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Abstract

We investigate an age-structured hyperbolic equation model by allowing the birth and death functions to

be density dependent and periodic in time with the consideration of seasonal effects. By studying the

integral form solution of this general hyperbolic equation obtained through the method of integration along

characteristics, we give a detailed proof of the uniqueness and existence of the solution in light of the

contraction mapping theorem. With additional biologically natural assumptions, using the tick population

growth as a motivating example, we derive an age-structured model with time-dependent periodic maturation

delays, which is quite different from the existing population models with time-independent maturation delays.

For this periodic differential system with seasonal delays, the basic reproduction number R0 is defined as the

spectral radius of the next generation operator. Then, we show the tick population tends to die out when

R0 < 1 while remains persistent if R0 > 1. When there is no intra-specific competition among immature

individuals due to the sufficient availability of immature tick hosts, the global stability of the positive periodic

state for the whole model system of four delay differential equations can be obtained with the observation

that a scalar subsystem for the adult stage size can be decoupled. The challenge for the proof of such a

global stability result can be overcome by introducing a new phase space, based on which, a periodic solution

semiflow can be defined which is eventually strongly monotone and strictly subhomogeneous.

Keywords: age-structure; seasonal effects; periodic delay; tick population; uniform persistence; global

stability

1. Introduction

Mathematical modeling for population growth has an extensive history dated back to the eighteenth

century when Leonhard Euler studied human population growth [1]. However, mathematical formulation of

population ecology did not acquire extensive development until Lotka and Volterra pioneered the modern

ecological theory [1, 2]. There are many different ways to derive the models in literatures including the

Leslie matrix, difference equations, integral equations and functional differential equations [3]. Many models

consisting of simple ordinary differential equations (such as the prototypical logistic differential equations)
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may not be appropriate for fully understanding the complicated dynamics of most populations because they

postulate that all individuals are the same as each other [4]. As a matter of fact, the individual growth

rate in the real world varies with many biotic and abiotic factors and therefore, structured population

models characterizing the differences between individuals may be a more realistic way to better describe

complex population dynamics. One of the most important structuring variables in population dynamics is

the chronological age as the reproduction and survival capabilities among individuals differ from age to age.

Age-structured modeling framework was first introduced by Lotka and Mackendrick with the incorporation

of age-dependent birth and death rates [5]. Since then, age-structured models have been widely studied and

applied to population ecology and epidemiology [6, 7]. As the research moves along, other factors such as

environmental aspects have been integrated into age-structured models.

Seasonality due to variations of weather conditions is known as the pervasive external environmental factor

affecting the annual trends of population dynamics and transmission of infectious diseases. For example,

mosquito-borne diseases such as dengue fever always pose high prevalence in the summer when the humidity

and temperature are appropriate for the breeding of mosquitoes, while the incidence rate of dengue fever

declines to the lowest level during winter due to the low temperature and dry weather [8]. Many researchers

have explored the impact of seasonality on influenza [9], dengue fever [8] and respiratory tract infections [10]

and so on. In particular, authors in [11] reviewed some examples of human and wildlife diseases to interpret

the roles of seasonal variations on the dynamics of infectious diseases from different aspects. In the current

study, we investigate the age-structured population dynamics subject to seasonal effects by incorporating

periodic birth, death and maturation rates. Our main focus is on the mathematical modeling and analysis

of the population size evolution, with the tick growth as the motivating example.

The population growth of ticks, the primary vector transmitting the tick-borne diseases such as Lyme

disease, babesiosis, anaplasmosis, tularemia and so on [12], has attracted a growing body of studies in order

to evaluate the disease risk. Seasonality is considered as the driving factor to generate annual patterns of

tick dynamics especially the survival during non-parasitic periods [13]. The lifecycle of ticks can be divided

into four main stages including egg, larval, nymphal and adult. Ogden and coauthors formulated a computa-

tional model with temperature dependent delays, which takes into account the twelve tick stages to illustrate

the temperature effect on population growth by dividing each post-egg stage into three substages including

questing, feeding and engorged [14]. Since then, a number of age-structured models incorporating seasonal

variations have been developed. Authors in [15] proposed an ordinary differential model consisting of twelve

ordinary differential equations and studied tick persistence and the existence and local stability of unique

endemic equilibrium in terms of basic reproduction number R0. A similar deterministic model involving

twelve periodic ordinary differential equations was developed in [16], where the seasonal temperature-driven

development rates and host biting rates were estimated via temperature normals smoothened by Fourier

analysis and the values of R0 were evaluated for the model with various locations in Eastern Canada. A

system of delay differential equations was built in [17] to investigate the self-regulation dynamics of tick pop-
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ulation. Considering the fact that interstadial developmental time is affected by temperature, authors in [18]

formulated an elegant link between time-dependent maturation delays and the development durations. They

further evaluated the basic reproduction number for such a system with applications to different scenarios.

However, few theoretical results related to the global dynamics, including the extinction, persistence and the

global stability of the model system in terms of R0 were performed in [18], and this fact constitutes the main

motivation of the current study. In particular, we will provide a rigorous mathematical framework to study

the population growth subject to seasonal variations on birth, death and development durations. Although

the study is presented in terms of tick population, it is worth remarking that the theoretical framework is

general enough for investigating population growths of other species.

The goal of the present study is twofold. On one side, it is necessary to provide a comprehensive study

for the topic through the modeling population growth subject to seasonal factors with a hyperbolic equation

and its reduction to a periodic differential system with periodic delays. However, it is not always the case

that rigorous biological and mathematical arguments are included. On the other side, detailed analysis is

needed for hyperbolic equations on the existence and uniqueness of solutions in a general biological setting

and the global analysis of the delay differential systems should be performed from the perspective of global

extinction, persistence and global stability of a positive periodic solution. The rest of this paper is organized

as follows. A periodic age structured hyperbolic equation, known as McKendrick-von Foerster equation is

presented in Section 2 and some preliminary results on the existence and uniqueness of the solution are

shown. Section 3 derives an age-structured model in the form of periodic differential equations with periodic

delays from the general hyperbolic model. In Section 4, the definition of R0 and detailed proof of tick

extinction and persistence in terms of R0 are established. When the host populations for immature ticks,

such as deers , white-footed mice, chipmunks and shrews [19], are abundant and the density-dependent

regulation of immature ticks can be ignored, existence and global attractivity of a positive periodic solution

is shown by using the theory of monotone dynamical systems for the case R0 > 1. A brief discussion is

presented in the last section. We defer some mathematical arguments to the Appendix section.

