channels by Ma and Mb. 

The leader preceding the first return stroke (L1) started inside the cloud and propagated 

downward to the triggering-wire trace, but with a different channel to that of PDL. As the leader 

touched the triggering wire trace, it appeared to propagate upward along the same channel of 

PDL. The upward portion of L1 might be interpreted as a reflection of L1 at top of the 

triggering-wire trace towards the PDL trace due to the difference in conductivity and potential 

between the PDL trace, the triggering wire trace and the L1 channel, which was optically 

invisible but bright in VHF. The speed of the downward portion of L1 decreased from 2.32 to 

0.32 ×106 m/s as it descended, while that of the upward portion of L1 increased from 0.85 to 2.7 

×106 m/s as it ascended. The leader preceding the second return stroke (L2) behaved similarly to 

L1 but with higher speeds.  

Keyword: rocket-triggered lightning, downward leader, K-breakdown, M-component, return 

stroke, broadband interferometer. 
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1. INTRODUCTION 

Rocket-triggering lightning technology refers to the launch of a small rocket dragging a thin 

wire into strong electric fields under a thundercloud. The rapid ascending tip of the rocket-wire 

would break through the corona shield around it and initiates an upward leader to ultimately 

trigger a lightning discharge. When the wire is grounded the technique is called 

classical-triggering, while when the bottom of the wire is floated the technique is called 

altitude-triggering (Rakov and Uman, 2003) [1]. Rocket-triggered lightning was first 

successfully attempted over sea in United States in 1960 (Newman et al., 1967) [2] and over land 

in France in 1973 (Fieux et al., 1975) [3]. Thereafter, rocket-triggered lightning has been 

accomplished successively in Japan (Horii, 1982) [4], China (Liu et al., 1994) [5] and Brazil 

(Saba et al., 2000) [6], respectively. 

A typical classically-triggered lightning discharge usually starts with an upward positive 

leader (UPL) initiated from the tip of the ascending wire (e.g. Rakov et al., 1998 [7] and Chen et 

al., 2013 [8]). The process whereby the UPL continuously propagates to the charged cloud and 

produces continuous current is called initial stage (IS). During the first few milliseconds of the 

UPL propagating, the triggering wire is vaporized and the current in the channel base abruptly 

decreases to zero and then reestablishes (Wang et al., 1999 [9]; Rakov et al., 2003 [10]). When 

the UPL reaches the charge in the cloud, the initial continuous current (ICC) process begins. The 

ICC is usually accompanied by pulses, which have characteristics similar to those of 

M-components occurring after the return strokes (Rakov et al., 2001 [11]). After the IS, the 
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current in the channel might be near zero and followed by downward negative leader/return 

stroke processes within the same channel of the UPL. However, not all investigated triggered 

lightning had M-components or return stroke processes.  

The term “M-component” was firstly proposed by Malan and Collens (1937) [12] to present 

the temporary enhancement in luminosity along an existing grounded lightning channel. It was 

reported to occur either after the return stroke process in natural lightning (Fisher et al., 1993) 

[13] or during the IS of rocket-triggered lightning (Rakov et al., 1998) [7]. Properties of the 

luminosity of M-components, primarily below the cloud bottom, were well-studied by Fisher et 

al. (1993) [13] and Jordan et al. (1995) [14]. VHF images of M-components, primarily in the 

cloud in natural lightning, can be found in Shao et al. (1995) [15] and Mazur et al. (1998) [16]. 

The signature of channel-base currents and the associated electric fields of M-components in 

triggered lightning was well-addressed by Rakov et al. (2001) [11] and Thottappillil et al. (1995) 

[17]. A possible mechanism for M-components was proposed by Rakov et al. (1995) [18]: an 

M-component was a guided-wave process that involves a downward progressing incident wave 

followed by an upward progressing reflected wave in an existing grounded lightning channel. 

In the last two decades, observations with highly-time-resolved optical and electromagnetic 

field sensors have significantly advanced our knowledge of various lightning leader processes 

(e.g. Chen et al., 1999 and 2003) [19-20]. In addition, the VHF interferometry technique has 

been getting more and more popular in the study of lightning inception and development (e.g. 

Dong et al., 2001and 2003, Kawasaki et al., 2000, Edens et al. 2012) [21-24]. In the following, 
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the fine spatial evolution of leaders, K-breakdowns and M-components in a classically-triggered 

lightning discharge observed with a VHF broadband interferometer and a camera will be 

revisited and discussed.  

2. LIGHTING DATA AND LIGHTNING CHANNEL REBUILDING 

2.1 Lightning Data 

The lightning we analyzed was a rocket-triggered discharge obtained in the summer of 1999 

near Guangzhou City in China. The discharge was succeeded at 21:18:36 (Beijing Time) on July 

10 of 1999 when the rocket ascended to a height of about 400 m (estimated from the length of 

the wire the rocket spouted out, which measured about 460 m long and inclined) and the ground 

electric field was negative just before launch of the rocket. 

Shown in Fig. 1 is the observation setup during the experiment, which included a camera, a 

broadband interferometer (bandwidth 25~100 MHz) and a rocket launcher. The camera and 

broadband interferometer were located at a distance of 1.3 km west and 90 m south to the rocket 

launcher, respectively. A slow antenna with a time constant of 6 s (bandwidth 0.03 Hz ~1 MHz) 

located at the same position of the interferometer was used to record the electric field changes. 

The broadband interferometer consisted of three identical flat-plane antennas located separately 

at three apexes of a square with a 10 m baseline on ground. Each of the three antennas was 

connected via a 50 m coaxial cable to the same 4-channel digital storage oscilloscope (DSO) 

through a 25 MHz high-pass filters. The record length of each channel is 2 Mega samples. The 
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DSO sample rate was 1 GHz and its memory of each channel was divided into 2000 segments so 

as to record the whole process of a discharge. Each segment had a record length of 1000 samples 

and was pre-triggered by 400 samples. During the data analysis, digital filter was also used to 

make the VHF data is in the bandwidth of 25~100 MHz. Detailed information of the observation 

systems was given in (Dong et al., 2001) [21]. For convenience of our analysis, we set the 

launcher position as the origin of the coordinates, the camera on the X-axis and the 

interferometer and slow antenna on the Y-axis.  