2. Model formulation and well-posedness

2.1. A hyperbolic model for age-structured population growth with seasonal effects

Let ρ(t, a) be the population density with respect to age a at time t. Considering the effects of seasonal

biotic and abiotic factors on population growth, the well-known McKendrick-von Foerster equation (also

called Lotka-McKendrick equation sometimes [20, 21, 22]) as a modeling framework for age structured

population growth can be extended to
( ∂∂t + ∂

∂a )ρ(t, a) = −µ
(
t, a,

∫∞
0
q(t, s)ρ(t, s)ds

)
ρ(t, a),

ρ(0, a) = φ(a), a ≥ 0,

ρ(t, 0) = b
(
t,
∫∞
0
p(t, s)ρ(t, s)ds

)
, t ≥ 0.

(2.1)
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Here the egg fecundity rate b
(
t,
∫∞
0
p(t, s)ρ(t, s)ds

)
is dependent on time t and population density with a

weight function p(t, a), the per-capita mortality rate µ
(
t, a,

∫∞
0
q(t, s)ρ(t, s)ds

)
varies with time t, age a and

the population density with another weight function q(t, a). Here and in what follows, the variable parameter

functions including the birth rate b(t, ·), per-capita death rate µ(t, ·, ·) and weight functions q(t, ·) and p(t, ·)

are all periodic in time t with the same period T , taking the seasonal effects on population growth into

account [16, 18]. The function φ(·) gives the non-negative initial age distribution of the population. It is

very natural to have the following general assumptions on the birth rate, death rate, initial and boundary

conditions as well as kernel functions:

(B1) Both the birth rate b (t, x) and the per-capita death rate µ (t, a, x) are non-negative and Lipschitzian

functions with respect to the x variable with Lipschitzian constants b̄ and µ̄ respectively. Moreover,

there exists a positive constant µmin such that µ (t, a, x) ≥ µmin > 0 for all x, t ≥ 0 and a ≥ 0.

(B2) The inherent relationships between boundary and initial condition must be satisfied, that is

ρ(0, 0) = φ(0) = b

(
0,

∫ ∞
0

p(0, s)φ(s)ds

)
.

(B3) q(t, ·) and p(t, ·) are assumed to be non-negative in L[0,∞).

Based on these assumptions, we can establish some preliminary results for the hyperbolic equation (2.1) as

below.

2.2. Existence and non-negativeness of solutions

In order to obtain the formulation of solutions for system (2.1), we will follow a more readily compre-

hensible method of characteristics (for example Li and Brauer [20] and [22]). Since the time variable t is

involved in the right hand side of the hyperbolic equation and the boundary condition, a careful argument

is needed and for reader’s convenience, we present the details in Appendix A. Then, (2.1) can be written as

the following equivalent integral equation:

ρ(t, a) =b

(
t− a,

∫ ∞
0

p(t− a, s)ρ(t− a, s)ds
)

exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)ρ(t− a+ r, s)ds)dr

)
1{t>a}

+ φ(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)ρ(r, s)ds)dr

)
1{a≥t},

(2.2)

where the indicator function is shown as follows:

1{t>a} =

 1, t > a ≥ 0,

0, a ≥ t ≥ 0,
and 1{a≥t} =

 0, t > a ≥ 0,

1, a ≥ t ≥ 0.

Next, we prove local existence and uniqueness of solutions to system (2.2) and hence to system (2.1) in view

of Theorem 2.1 in [23].
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Theorem 2.1. Let x0 = φ(·) ∈ L+[0,∞). Then, there exists ε > 0 and an open neighborhood B0 ⊂ L[0,∞)

with x0 ∈ B0 such that there exists a unique continuous function, χ : [0, ε] × B0 → L[0,∞) that satisfies

(2.2) with χ(0, x) = x for x ∈ B0.

Proof. Set Y = C([0, ε] × B0, L[0,∞)), the set of all continuous functions from [0, ε] × B0 to L[0,∞) with

the norm ‖ · ‖Y defined by

‖ψ‖Y = sup
t∈[0,ε], x∈B0

∫ ∞
0

|ψ(t, x)(a)|da,

where ε > 0 and B0 ⊂ L[0,∞) is a neighborhood of x0, which will be determined later. Let B be a subset of

Y containing functions whose ranges lie in B ⊂ L[0,∞), where B = U(φ(·), r) is the closed ball of radius r

centered around the initial function with the value of r to be determined later. Then, B is a closed subset of

the complete metric space Y . Define an operator Λ on B as follows: for any x = x(·) ∈ B0, η(t, x)(·) ∈ B,

Λ(η)(t, x)(a) = b

(
t− a,

∫ ∞
0

p(t− a, s)η(t− a, x)(s)ds

)
exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η(t− a+ r, x)(s)ds)dr

)
1{t>a}

+ x(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t}.

(2.3)

If Λ admits a fixed point u in B, i.e. Λu = u, then Λu(t, x)(·) = u(t, x)(·). Let ρ̃(t, a) = u(t, x)(a), ∀a ≥ 0,

then we have

ρ̃(t, a) =b

(
t− a,

∫ ∞
0

p(t− a, s)ρ̃(t− a, s)ds
)

exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)ρ̃(t− a+ r, s)ds)dr

)
1{t>a}

+ x(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)ρ̃(r, s)ds)dr

)
1{a≥t}.