Shown in Fig. 2 is the observed data for the discharge we analyzed. The left panel in the 

figure is a photograph of the discharge from the camera at 1.3 km west of the discharge, which 

shows a single channel with typical small horizontal offset between strokes caused by wind. The 

lower straight part in the photograph is the lightning channel with residual vaporized wire, while 

the upper bent part, which is estimated to be from about 400 to 900 m above ground, is believed 

to be the main channel formed by two successive leader-return stroke processes in air. Enlarging 

the photo, a faintly luminous spot/branch in left of the bright channel around the tip of the 

triggering wire can be found. The right panel in the figure is the data of the discharge recorded 

by the interferometer system at 90 m south, which included the electric field changes recorded 

with the slow antenna (a) and the VHF radiation sources in elevation (b) and azimuth (c). Shown 

in (d) is the 2D image of VHF sources of the discharge in azimuth and elevation. As the 

discharge was very close to the sensor, the electric field changes were partly saturated, however, 

it is still evident that the discharge included a preliminary leader process (P, at time 5 ms), 
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followed by a long lasting M-component-wise process (M, at time 460 ms) and two successive 

leader/return stroke processes (R1, at time 608 ms, and R2, at time 786 ms). 

2.2 Lightning Channel Rebuilding  

The photograph in Fig. 2 is believed to be the image of the bright leader/return stroke 

channels of the discharge below cloud bottom. It might partly or even not reflect the channels of 

the preliminary leader process and M-component-wise process of the discharge, but the 

preliminary leader and M-component-wise process channels would not be so far away from the 

leader/return stroke channels of the discharge. The VHF radiation sources in Fig. 2 are believed 

to be associated with breakdown processes involved in all the preliminary leader, the 

M-component-wise process and the two leader leader/return stroke processes during the 

discharge. The simplest approach for 3D channel conversion of these processes would be to 

assume all VHF sources are on a vertical plane going through the trigger launcher site. As shown 

by the photograph in Fig.2 and later in Figs. 5b and 7b, the leader/return stroke channel inclined 

to north of the launcher by about 300 m, while the interferometer was only 90 m away from the 

launcher in south. In such a case, in comparison to the simplest approach, it would be better to 

rebuild 3D channel images for this discharge by combining the photograph with the VHF 

radiation source data. The point is that the 3D reconstructed channels for those processes not on 

the photograph could be affected notably and we should be very careful when explain them. In 

addition, a positive leader produces less and weaker VHF radiations than a negative leader, 

which may not be able to trigger a lightning interferometer system. In follows, we first present 
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the channel rebuilding approach in detail and then an error analysis. 

Let the rocket launcher be at the origin in a Cartesian coordinate system (x, y, z). The camera 

is on the x-axis at (xcam = -1300m, 0, 0) and the interferometer is on the y-axis at (0, yint = -90m, 

0), as shown by Fig. 1. 

For the photograph, each point on the channel image produces a radial line pointing to the 

real lightning channel in space through the camera, and all such radial lines together would form 

a curved face in space (Face 1). Since a unit length on the photograph represents a certain angle 

in radian, by referring to a known point on the photograph, the 2D lightning channel on the 

photograph can easily be converted into a series of elevation and azimuth pair (φ1i, θ1i). Given 

that the azimuth from the camera to launcher is 0° and it increases counterclockwise, then each 

pair (φ1i, θ1i) represents a radial line through the camera to the lightning channel in space as, 

𝑥𝑥 = 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧(𝜑𝜑1𝑖𝑖)𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1𝑖𝑖) + 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 

𝑦𝑦 = 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧(𝜑𝜑1𝑖𝑖)𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1𝑖𝑖)   ….……. (1) 

Where, (i = 1,…, N1) is a space-resolved direction index of the radial line through the camera to 

different parts of the lightning channel. All such radial lines together would draw out a curved 

screen (Face 1) that contains the whole lightning channel viewed from the camera. Given that 

the tip of the triggering wire is 400 m high above ground and 1300 m east from the camera, the 

raw (φ1i, θ1i) data for the main leader/return stroke channel on the photograph have been obtained 

and are shown in Fig. 3, which were used to draw Face 1. 

For the interferometer data, each pair of azimuth and elevation presents a radial line viewed 
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from the interferometer through the lightning channel in space and hence another curved face 

(Face 2) would be formed. For a lightning process with strong VHF radiations, the 

interferometer gives a time-resolved series of elevation and azimuth pair (φ2j, θ2j). Given that the 

azimuth from interferometer to the launcher is 0° and it increases counterclockwise, then each 

pair (φ2j, θ2j) represents a radial line through the interferometer to the VHF source in space as, 

𝑥𝑥 = −𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧�𝜑𝜑2𝑗𝑗�𝑠𝑠𝑠𝑠𝑠𝑠�𝜃𝜃2𝑗𝑗� 

𝑦𝑦 = 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧�𝜑𝜑2𝑗𝑗�𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃2𝑗𝑗� + 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖          .…….  (2) 

Where, (j = 1,…, N2) is a time-resolved direction index of the radial line through the 

interferometer to each VHF source. All such radial lines together draw out a curved face (Face 2) 

that contains all VHF sources sensed by the interferometer during a given time period. Detailed 

raw (φ2j, θ2j) data from the interferometer for VHF sources during the initial leader process, the 

two leader/return stroke processes and the M-component are given in Figs. 4, 6, 8 and 10 

respectively, which were used to draw Face 2. 

Theoretically, for the two reader/return strokes that were seen by both the camera and the 

interferometer, intersection of Face 2 onto Face 1 might produce a full 3D channel for them.  

Projection of Face 2 onto Face 1 might also produce a 3D evolution image of the initial leader 

and M-component channels, but they might not be a true 3D channel since Face 1 might not 

contain their full channels. In addition, only the part of the channels within the view of the 

camera and below the cloud bottom could be reproduced properly. To get the trends of the 

channels within the cloud, especially for the M-component, the intersection of Face 2 onto Face 
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1 is capped with a horizontal plane at a fixed height of, say 1500 m, above the ground. The 3D 

channel rebuilt in such a way might not be a complete 3D one and need to be carefully 

explained.   

In addition, due to the operation principle an interferometer may have big uncertainties for 

VHF sources close to the interferometer or overhead. Since the present interferometer is only 90 

m away from the launcher, an error analysis is needed before channel rebuilding. For a VHF 

source at (yj, 0, zj), its elevation φ2j to the interferometer and the error in the elevation can be 

estimated by 

𝑐𝑐𝑐𝑐𝑐𝑐�𝜑𝜑2𝑗𝑗� = �𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖 ± 𝑙𝑙/2�/𝑧𝑧𝑗𝑗      ……  (3) 

Where yint = -90 m is the distance of the interferometer to the launcher and l = 10 m is the 

baseline of the interferometer antenna array. In case �𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖� ≫ 𝑙𝑙/2 the error will be very 

small. In case �𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖�~𝑙𝑙/2 the error might be significant. For the present case, as shown by 

the photograph, the triggering wire inclined away from the launcher in the opposite direction to 

the interferometer. We choose three source positions on the photograph, the highest channel point 

(y1 ≈ 422m, z1 ≈800m) and the tip (y2 ≈ 276m, z2≈400m) and middle (y3 ≈ 138m, z3≈200m) points 

of the triggering wire, for error analysis. By equation (3), the elevation and uncertainty from the 

interferometer to these three points are φ21 =57.38º ± 0.25º, φ22 =47.54º ± 0.39º and φ23 =41.26º ± 

0.63º, respectively. Projection of them onto Face 1 along y direction (θ =180º) by equation (2), 

the y values with their uncertainties for the three sources are estimated as y1 = 422 ±5 m, y2 = 276 

m ±5 m and y3 = 138 m ±5 m, respectively. Take account of the interferometer’s hardware and 



 11 

random error of ±0.5º, the uncertainty in y dimension when Face 2 is projected onto Face 1 

should be no more than ±15m for the present case. Similar conclusions could be drawn for the 

azimuth as well as the x and z values. For the M-component-wise process, when it is projected on 

the z =1500 m plane and Face 1, its uncertainty in x or y dimension should also be around ±15m. 

Based on the above analysis, the uncertainty in 3D is estimated as ±√152+152 + 152 = ±26, 

resulting in a space resolution of about 50 m. Therefore, a 3D channel rebuilt in this way should 

be interpreted based a resolution of about 50 m. These errors will get worse near the ground. 

Based on the above proposed method and error analysis, time-resolved 3D channels for the 

three leader processes and the M-component-wise process of the discharge have been rebuilt and 

discussed as follows.  

3. EVOLUTIONS OF LEADER CHANNELS 

3.1 Preliminary Leader Process (P) 

Shown in Fig. 4 is an expansion of the electric field changes and VHF sources corresponding 

to the preliminary leader process (marked P in Fig. 2): a) the electric field change, b) the 

elevation, c) the azimuth and d) the 2D image in elevation-azimuth. The electric field shows 

firstly a slow positive-going change during the time of 0 ~ 2ms and then an abrupt change to 

saturated level at the time of about 2 ms until the time of about 200 ms (also see Fig. 2). 

Meanwhile, there are only 3 isolated VHF sources detected by the interferometer at the time of 

0.877 ms, 1.586 ms and 1.668 ms, respectively, before the abrupt electric field change. The first 
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two VHF sources have very high elevation values which might be within the cloud, while the 

third one has a very low elevation which might be around the triggering wire. If there were an 

upward positive leader initiated from the tip of the triggering wire, it most likely occurred during 

this time period or even some time before the abrupt electric field, which might be only a faintly 

luminous channel and was simply missed by both the camera and the interferometer. There are 

also a few VHF sources with very high elevations and scattered azimuths during the time of 

about 2 ~ 4 ms after the abrupt electric field change, indicating an intra-cloud activity. Starting 

from about 4 ms to about 8 ms, there is a series of VHF source locations (see the VHF sources 

between the two vertical dash lines in Fig. 4 in (b), (c) and (d,)) that show an obvious 

downward-going trend in elevation, which might be a downward leader along the preceding UPL 

channel. A decreasing trend in elevation may also be caused by a leader going away from the 

interferometer, but the decreasing trend in such a case is usually not so steep. To examine this 

inference, 3D channels for this downward leader (named preliminary downward leader: PDL) 

were rebuilt and discussed as follows. 

Shown in Fig. 5 are the rebuilt 3D channel viewed from the interferometer on x-z plane (a) 

and from the camera on y-z plane (b) and the channel evolution speed (c) for the PDL of the 

discharge. Only the part of the channel out of the cloud is shown. It should be noted that such a 

rebuilt 3D channel is just simply a projection of what seen of the PDL by the interferometer onto 

the photograph-based Face 1. The lightning channel shown by the photograph is believed to be 

the return stroke channel rather than the PDL channel. The actual PDL channels could be tilted 
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away from Face 1, most likely towards south and overhead of the interferometer, as will be 

discussed in Sections 3.2 and 4.2. Therefore, the nature of the rebuilt 3D channel in Fig. 5 is still 

a 2D one, but for easy analysis and comparison against the main leader/return stroke channels. 