Hence, ρ̃(t, a) satisfies equation (2.2), i.e. ρ̃(t, a) is a solution to (2.2) with ρ̃(0, a) = x(a).

The subsequent proof is to show that Λ is a contraction mapping on B, which ensures the existence of a

unique fixed point of Λ on B. This conclusion can be achieved by the following three steps (details of these

three steps are presented in the Appendix B):

(I) For any η ∈ B, we first show Λ(η) ∈ Y , that is Λ : B → Y ;

(II) For any η ∈ B, we further claim Λ(η) ∈ B, that is Λ : B → B;

(III) Λ is a contraction mapping on B.

Thus, the contraction mapping theorem guarantees the existence of a unique fixed point of Λ in B, denoted by

χ. In conclusion, χ(t, x) is the continuous solution to (2.2) on [0, ε]×B0 with χ(0, x) = x for any x ∈ B0.

We can easily check from the integral form (2.2) that this solution to (2.1) remains nonnegative whenever

it exists for any nonnegative initial value ρ(0, ·). Hence the following theorem holds.
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Theorem 2.2. Any solution to (2.2) through a non-negative initial value remains non-negative for every

a ≥ 0 and all t ≥ 0 on the interval of existence.

To obtain the existence and uniqueness of the solution, we employ the classical approach, by rewriting the

partial differential equation to an integral equation through integration along the characteristics. However,

we would like to mention that other approaches are applicable, for example, by considering the equation as

a Cauchy problem, the integral solution of which can be investigated by the integrated semigroups theory

[24, 25].

3. Reduction to DDE model with periodic delays

In this section, we shall reduce the hyperbolic equation (2.1) into a system of delay differential equations,

for which the tick population dynamics is easier to infer. However, the reduction process involves careful

biological justifications. We first assume some age thresholds in order to stratify the tick growth into some

discrete age stages, and in this paper, we divide the ticks into four stages, including egg, larval, pupal and

adult ones. Since the maturation age is determined by weather conditions, two classes of periodically time-

dependent terms are introduced, which are the developmental period and the chronological age thresholds.

At time t, denote by τi(t) the time period needed for ticks to develop from the i-th stage (i = E,L,N ,

denoting egg-stage, larval-stage and nymphal-stage respectively) to the (i + 1)-th stage (i + 1 = L,N,A,

representing larval-stage, nymphal-stage and adult-stage respectively). In general, τi(t) is determined by

ambient environment conditions and can be implicitly considered as a periodic function of time t with the

period T , being one year. That is, the ticks developing to the (i + 1)-th stage at time t were entering the

i-th stage at time t− τi(t). Likewise, we assume the maximum chronological ages at time t are fE(t), fL(t)

and fN (t) for egg, larval and nymphal stages respectively, which are in order of increasing maturity, that is

fN (t) ≥ fL(t) ≥ fE(t) for every t ≥ 0. Meanwhile, the threshold ages for each stage at the instant time t are

assumed to be periodic functions of t with the same period T . The relationships between time dependent

threshold ages and time-varying delays can be formulated as follows:

fE(t) = τE(t),

fL(t) = τL(t) + τE (t− τL(t)) = τL(t) + fE (t− τL(t)) ,

fN (t) = τN (t) + τL(t− τN (t)) + τE(t− τN (t)− τL(t− τN (t))) = τN (t) + fL(t− τN (t)),

1− f ′L(t) = (1− τ ′L(t))(1− f ′E(t− τL(t))),

1− f ′N (t) = (1− τ ′N (t))(1− f ′L(t− τN (t))).

(3.1)

These relationships are illustrated in Figure 1 and interested readers can also find another derivation for

these relationships in [18].

Moreover, the following arguments guarantee that τi(t) must satisfy 1− τ ′i(t) > 0 (i = E,L,N). Indeed,
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(a)(b)(c)

Figure 1: (a) At time t, the ticks reach the threshold age fE(t) and develop into the larval stage. These newly developed larvae are
grown from eggs laid at previous time t−τE(t). Thus, the threshold age at time t is fE(t) = t−(t−τE(t)) = τE(t). (b) At time t,
the ticks reach the threshold age fL(t) and develop into the nymphal stage. These newly developed nymphs are grown from ticks
entering larval-stage at previous time t−τL(t) which were developed from eggs laid at earlier time t∗(t) = t−τL(t)−τE(t−τL(t)).
Thus, the threshold age at time t admits fL(t) = t − t∗(t) = τL(t) + τE(t − τL(t)) = τL(t) + fE(t − τL(t)). (c) At time t,
the ticks reach the threshold age fN (t) and mature into adults. These newly developed adults are grown from ticks entering
nymphal-stage at previous time t − τN (t) which were developed from larvae at earlier time t1(t) = t − τN (t) − τL(t − τN (t)).
Likewise, these larvae stem from eggs laid at previous time t2(t) = t−τN (t)−τL(t−τN (t))−τE(t−τN (t)−τL(t−τN (t))). Thus,
the threshold age at time t is fN (t) = t− t2(t) = τN (t)+ τL(t− τN (t))+ τE(t− τN (t)− τL(t− τN (t))) = τN (t)+ fL(t− τN (t)).

this assumption is biologically reasonable since the following relationship holds:

∫ t

t−τi(t)
σ(r)dr = 1, i = E,L,N,

where σ(r) is the developmental proportion at time r. After taking the derivative with respect to t, we have

1− τ ′i(t) =
σ(t)

σ(t− τi(t))
, i = E,L,N,

which indicates 1− τ ′i(t) > 0. Then, it is easy to check that 1− f ′i(t) > 0 (i = E,L,N). Experimentally, we

can measure the developmental proportion to evaluate the development duration τi(t) by using the above

relationship, from which chronological age thresholds fi(t) can be derived through the identities in (3.1).