As seen from Fig. 5, the PDL firstly moved from about 930 m high downward to about 300 m 

high in a vertical manner and then turned to move in a zigzag manner around the triggering wire 

trace. A question here is why there is no a return stroke immediately following the attachment 

process being recorded, which normally occurs. A possible reason is that the return stroke 

following the PDL occurred indeed but was missed by the camera due to bad timing of the photo. 

And due to the saturation of the electric field at the moment, the return stroke following the PDL 

can’t be confirmed from the electric field record too. The zigzag channel segment might be 

partially attributed to irregular and diversified breakdown spots around the triggering wire trace. 

The speed of the PDL varied from 3.7 to 0.3 ×106 m/s when it descended from 930 m to 300 m 

high (shown by black solid-line in Fig. 5) and moved in zigzag towards the triggering wire 

(shown by red dash-dot-line in Fig. 5). The lower speed in downward stage corresponded to the 

bending channel part around 500 m to 600 m high. The leader speed showed a general trend of 

decease as it descended with the time. Since there was no VHF sources observed along the 

triggering wire trace, we had no mean to determine the speed of the PDL propagating along the 

triggering wire trace. 

3.2 Leader Preceding First Return Stroke (L1) 

Shown in Fig. 6 is an expansion of the electric field changes and VHF radiation source data 
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for the out-cloud part of the first leader/return stroke process (R1) of the discharge in Fig. 2: a) 

the electric field, b) the elevation, c) the azimuth and d) the 2D image in elevation-azimuth. As 

seen from the figure, during the time period from 603.8 to 607.3 ms, the leader (L1) was 

characterized by a slow descending negative electric field change accompanied with many VHF 

sources located. In contrast to this, the leader after this time period but before the return stroke 

showed a fast descending negative electric field change with few VHF sources located. This is 

probably because that the leader just before the return stroke ran downward along the conductive 

triggering wire trace, resulting in less and weak VHF radiations. The former, which was with 

many VHF sources located, can be further divided into three stages, namely L1a, L1b and L1c, 

respectively, as shown in the figure. The elevations of VHF radiation sources showed a 

descending trend for L1a, a horizontally expanding trend for L1b and a sharply ascending trend 

for L1c, while the azimuths showed a slowly ascending trend for L1a and L1b but a descending 

trend for L1c. As will be revealed later on, these three stages had quite different space 

propagation features from each other.  

Shown in Fig. 7 are the rebuilt 3D channel viewed from the interferometer on x-z plane (a) 

and from the camera on y-z plane (b), and the channel evolution speed (c) for leader L1. It was 

found that the L1a was a downward propagation stage with a relatively lower speed, while the 

L1b was a horizontally moving stage around the triggering wire trace and the L1c was an upward 

propagating stage along the trace of the preceding PDL channel with a relatively higher speed. 

The L1c (upward) might be interpreted as a branching and reflection of L1a (downward) current 
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around the triggering wire trace into the trace of the preceding PDL channel, probably due to the 

big difference in conductivity and potential between L1a, PDL and the triggering wire trace. 

Such a reflection might be a special phenomenon in this triggered lightning discharge, which was 

optically invisible to the camera but was well-imaged by the interferometer. Taking account of 

the continuous negative-going electric field change produced by L1, it is most likely that both 

L1a and L1c were negatively-charged with L1a going vertically down along Face 1 and Lc1 

going up but tilted away from Face 1 towards south and overhead position of the interferometer. 

A negative charge moves from the origin of L1a that is high in cloud and far away from the 

interferometer into L1c that is close and overhead to the interferometer will produce a 

continuously negative-going electric field change.     

The speed for L1a showed a decrease from 2.32 to 0.32 ×106 m/s as it descended, while that 

for L1c showed an increase from 0.85 to 2.7 ×106 m/s as it ascended. The speed for L1b was in a 

range of 0.4~1.1 ×106 m/s. Fig. 7 also means that the wire trace connected to L1 at the end of 

L1b and the beginning of L1c, where was about 500 m from the ground. The observed time delay 

between the beginning of L1c and the return stroke was about 1.5 ms, giving a leader velocity of 

0.33 ×106 m/s along the wire trace. These values are all on the slow side for dart leaders, 

especially for the path along the conducting triggering wire trace. This is probably due to that the 

time interval between L1 and previous M-component-wise process is very long (148 ms) and the 

leader channel analyzed are short and near ground. Jordan et al. (1992) [25] reported an average 

tendency for dart leader speed to decrease near ground in 12 triggered-lightning strokes in 
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Florida and 29 leaders in New Mexico triggered lightning. Jordan et al. (1992), for 11 natural 

lightning strokes and 36 triggered-lightning strokes in Florida and 32 triggered-lightning strokes 

in New Mexico, also examined dart leader speed as a function of the following return stroke 

current peak and of the duration of the previous inter-stroke interval. They found, for each of the 

three data sets analyzed, that dart leader speed and the following return stroke current peak are 

positively correlated. For all the triggered and natural lightning data taken together there is a 

weak but statistically significant tendency for lower leader speeds to be associated with longer 

previous inter-stroke intervals. 

3.3 Leader Preceding Second Return Stroke (L2) 

Shown in Fig. 8 is an expansion of the electric field changes and VHF radiation source data 

for the second leader/return stroke process (R2) of the discharge. As shown in the figure, this 

leader (L2) had a similar feature to that of L1 but with a shorter propagating time period. The L2 

can be divided into three stages too, namely L2a, L2b and L2c, respectively. The elevations 

showed a descending trend for L2a, a horizontally expanding trend for L2b and an ascending 

trend for L2c, while the azimuths showed an increasing (counter clockwise) trend for L2a and 

L2b but a decreasing (clockwise) trend for L2c, indicating that they moved in different 

directions.   

Shown in Fig. 9 are the rebuilt 3D channel viewed from the interferometer on x-z plane (a) 

and from the camera on y-z plane (b) and the channel evolution speed (c) for leader L2. The 

stage L2a propagated downward in a similar path to L1a but with a higher speed, while the L2b 
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and L2c are quite similar to L1b and L1c in both the propagation path and speed. Similar to L1c, 

it is most likely that L2c propagated upward but tilted away from Face 1 towards south and 

overhead of the interferometer. 

The speed for L2a showed a decrease from 4.13 to 0.5 ×106 m/s as it descended, and that for 

L2c showed an increase from 0.83 to 2.8 ×106 m/s as it ascended. The speed for L2b was in a 

range of 0.5~0.83 ×106 m/s. The observed time delay between the beginning of L2c and the 

return stroke was about 2.8ms, giving a leader velocity of 0.18 ×106 m/s along the wire trace. 

These values are similar to those for L1, which are on the slow side for dart leaders. As discussed 

in Section 3.2, it is probably because that the time interval between R1 and R2 is very long (178 

ms) and the channel analyzed is short and near ground. 

4. EVOLUTIONS OF THE M-COMPONENT-WISE PROCESS 

Shown in Fig. 10 is an expansion of the electric field and VHF source data for the 

M-component-wise process of the discharge in Fig. 2, which lasted about 173 ms, much longer 

than that of M-components reported in literature. As seen from the figure, this long lasting 

M-component-wise process can be divided into three stages, i.e. stages Ma, Mb and Mc, when 

the electric field waveforms were referenced. The spatial evolutions for each stage were obtained 

by projecting the VHF radiation sources onto the photograph-based Face1 and was capped with 

the horizontal plane at z =1500 m, as described in Section 2.2. Since the z =1500 m plane and 

Face 1 present just the rough positions of the VHF sources of the M-component-wise process 

inside and below the cloud, respectively, the rebuilt 3D channel might be notably different from 
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the real one, but it is good for discussion of its possible linkage to the PDL, L1 and L2 processes 

below the cloud base. 

4.1 Stage Ma 

The stage Ma corresponded to a slow negative-going electric field change, which lasted 

about 30 ms and consisted of 5 more small step-wise changes (namely a1, a2, a3, a4 and a5, 

respectively, in Fig. 10). The 3D channel progression for each small step-wise change of Ma is 

shown in Figs. 11 & 12, respectively, where the starting point is in red and the ending point is in 

blue for each small step-wise change.  

It is inferred that “a1” is a local breakdown process in cloud at a position far from overhead 

position of the PDL trace, while “a2” is a breakdown process/streamer extending horizontally 

from “a1” towards overhead position of the PDL trace at a speed of about 3.2×106 m/s (Fig. 11). 

The “a4” includes 2 source locations: the first one is near the starting location of the “a2” 

channel and the second one is overhead of the PDL channel. It may be a further development of 

the “a1” + “a2” channel towards overhead position of the PDL trace. The propagating speed for 

the “a4” is estimated as 1.9×106 m/s (Fig. 12). There were no VHF sources located for “a3” and 

“a5” which might mean that “a3” and “a5” were just a continuous charge transfer process along 

“a2” and “a4” channels, respectively. All these suggest that the Ma might be short duration 

episodes of negative breakdown accompanied with small K-type processes moving towards the 

flash origin in cloud, the overhead position of the PDL trace. 
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4.2 Stage Mb 

The stage Mb corresponded to a steep and large negative-going electric field change, which 

lasted about 3 ms and consisted of 2 sub-stages (Mb1 and Mb2) when the VHF radiation sources 

were examined (Fig. 10). Mb1 started in cloud with 5 VHF sources moving along the trace of 

Ma (indicated by VHF sources of no.1, 2, 3, 4 and 5 in Fig. 13a) and ended near ground at 

middle of the wire trace (indicated by the VHF source of no.6 in Fig.13a). With the VHF source 

of no.6 being considered, Mb1 would be a fast downward-moving process from cloud to ground 

along firstly the trace of the Ma and then the trace of the PDL (Fig. 13a). The moving speed of 

Mb1 process was estimated at about 6.2×106 m/s, much faster than that of both the Ma and the 

PDL processes. With the VHF source of no.6 being excluded, Mb would be just a fast K-type 

breakdown along the Ma trace towards overhead position of the PDL trace. In contrast, Mb2 was 

found to be a fast upward-moving process started near ground at middle of the wire trace 

(indicated by the VHF source of no.6 in Fig.14a) and propagated up to cloud along the PDL trace 

(indicated by VHF sources of no. 7, 8, 9, 10, 11 and 12 in Fig.14a) at a speed of about 2.2×106 

m/s. It should be noted that the speed here was estimated by capping the channel at a height of 

1500 m, while the actual channel could be higher than this (Shao et al., 1995) [15]. This means 

that the actual speed of Mb2 might be bigger than the speed estimated here. Besides, the long 

interval between Mb and PDL (about 455 ms long) might lead to a significant decay of the 

conductivity of PDL trace, hence a lower speed of Mb2 along the PDL trace than that in 

literature. It is noted that the interferometer got only few VHF sources for the Mb stage and did 
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not show a connection to the ground. This might be simple due to that the Mb process was along 

a pre-existing conducting channel built by the PDL so that it emitted weak and few VHF 

radiations. The steep negative-going electrical field change during Mb might mean that there 

were large amount of net negative charges being transferred from the far end of Mb1 (the VHF 

source of no. 1) towards the overhead position of PDL trace or even into the PDL trace. All these 

suggested that Mb would be an M-component (channel brightening) similar to that in literature, 

which started with an in-cloud K-type negative breakdown (Mb1) moving horizontally towards 

the origin of PDL trace, followed by a fast upward positive event (Mb2) moving vertically from 

ground towards cloud along the PDL trace. Since there were no VHF sources located along the 

PDL trace for Mb1 and also no optical and current measurements, it was hard to confirm whether 

Mb1 moved down to the ground.  