The population size for each stage can be computed as the accumulative density between two age thresh-

olds, and in particular, we have the following mathematical expressions for the numbers of individuals within

the egg (E(t)), larval (L(t)), nymphal (N(t)) and adult (A(t)) stages:

E(t) =
∫ fE(t)

0
ρ(t, a)da, L(t) =

∫ fL(t)
fE(t)

ρ(t, a)da, N(t) =
∫ fN (t)

fL(t)
ρ(t, a)da, A(t) =

∫ amax

fN (t)
ρ(t, a)da, (3.2)

where amax is the maximum chronological age of adult ticks, rather than infinity as the life span of ticks is

between 2 to 4 years [26]. Since the solution of equation (2.1) is in L+[0,∞) based on results in Section 2,

the above terms are all well-defined and remain nonnegative when it exists.

Next, we propose natural biological assumptions for the birth and death rates in the hyperbolic equation

(2.1). Since only adults give birth, b
(
t,
∫ amax

0
p(t, s)ρ(t, s)ds

)
can be rewritten as b(t, A), a periodic function

in t. This can be done by choosing an appropriate weight function p(t, a) in the general model (2.1) as

follows:

p(t, a) =

 1, if fN (t) < a < amax,

0, otherwise.

For individuals in each stage, they are subject to natural death rates µi(t) (i=E, L, N , A) and possible

density dependent death rates (except eggs) Di(t, i(t))i(t) (i=L, N , A) due to intra-specific stage competition

[27]. This assumption can be formulated in the general PDE equation by choosing an appropriate kernel
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q(t, a) in µ
(
t, a,

∫ amax

0
q(t, s)ρ(t, s)ds

)
, that is

q(t, a) =



qE(t, a), if 0 ≤ a ≤ fE(t),

qL(t, a), if fE(t) < a ≤ fL(t),

qN (t, a), if fL(t) < a ≤ fN (t),

qA(t, a), if fN (t) < a < amax.

The value of qi (i=E, L, N , A represent egg, larval, nymphal and adult stages respectively) is 1 if the ticks

develop into the i-th stage, otherwise the value takes 0. Therefore, the function µ
(
t, a,

∫ amax

0
q(t, s)ρ(t, s)ds

)
takes the following form:

µ(t, a,

∫ amax

0

q(t, s)ρ(t, s)ds) =



µE(t), if 0 ≤ a ≤ fE(t),

µL(t) +DL(t, L(t))L(t), if fE(t) < a ≤ fL(t),

µN (t) +DN (t,N(t))N(t), if fL(t) < a ≤ fN (t),

µA(t) +DA(t, A(t))A(t), if fN (t) < a < amax.

Differentiating the equations in system (3.2) with respect to time t on both sides yields

dE(t)

dt
= b(t, A(t))− µE(t)E(t)− (1− f ′E(t))ρ(t, fE(t)),

dL(t)

dt
= (1− f ′E(t))ρ(t, fE(t))− µL(t)L(t)−DL(t, L(t))L2(t)− (1− f ′L(t))ρ(t, fL(t)),

dN(t)

dt
= (1− f ′L(t))ρ(t, fL(t))− µN (t)N(t)−DN (t,N(t))N2(t)− (1− f ′N (t))ρ(t, fN (t)),

dA(t)

dt
= (1− f ′N (t))ρ(t, fN (t))− µA(t)A(t)−DA(t, A(t))A2(t).

To obtain the closed form of the above system, ρ(t, fi(t)) (i = E, L, N) will be evaluated by the method of

integration along characteristics, as processed in Appendix C. There are different expressions for ρ(t, fi(t))

for t ≥ fi(t) and t < fi(t) respectively. Since we focus on the long-term dynamics, without the loss of

generality, we study the case when t ≥ fi(t), which is feasible due to the boundedness of fi(t). It follows

from the integral form of the solution (2.2) that when t ≥ fN (t) (note that fN (t) > fL(t) > fE(t)), we have:

ρ(t, fi(t)) = b(t− fi(t), A(t− fi(t)))e−
∫ fi(t)
0 µ(t−fi(t)+r,r,

∫ amax
0

q(t−fi(t)+r,s)ρ(t−fi(t)+r,s)ds)dr,

for i = E,L,N . Therefore, we can obtain a closed form, in terms of delay differential equations, to describe
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the tick population growth when t ≥ fN (t) (see Appendix C for detailed derivation):

dE(t)

dt
= b(t, A(t))− µE(t)E(t)− (1− f ′E(t))h1(t)b(t− fE(t), A(t− fE(t))),

dL(t)

dt
= (1− f ′E(t))h1(t)b(t− fE(t), A(t− fE(t)))− µL(t)L(t)−DL(t, L(t))L2(t)

− (1− f ′L(t))h2(t)g1(t, L(t))b(t− fL(t), A(t− fL(t))),

dN(t)

dt
= (1− f ′L(t))h2(t)g1(t, L(t))b(t− fL(t), A(t− fL(t)))− µN (t)N(t)−DN (t,N(t))N2(t)

− (1− f ′N (t))h3(t)g2(t, L(t), N(t))b(t− fN (t), A(t− fN (t))),

dA(t)

dt
= (1− f ′N (t))h3(t)g2(t, L(t), N(t))b(t− fN (t), A(t− fN (t)))− µA(t)A(t)−DA(t, A(t))A2(t),

(3.3)

where

h1(t) = exp

(
−
∫ t

t−fE(t)

µE(r)dr

)
,

h2(t) = exp

(
−
∫ t

t−τL(t)
µL(r)dr −

∫ t−τL(t)

t−fL(t)
µE(r)dr

)
,

h3(t) = exp

(
−
∫ t

t−τN (t)

µN (r)dr −
∫ t−τN (t)

t−τN (t)−τL(t−τN (t))

µL(r)dr −
∫ t−τN (t)−τL(t−τN (t))

t−fN (t)

µE(r)dr

)

are probabilities surviving through natural death during development while

g1(t, L(t)) = exp

(
−
∫ t

t−τL(t)
DL(r, L(r))L(r)dr

)
,

g2(t, L(t), N(t)) = exp

(
−
∫ t

t−τN (t)

DN (r,N(r))N(r)dr −
∫ t−τN (t)

t−τN (t)−τL(t−τN (t))

DL(r, L(r))L(r)dr

)

represent the probabilities surviving through additional death due to competition.