Based on VHF observations of natural cloud-to-ground lightning, Shao et al. (1995) [15] 

identified two types M events: i) those initiated by a negative breakdown attaching to a 

conducting channel to ground during a continuing current stage and ii) those initiated 

immediately following a return stroke by a positive breakdown and a fast negative recoil event, 

both were primarily a downward propagating phenomena. It is most likely that Mb might be a 

type i) M-event but was primarily an upward propagating phenomena.  

4.3 Stage Mc 

The stage Mc corresponded to a slow positive-going electric field change, which lasted about 

140 ms and consisted of 15 more small electric field changes, namely “c1”, “c2”,…, “c15”, 
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respectively, as shown in Fig. 10. Among them, the “c2”, “c4”, “c6”, “c8”, “c10”, “c11”, “c13” 

and “c15”, which are characterized by short step-wise negative-going electric field changes, are 

likely produced by small k-changes in the lightning channel as it extends, as substantiated by 

Fig.15. The propagation speeds for “c6”, “c8”, “c10” and “c11” were estimated to 7.2×104 m/s, 

3.2×106 m/s, 2.1×107 m/s and 4.6×106 m/s, respectively. The “c1”, ”c3” ,”c5”,”c7”,”c9”,”c12” 

and “c14”, which are characterized by smooth positive-going electric field changes and no 

corresponding VHF sources were located, are inferred to be some continuous current processes 

transferring negative charges from those channels developed by the Mb, “c2”, “c4”, “c6”, “c8”, 

“c11” and “c13”, respectively, into the ground. An overview of the Ma, Mb and Mc processes in 

comparison with the triggering wire and preliminary downward leader channel in 3D is shown in 

Fig. 16. 

5. DISCUSSIONS AND CONCLUSIONS 

Based on the data of photograph, the electric field change and VHF radiation sources, a 

preliminary downward leader (PDL), a long lasting M-component-wise process and two 

leader/return stroke processes involved in a classically triggered discharge were analyzed. 

Particularly, we practiced a new technique for 3D channel reconstruction by projecting the 

time-resolved VHF sources onto a curved screen that is formed from a still photograph for the 

same lightning discharge. A photograph usually shows the main channel of a leader/return stroke 

process below the cloud base, while the interferometric VHF sources are mainly emitted from 
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breakdowns and leader/streamer processes out and in the cloud. Therefore, the rebuilt 3D 

channels with the present technique for the two leader/return strokes were more or less the true 

ones, but those for the PDL and the long lasting M-component-wise process might be with 

notable errors. This means that we need to be very careful when use these rebuilt 3D channel for 

interpretation of the PDL and the long lasting K-breakdown and M-component-wise process. 

Nevertheless, the rebuilt 3D channels were much helpful than the raw 2D ones for us to analyze 

possible correlations between the PDL, the K-breakdown and M-component-wise process and 

the two leader/return strokes of the present discharge. Major results from these rebuilt 3D 

channels are summarized and discussed as follows:  

a) While a normal triggered discharge usually starts with an initial leader moving from the tip of 

the ascending rocket upward, there was no such an upward positive leader (UPL) being 

observed at the preliminary stage of the present discharge, probably due to low resolution and 

sensitivity of the measurements. In fact, there are also several other studies of triggered 

lightning with broadband interferometer in China, but all have no obvious UPL being 

observed. However, there was a downward negative leader at the preliminary stage (PDL) 

being observed, which moved from the cloud down and attached to the triggering wire trace 

but with no return stroke immediately following. The speed of the PDL ranged from 3.7 to 

0.3 ×106 m/s, which was higher than that of stepped leader but similar to that of dart-stepped 

leader in literature [1]. A reasonable explanation is that the PDL was a downward moving 

leader process along the channel trace possibly built by the previous initial UPL. 
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b) The leader preceding the first return stroke (L1) included three stages: L1a, L1b and L1c. In 

stage L1a, the leader started inside the cloud and propagated downward, but with a different 

channel to that of the PDL. In stage L1b, as the leader descended to about 300 m high, it 

turned to propagate along the same zigzag portion of the previous PDL trace towards the 

triggering wire trace. In stage L1c, as the leader attached to the triggering wire trace, it turned 

to propagate upward along the same vertical portion of the previous PDL trace. The speed for 

L1a showed a decrease from 2.32 to 0.32 ×106 m/s as it descended, while that for L1c showed 

an increase from 0.85 to 2.7 ×106 m/s as it ascended. The speed for L1b was in a range of 

0.4~1.1 ×106 m/s. The speed of L1 along the wire trace was estimated at 0.33 ×106 m/s. All 

these speed values were on the slow side for dart leaders, especially for a conducting wire 

trace. This might be because that the interval between L1 and previous PDL and 

M-component was too long (148ms) and the channel analyzed was short and near ground 

(<900m), as discussed in Section 3.2. The L1c (upward) can be interpreted as a reflection 

behavior of L1a (downward) around the tip of the triggering wire trace into the previous PDL 

and M-component channel trace, which was optically invisible but bright in VHF. A possible 

reason might be that the PDL trace had a lower conductivity than the triggering wire trace and 

both were with more or less the ground potential (grounded), while the L1a channel was with 

cloud potential. As a result, the L1 moved partially along the PDL trace upward with 

relatively strong VHF radiations and partially along the wire trace downward with relatively 

weak VHF radiations as it attached to the wire trace. Such a phenomenon may also exist in 
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other upward triggered discharges but is not reported due to lacking of simultaneous optical 

and VHF observations of this kind of discharges. 

c) The leader preceding the second return stroke (L2) behaved similarly to that of L1 but with a 

higher speed than that of L1. The speed ranges were 0.5~4.13 ×106 m/s, 0.5~0.83 ×106 m/s 

and 0.83~2.8 ×106 m/s for the L2a, L2b and L2c, respectively. The speed of L2 along the wire 

trace was estimated at 0.18 ×106 m/s. Similar to L1, these low leader speed values might be 

due to the long time interval (178 ms) between R1 and R2 and the short near ground channel 

analyzed. 

d) The long lasting M-component-wise process following the PDL consisted of a slow 

negative-going change stage (Ma), followed by a fast negative-going change stage (Mb) and 

then a slow positive-going recovery change stage (Mc). Stage Ma was found to be intra-cloud 

episodes of negative breakdown and K- changes moving towards the overhead position of the 

PDL trace. Stage Mb could be considered as a M-component (channel brightening) similar to 

that in literature, which started with an in-cloud K breakdown (Mb1) moving horizontally 

towards the origin of the PDL trace, followed by a positive event (Mb2) moving vertically 

from ground towards cloud along the PDL trace. As the upward-moving event (Mb2) reached 

the cloud, more new breakdowns and K streamers (stage Mc) appeared around the in-cloud 

extremities of pre-built conducting channels by Ma and Mb. The speeds of streamers in stage 

Ma ranged in 1.9~3.2 ×106 m/s and that in stage Mc ranged in 7.2×104 m/s ~ 2.1 ×107 m/s, 

which were similar to that of in-cloud streamers in natural lightning by Shao et al. (1995) 
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[15]. The estimated speed for Mb1 and Mb2 was 6.2 ×106 m/s and 2.1×106 m/s respectively, 

which might be too slow for a process moving in the conducting PDL trace. A possible reason 

might be that we capped the Mb channel at 1500m high for easy analysis, leading to an 

underestimation of Mb speed. Besides, the long interval between Mb and PDL (about 455 ms) 

could lead to a significant decay of the conductivity of the PDL trace, hence a lower current 

propagating speed along it than that in literature.  

e) It should be noted that Sun et al. (2013) [26] have located VHF sources on the wire of a 

triggered discharge, while we have no more VHF sources located along the triggering wire of 

the present discharge. This could be partially due to that our interferometer system worked at 

a sequentially triggered mode with a high triggering threshold and relatively weak VHF 

radiations might be missed. Besides, a short-baseline interferometer with few antennas has 

difficulty in locating VHF sources if there more than 1 source emitting or if the source is not 

point-like. In particular, this tends to happen for a leader propagating along the triggering 

wire near the time of a return stroke and at close distance. 
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CAPTIONS 

Fig. 1:  The setup of observations during the triggered-lightning experiment in 1999 in 

Guangzhou, China. X-axis: west to east, Y-axis: south to north. 

Fig. 2: Analyzed raw data of the triggered-lightning discharge analyzed. The left panel is a 

photograph of the discharge from a camera located 1.3 km west of the rocket launcher. 

The right panel is the electric field changes (a) and the VHF radiation sources in 

elevation (b) and azimuth (c) and the elevation-azimuth image (d) of the discharge. The 

azimuth from the interferometer to the launcher on the Y-axis is set to 0° and it 

increases counterclockwise. The time 0 refers to the triggering time of the slow antenna 

and the interferometer system. 

Fig. 3:  Raw azimuth and elevation for the lightning channel on the photograph in Fig. 2, versus 

the height (z) at x=0 plane. The azimuth from the camera to the launcher on the X-axis 

is set to 0° and it increases counterclockwise. 

Fig. 4:  Expansion of the electric field (a), VHF source elevation (b) and azimuth (c) and the 

elevation-azimuth image (d) for the preliminary stage (P) in Fig. 2. The data between 

the two vertical dash lines are used for rebuilding the 3D channel.  

Fig. 5: Rebuilt 3D channels viewed from the interferometer on x-z plane (a) and from the 

camera on y-z plane (b) and the channel evolution speed (c) for the downward leader 

(PDL) during the preliminary stage (P) of the discharge in Fig. 2. The blue dash-line 

represents the triggering wire trace. The blue dot-line represents the triggering wire 

trace. The black and red lines are for the leader channel at downward-moving and 
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zigzag-moving stages, respectively.  

Fig. 6:  Expansion of the electric field (a), VHF source elevation (b) and azimuth (c) and the 

elevation-azimuth image (d) for the first leader/return stroke (L1/R1) in Fig. 2. 

Fig. 7:  Rebuilt 3D channels viewed from the interferometer on x-z plane (a) and from the 

camera on y-z plane (b) and the channel evolution speed (c) for the leader (L1) 

preceding the first return stroke (R1). The blue dot-line represents the triggering wire 

trace. The black, red and purple lines are for the leader at downward, zigzag and upward 

stages, respectively. 

Fig. 8:  Expansion of the electric field (a), VHF source elevation (b) and azimuth (c) and the 

elevation-azimuth image (d) for the second leader-return stroke (L2/R2) in Fig. 2. 

Fig. 9:  Rebuilt 3D channels viewed from the interferometer on x-z pane (a) and from the 

camera on y-z plane (b) and the channel evolution speed (b) for the leader (L2) 

preceding the second return stroke (R2). The blue dot-line represents the triggering wire 

trace. The black, red and purple lines are for the leader at downward, zigzag and upward 

stages, respectively. 

Fig. 10: Expansion of the electric field (a), the VHF source elevation (b) and azimuth (c) and the 

elevation-azimuth image (d) for the M-component-wise process of the discharge in Fig. 

2. The M process was divided into three stages, Ma, Mb and Mc, respectively. 

Fig. 11: Rebuilt 3D evolution of “a2” of Ma of the M-component-wise process (a), that viewed 

from the interferometer on x-z plane (b) and that viewed from the camera on y-z plane 
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(c). Red “+” was for the starting point and blue “+” for the ending point for “a2” 

process. 