Alternatively, E(t), L(t), N(t) and A(t) can be expressed into integral forms. Note that τE(t) is the

developmental time for eggs at time t. Hence, the eggs at time t consist of all eggs laid at previous time ξ

with ξ ∈ (t− τE(t), t) and survived to time t. Therefore, we have

E(t) =

∫ t

t−τE(t)

exp

(
−
∫ t

ξ

µ

(
r, a,

∫ amax

0

q(t, s)ρ(t, s)ds

)
dr

)
b(ξ, A(ξ))dξ

=

∫ t

t−τE(t)

exp

(
−
∫ t

ξ

µE(r)dr

)
b(ξ, A(ξ))dξ.

(3.4)

All the larvae at time t are developed from eggs laid at previous time (ξ − fE(ξ)) with ξ ∈ (t− τL(t), t)

and successfully survived in the egg stage for τE(ξ) (i.e. fE(ξ)) time period, then matured into larvae with a

“maturation rate” (1− τ ′E(ξ)) at time ξ and remain alive in the larval stage until time t. Thus, the number
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of larvae at time t can be expressed as follows:

L(t) =

∫ t

t−τL(t)

exp

(
−
∫ t

ξ−fE(ξ)

µ

(
r, a,

∫ amax

0

q(t, s)ρ(t, s)ds

)
dr

)
b(ξ − fE(ξ), A(ξ − fE(ξ)))(1− τ ′E(ξ))dξ

=

∫ t

t−τL(t)

exp

(
−
∫ t

ξ

(µL(r) +DL(r, L(r))L(r))dr −
∫ ξ

ξ−fE(ξ)

µE(r)dr

)

b(ξ − fE(ξ), A(ξ − fE(ξ)))(1− f ′E(ξ))dξ.

(3.5)

Similarly, nymphs at time t contain all newly developed nymphs at previous time ξ with ξ ∈ (t− τN (t), t)

and survived to time t. These newly developed nymphs are grown from larvae produced at time (ξ− τL(ξ)),

which developed through τL(ξ) time period in the larval stage and matured into nymphs at time ξ with

“maturation rate” (1− τ ′L(ξ)). Likewise, the larvae produced at time (ξ− τL(ξ)) come from the eggs laid at

time (ξ − τL(ξ) − τE(ξ − τL(ξ))), i.e. (ξ − fL(ξ)), which survived through (τE(ξ − τL(ξ))) time period and

matured into larvae at time (ξ − τL(ξ)) with “maturation rate” (1 − τ ′E(ξ − τL(ξ))). Therefore, the total

number of nymphs at time t is given as follows:

N(t) =

∫ t

t−τN (t)

exp

(
−
∫ t

ξ−fL(ξ)

µ

(
r, a,

∫ amax

0

q(r, s)ρ(t, s)ds

)
dr

)

b(ξ − fL(ξ), A(ξ − fL(ξ)))(1− τ ′L(ξ))(1− τ ′E(ξ − τL(ξ)))dξ

=

∫ t

t−τN (t)

exp

(
−
∫ t

ξ

(µN (r) +DN (r,N(r))N(r))dr −
∫ ξ

ξ−τL(ξ)

(µL(r) +DL(r, L(r))L(r))dr

−
∫ ξ−τL(ξ)

ξ−fL(ξ)

µE(r)dr

)
b(ξ − fL(ξ), A(ξ − fL(ξ)))(1− f ′L(ξ))dξ.

(3.6)

Similarly, the total number A(t) can be computed in the following integral form:

A(t) = exp

(
−
∫ t

0

(µA(ξ) +DA(ξ, A(ξ))A(ξ))dξ

)[∫ t

0

(1− f ′N (ξ))b(ξ − fN (ξ), A(ξ − fN (ξ)))

exp

(
−
∫ ξ

ξ−τN (ξ)

(µN (r) +DN (r,N(r))N(r))dr −
∫ ξ−τN (ξ)

ξ−τN (ξ)−τL(ξ−τN (ξ))

(µL(r) +DL(r, L(r))L(r))dr

−
∫ ξ−τN (ξ)−τL(ξ−τN (ξ))

ξ−fN (ξ)

µE(r)dr

)
exp

(∫ ξ

0

µA(r) +DA(r, A(r))A(r))dr

)
dξ +A0

]
,

(3.7)

where A0 = A(0) is the initial value of A(t).

Combining with the relationships between fi(t) and τi(t) (i = E,L,N) shown in (3.1), it is easy to check

by differentiation that the system of integral equations consisting of (3.4), (3.5), (3.6) and (3.7) is equivalent

to the system (3.3).

We would like to draw readers’ attention to the fact that a similar model system was formulated in paper

[18]. The main focus of the current paper is on the mathematical analysis of this kind of systems to get the

global properties of solutions. Moreover, we will link the relationships between the basic reproduction number

and the population dynamics of ticks. Here, we reformulate the model system for readers’ convenience.
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4. Analysis of the model

To investigate the long-term dynamics of system (3.3), we make the following assumptions, justified with

the tick growth biology [18]:

(C1) All the mortality rates including per-capita natural death rates µi(t) (i = E,L,N,A) and density

dependent death coefficients Di(t, i) (i = L,N,A) are non-negative T -periodic continuous functions

with respect to time t. In addition, Di(t, i) is non-decreasing with respect to i for i = L,N,A.

(C2) The birth rate b(t, A) satisfies:

(i) b(t, 0) ≡ 0, ∂b(t,0)
∂A = β(t) > 0 for all t ∈ R, where β(t) is a T -periodic continuous function;

(ii) b(t, A) is increasing with respect to A for all A > 0 and b(t, A) ≤ ∂b(t,0)
∂A A = β(t)A for all

(t, A) ∈ R× R+.