Fig. 12: Similar to Fig. 11 but for “a4” of Ma of the M-component-wise process. 

Fig. 13: Similar to Fig. 11 but for Mb1 of Mb of the M-component-wise process. The numbers 

(1, 2, 3, 4, 5 and 6) indicate the VHF sources’ time sequence. Mb1 starts (red “+”) in 

cloud and goes down to ground (blue “+”) along the PDL channel. 

Fig. 14: Similar to Fig. 11 but for Mb2 of Mb of the M-component-wise process. The numbers (6, 

7, 8, 9, 10, 11 and 12) indicate the VHF sources’ time sequence. Mb2 starts (red “+”) 

near ground and goes up to cloud (blue “+”) along the PDL channel. 

Fig. 15: Similar to Fig. 11 but for whole Mc stage of the M-component-wise process. The Mc 

process consists of c1, c2, c3…c15. It seems that they likely are small k-changes 

produced in the Ma and Mb channel as it extends. 

Fig. 16: An overview of the Ma, Mb and Mc processes in comparison with the triggering wire 

and preliminary downward leader channel in 3D. 
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FIGURES: 

 

Fig. 1: The setup of observations during the triggered-lightning experiment in 1999 in 

Guangzhou, China. X-axis: west to east, Y-axis: south to north.  

 

Fig. 2: Analyzed raw data of the triggered-lightning discharge analyzed. The left panel is 

a photograph of the discharge from a camera located 1.3 km west of the rocket 

launcher. The right panel is the electric field changes (a) and the VHF radiation 

sources in elevation (b) and azimuth (c) and the elevation-azimuth image (d) of 

the discharge. The azimuth from the interferometer to the launcher on the Y-axis 

is set to 0° and it increases counterclockwise. The time 0 refers to the triggering 

time of the slow antenna and the interferometer system.   
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Fig. 3: Raw azimuth and elevation for the lightning channel on the photograph in Fig. 2, 

versus the height (z) at x=0 plane. The azimuth from the camera to the launcher 

on the X-axis is set to 0° and it increases counterclockwise. 

 
 

Fig. 4: Expansion of the electric field (a), VHF source elevation (b) and azimuth (c) and 

the elevation-azimuth image (d) for the preliminary stage (P) in Fig. 2. The data 

between the two vertical dash lines are used for rebuilding the 3D channel.  
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(c) 

Fig. 5: Rebuilt 3D channels viewed from the interferometer on x-z plane (a) and from the 

camera on y-z plane (b) and the channel evolution speed (c) for the downward 

leader (PDL) during the preliminary stage (P) of the discharge in Fig. 2. The blue 

dot-line represents the triggering wire trace. The black and red lines are for the 

leader channel at downward and zigzag stages, respectively.  
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Fig. 6: Expansion of the electric field (a), VHF source elevation (b) and azimuth (c) and 

the elevation-azimuth image (d) for the first leader/return stroke process (L1/R1) 

in Fig. 2. 
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(c) 
Fig. 7: Rebuilt 3D channels viewed from the interferometer on x-z plane (a) and from the 

camera on y-z plane (b) and the channel evolution speed (c) for the leader (L1) 

preceding the first return stroke (R1). The blue dot-line represents the triggering 

wire trace. The black, red and purple lines are for the leader at downward, zigzag 

and upward stages, respectively. 
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Fig. 8: Expansion of the electric field (a), VHF source elevation (b) and azimuth (c) and 

the elevation-azimuth image (d) for the second leader-return stroke process (L2/R2) in 

Fig. 2. 
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(c) 

Fig. 9: Rebuilt 3D channels viewed from the interferometer on x-z plane (a) and from the 

camera on y-z plane (b) and the channel evolution speed (c) for the leader (L2) 

preceding the second return stroke (R2). The blue dot-line represents the 

triggering wire trace. The black, red and purple lines are for the leader at 

downward, zigzag and upward stages, respectively. 
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Fig. 10: Expansion of the electric field (a), the VHF source elevation (b) and azimuth (c) 

and the elevation-azimuth image (d) for the M-component-wise process of the 

discharge in Fig. 2. The M process was divided into three stages, Ma, Mb and Mc, 

respectively. 
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      (b)           (c) 

Fig.11: Rebuilt 3D evolution of “a2” of Ma of the M-component-wise process (a), that 

viewed from the interferometer on x-z plane (b) and that viewed from the camera 

on y-z plane (c). Red “+” was for the starting point and blue “+” for the ending 

point for “a2” process.  
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(a) 

 
   (b)           (c) 

Fig. 12: Similar to Fig. 11 but for “a4” of Ma of the M-component-wise process. 

 

 

  



11 
 

 
(a) 

 
      (b)            (c) 

Fig. 13: Similar to Fig. 11 but for Mb1 of Mb of the M-component-wise process. The 

numbers (1, 2, 3, 4, 5 and 6) indicate the VHF sources’ time sequence. Mb1 starts 

(red “+”) in cloud and goes down to ground (blue “+”) along the PDL channel. 
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(a) 

 

(b)     (c) 

Fig. 14: Similar to Fig. 11 but for Mb2 of Mb of the M-component-wise process. The 

numbers (6, 7, 8, 9, 10, 11 and 12) indicate the VHF sources’ time sequence. Mb2 

starts (red “+”) near ground and goes up to cloud (blue “+”) along the PDL 

channel. 

 



13 
 

 

 
(a) 

 
      (b)            (c) 

Fig. 15: Similar to Fig. 11 but for whole Mc stage of the M-component-wise process. The 

Mc process consists of c1, c2, c3…c15.  It seems that they likely are small k-changes 

produced in the Ma and Mb channel as it extends.  
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Fig. 16: An overview of the Ma, Mb and Mc processes in comparison with the triggering 

wire and preliminary downward leader channel in 3D.  
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