(C3) There exist positive constants Dmin and A∗ such that DA(t, A) > Dmin hold for all t ∈ [0, T ] when

A > A∗.

Let f̂ = maxt∈[0,T ] fN (t), define Cf̂ = C([−f̂ , 0],R4). For any φ ∈ Cf̂ , define the norm ‖φ‖= max
θ∈[−f̂ ,0]

‖φ(θ)‖R4 .

Then Cf̂ is a Banach space. Let C+

f̂
= C([−f̂ , 0],R4

+), then (Cf̂ , C
+

f̂
) is a strongly ordered space. Given a

function u(t) : [−f̂ , σ)→ R4 for σ > 0, define ut ∈ Cf̂ by ut(θ) = u(t+ θ), for all θ ∈ [−f̂ , 0] and t ∈ [0, σ).

Before exploring the long-term dynamics, we firstly verify the global existence of solutions to system

(3.3).

Lemma 4.1. A unique solution (E(t), L(t), N(t), A(t)) of system (3.3) exists globally on [0,∞) with the

initial data φ(θ) ∈ C+

f̂
. Moreover, system (3.3) generates a T -periodic semiflow Φt : C+

f̂
→ C+

f̂
, i.e.

Φt(φ)(θ) = (E(t+ θ;φ), L(t+ θ;φ), N(t+ θ;φ), A(t+ θ;φ)), ∀φ ∈ C+

f̂
, t ≥ 0, θ ∈ [−f̂ , 0].

Proof. Set A∗∗ = max{ β̂
Dmin

γ̂N , A
∗}, where γ̂N = max

t∈[0,T ]
(1− f ′N (t)) and β̂ = max

t∈[0,T ]
β(t). Based on assump-

tions (C2) and (C3), we can show that [0, ρA∗∗] is positively invariant for the last equation of system (3.3)

with any given ρ ≥ 1, that is, the unique solution A(t) with 0 ≤ A(θ) ≤ ρA∗∗ satisfies 0 ≤ A(t) ≤ ρA∗∗ for

all t ≥ 0 and for any θ ∈ [−f̂ , 0]. It easily follows from Theorem 2.2 that A(t) is nonnegative. We claim

A(t) ≤ ρA∗∗ by the argument of contradiction. Assume the contrary, there exists t0 such that A(t) < ρA∗∗

when t < t0, while A(t0) = ρA∗∗, then dA(t)
dt

∣∣∣
t0
≥ 0. However, it follows from assumptions (C2) and (C3)

that
dA(t)

dt

∣∣∣
t0
≤ (1− f ′N (t0))b(t0 − fN (t0), A(t0 − fN (t0)))−DA(t0, A(t0))A2(t0)

≤ γ̂N β̂ρA∗∗ −Dmin(ρA∗∗)2 < 0.

Therefore, A(t) ∈ [0, ρA∗∗] for all t provided that 0 ≤ A(θ) ≤ ρA∗∗ for any θ ∈ [−f̂ , 0].
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Likewise, E(t), L(t) and N(t) are bounded since

E(t) ≤
∫ t

t−τE(t)

b(ξ, A(ξ))dξ ≤
∫ t

t−τE(t)

β(ξ)A(ξ)dξ ≤ ρτ̂E β̂A∗∗,

L(t) ≤
∫ t

t−τL(t)
(1− f ′E(ξ))b(ξ − fE(ξ), A(ξ − fE(ξ)))dξ

≤
∫ t

t−τL(t)
(1− f ′E(ξ))β(ξ − fE(ξ))A(ξ − fE(ξ))dξ ≤ ρτ̂Lγ̂E β̂A∗∗,

N(t) ≤
∫ t

t−τN (t)

(1− f ′L(ξ))b(ξ − fL(ξ), A(ξ − fL(ξ)))dξ

≤
∫ t

t−τN (t)

(1− f ′L(ξ))β(ξ − fL(ξ))A(ξ − fL(ξ))dξ ≤ ρτ̂N γ̂Lβ̂A∗∗,

where τ̂E = max
t∈[0,T ]

τE(t), τ̂L = max
t∈[0,T ]

τL(t), τ̂N = max
t∈[0,T ]

τN (t), γ̂E = max
t∈[0,T ]

(1− f ′E(t)) and γ̂L = max
t∈[0,T ]

(1− f ′L(t)).

Hence,

S := C([−f̂ , 0], [0, ρτ̂E β̂A
∗∗]× [0, ρτ̂Lγ̂E β̂A

∗∗]× [0, ρτ̂N γ̂Lβ̂A
∗∗]× [0, ρA∗∗]),

is positively invariant for system (3.3). This further indicates the non-negativity and boundedness of solutions

hold in [0,∞). Thus, a unique solution (E(t), L(t), N(t), A(t)) of system (3.3) exists globally on [0,∞) with

the initial data φ(θ) ∈ C+

f̂
.

Define the solution map of system (3.3) as

Φt(φ)(θ) = (E(t+ θ;φ), L(t+ θ;φ), N(t+ θ;φ), A(t+ θ;φ)), ∀t ≥ 0, θ ∈ [−f̂ , 0], φ ∈ C+

f̂
,

where (E(t;φ), L(t;φ), N(t;φ), A(t;φ)) is the solution of system (3.3) with the initial data φ(θ) for all θ ∈

[−f̂ , 0]. Due to the periodicity of the variable coefficients, it easily follows that Φt is a T -periodic semiflow

on C+

f̂
.

4.1. Extinction and persistence

It follows from the assumption (C2) that system (3.3) has the extinction equilibrium (0, 0, 0, 0). The

linearized system of system (3.3) at the population extinction equilibrium is:

dE(t)

dt
= β(t)A(t)− µE(t)E(t)− (1− f ′E(t))h1(t)β(t− fE(t))A(t− fE(t)),

dL(t)

dt
= (1− f ′E(t))h1(t)β(t− fE(t))A(t− fE(t))− µL(t)L(t)

− (1− f ′L(t))h2(t)β(t− fL(t))A(t− fL(t)),

dN(t)

dt
= (1− f ′L(t))h2(t)β(t− fL(t))A(t− fL(t))− µN (t)N(t)

− (1− f ′N (t))h3(t)β(t− fN (t))A(t− fN (t)),

dA(t)

dt
= (1− f ′N (t))h3(t)β(t− fN (t))A(t− fN (t))− µA(t)A(t).

(4.1)
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The last equation in (4.1) is decoupled, giving a linear scalar delay differential equation as below:

dA(t)

dt
= (1− f ′N (t))h3(t)β(t− fN (t))A(t− fN (t))− µA(t)A(t). (4.2)

Since all time-dependent coefficients are non-negative T -periodic functions, both systems (3.3) and (4.1)

are T -periodic. Let CT be the ordered Banach space of all T -periodic continuous functions from R to R,

which is equipped with the maximum norm ‖ · ‖ and the positive cone

C+
T := {φ ∈ CT : φ(t) ≥ 0, ∀t ∈ R}.

Let F (t)(φ) = (1− f ′N (t))h3(t)β(t− fN (t))φ(−fN (t)) and V (t) = µA(t), then the next generation operator

L : CT → CT is defined as [28]

[Lφ] (t) =

∫ ∞
0

e−
∫ t
t−s V (r)drF (t− s)φ(t− s+ ·)ds

=

∫ ∞
0

e−
∫ t
t−s µA(r)dr(1− f ′N (t− s))h3(t− s)β(t− s− fN (t− s))φ(t− s− fN (t− s))ds.

We then define the basic reproduction number as the spectral radius of L, i.e. R0 = r(L). Let P (t) be

the solution map of the linear periodic equation (4.2) on Y := C([−f̂ , 0],R), that is, P (t)φ = wt(φ), t ≥ 0,

where wt(φ)(θ) = w(t + θ;φ), ∀θ ∈ [−f̂ , 0], is the solution semiflow of (4.2) satisfying w0 = φ ∈ Y . Hence,

P := P (T ) is the Poincaré map associated with system (4.2). Let r(P ) be the spectral radius of P . The

following Lemma shows that the system admits a special solution, which is the key technique for investigating

the long-term dynamics in later proofs. The argument below is motivated by the treatment in [29].

Lemma 4.2. There exists a positive T -periodic function v(t) such that w(t) = eµtv(t) is a positive solution

of (4.2), where µ = ln r(P )
T .

Proof. Since (1 − f ′N (t))h3(t)β(t − fN (t)) > 0, then P is a positive operator on Y . It then follows from

Krein-Rutman theorem [30, Theorem 3.1] that r(P ) is an eigenvalue of P with a positive eigenfunction

ψ∗. Let µ = ln r(P )
T . Suppose w(t) is the particular solution of (4.2) through ψ∗, that is w(θ) = ψ∗(θ) and

w(T+θ) = P (ψ∗)(θ) = r(P )ψ∗(θ) for all θ ∈ [−f̂ , 0]. Let v(t) = e−µtw(t), then v(θ) = e−µθw(θ) = e−µθψ∗(θ)

for all θ ∈ [−f̂ , 0]. Furthermore, for all θ ∈ [−f̂ , 0], we have

v(T + θ) = e−µ(T+θ)w(T + θ) = e−µ(T+θ)r(P )ψ∗(θ) = e−µθψ∗(θ) = v(θ).

Hence, v(t) is periodic and (4.2) admits a special solution w(t) = eµtv(t). Moreover, it is very easy to see

that v(t) > 0 for all t ∈ [0, T ].
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The following theorem deals with extinction and uniform persistence in terms of R0. Let

M0 := {φ = (φ1, φ2, φ3, φ4) ∈ Cf̂ : φ4(0) > 0},

and

∂M0 := Cf̂ \M0 = {φ = (φ1, φ2, φ3, φ4) ∈ Cf̂ : φ4(0) = 0}.

Theorem 4.3. Let (C1), (C2) and (C3) hold. Then, the following statements are valid:

(1) If R0 < 1, then the population extinction equilibrium (0, 0, 0, 0) is globally attractive for system (3.3)

on Cf̂ .

(2) If R0 > 1, then system (3.3) admits a positive T -periodic solution (E∗(t), L∗(t), N∗(t), A∗(t)) in M0

and there exists a real number η > 0 such that the solution (E(t), L(t), N(t), A(t)) with φ ∈M0 satisfies

lim inf
t→∞

i(t) ≥ η for i = E,L,N,A.

Proof. In the case where R0 < 1, we have r(P ) < 1 since sign(R0 − 1)=sign(r(P ) − 1) in light of [28,

Theorem 2.1]. Based on Lemma 4.2, there is a positive T -periodic function v(t) such that w(t) = eµtv(t) is

a positive solution of (4.2), where µ = lnr(P )
T < 0. Then, the positivity of A(t) and assumption (C2) indicate

that
dA(t)

dt
≤ (1− f ′N (t))h3(t)b(t− fN (t), A(t− fN (t)))− µA(t)A(t)

≤ (1− f ′N (t))h3(t)β(t− fN (t))A(t− fN (t))− µA(t)A(t).

Hence, the comparison theorem [31, Theorem 5.1.1] implies that

A(t) ≤ Kw(t) = Keµtv(t),

with constant K > 0 satisfying A(θ) ≤ Keµθv(θ) for all −f̂ ≤ θ ≤ 0. Hence lim
t→∞

A(t) = 0.

Besides, based on equation (3.4), (3.5) and (3.6), it follows from assumption (C3) that

E(t) ≤
∫ t

t−τE(t)

b(ξ, A(ξ))dξ ≤
∫ t

t−τE(t)

β(ξ)A(ξ)dξ,

L(t) ≤
∫ t

t−τL(t)
(1− f ′E(ξ))b(ξ − fE(ξ), A(ξ − fE(ξ)))dξ ≤

∫ t

t−τL(t)
γ̂Eβ(ξ − fE(ξ))A(ξ − fE(ξ))dξ,

N(t) ≤
∫ t

t−τN (t)

(1− f ′L(ξ))b(ξ − fL(ξ), A(ξ − fL(ξ)))dξ ≤
∫ t

t−τN (t)

γ̂Lβ(ξ − fL(ξ))A(ξ − fL(ξ))dξ.

Thus, when R0 < 1,

lim
t→∞

(E(t), L(t), N(t), A(t)) = (0, 0, 0, 0).

In the case where R0 > 1, we have r(P ) > 1. Then, there exists a sufficiently small ε > 0, such that rε,
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the spectral radius of the Poincaré map corresponding to

u′(t) = (1− f ′N (t))h3(t)(β(t− fN (t))− ε)u(t− fN (t))− (µA(t) + ε)u(t), (4.3)

satisfies rε > 1 [28]. Similarly, there is a positive T -periodic function vε(t) such that u(t) = eλtvε(t) is a

positive solution of equation (4.3) with λ = ln rε
T > 0.

Based on the continuity of g2(t, ·, ·) and differentiability of b(t, ·), for any ε > 0, we can choose a sufficiently

small number η1 > 0 such that for all i ∈ [0, η1] (i = L,N,A)

g2(t, L,N)b(t, A) ≥ (g2(t, 0, 0)
∂b(t, 0)

∂A
− ε)A = (β(t)− ε)A,

and DA(t, A)A < DA(t, η1)η1 < ε hold according to assumption (C1).

Recall that the solution semiflow Φt(φ) (defined in Lemma 4.1) tends to 0 uniformly for all t ∈ [0, T ]

when φ approaches to 0, then there exists η0 > 0 such that for any ‖φ‖ ≤ η0, we have

‖Φt(φ)‖ ≤ η1, ∀t ∈ [0, T ].

Furthermore, we can prove the following weak persistence claim when R0 > 1:

Claim: lim sup
n→∞

‖ΦnT (φ)‖ ≥ η0 for all φ ∈M0.

Suppose the claim is false, then lim sup
n→∞

‖ΦnT (φ)‖ < η0 for some φ ∈ M0. Hence, there exists a positive

integer N1, such that ‖ΦnT (φ)‖ < η0 when n ≥ N1. Thus, for any t = nT + t1 with n ≥ N1 and t1 ∈ [0, T ],

we have ‖Φt(φ)‖ = ‖Φt1(ΦnT (φ))‖ ≤ η1 and

dA(t)

dt
≥ (1− f ′N (t))h3(t)(β(t− fN (t))− ε)A(t− fN (t))− (µA(t) + ε)A(t).

Again, by the comparison theorem [31, Theorem 5.1.1], we can conclude that

A(t) ≥ Ku(t) = Keλtvε(t),

with constant K > 0 satisfying A(θ) ≥ Keλθvε(θ) for all −f̂ ≤ θ ≤ 0 (If A(θ) = 0 for some θ ∈ [−f̂ , 0], a

time shift of nT > f̂ for some integer n is sufficient to ensure the initial value of A(·) is strongly positive).

This implies

lim
t→∞

A(t) ≥ lim
t→∞

K eλtvε(t) =∞,

contradicting to the uniform boundedness of A(t).

Let M1 = (0, 0, 0, 0). It then follows from the above claim that M1 is an isolated invariant set for P on

Cf̂ and W s(M1) ∩M0 = ∅, where W s(M1) is the stable set of M1 for P . Define

M∂ := {φ ∈ ∂M0 : Pn(φ) ∈ ∂M0,∀n ≥ 0}.
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Then ∪φ∈M∂
ω(φ) = M1. In addition, it is easy to see that no subset of M1 forms a cycle in M∂ , which

also holds in ∂M0. Further, the proof of Lemma 4.1 implies that Φt is point dissipative. According to the

acyclicity theorem on uniform persistence for maps in [32], we have P : Cf̂ → Cf̂ is uniformly persistent

with respect to M0. Thus, Theorem 3.1.1 of [32] implies that the semiflow Φt : Cf̂ → Cf̂ is also uniformly

persistent with respect to M0. Based on [33, Theorem 3.1], it can be concluded that system (3.3) admits a

T -periodic solution (E∗(t), L∗(t), N∗(t), A∗(t)) with (E∗(θ), L∗(θ), N∗(θ), A∗(θ)) ∈M0.

In order to obtain the practical uniform persistence, we define a continuous function p : Cf̂ → R+ by

p(φ) = φ4(0), ∀φ = (φ1, φ2, φ3, φ4) ∈ Cf̂ .

By applying similar arguments to the proof of [34, Theorem 3.2], we can obtain the practical uniform

persistence, that is, there exists η1 > 0 such that lim inf
t→∞

A(t, φ) ≥ η1. By using the equations for other

variables, there exists η > 0 such that

lim inf
t→∞

min(E(t, φ), L(t, φ), N(t, φ), A(t, φ)) ≥ η, ∀φ ∈M0.

4.2. Global stability of the positive periodic solution

We will establish the global stability in terms of the basic reproduction number for a special case when

there is no intra-specific competition in the immature stages, which means the density dependent death

coefficients Di(t, i) (i = L,N) take 0. Indeed, this assumption makes sense in biology when the host

community, which includes a group of small mammals such as white-footed mice, chipmunks and shrews

[19], is very rich. If the host density is very high, the intra-specific competition during immature stages can

be ignored and system (3.3) reduces to the following one:

dE(t)

dt
= b(t, A(t))− µE(t)E(t)− (1− f ′E(t))h1(t)b(t− fE(t), A(t− fE(t))),

dL(t)

dt
= (1− f ′E(t))h1(t)b(t− fE(t), A(t− fE(t)))− µL(t)L(t)

− (1− f ′L(t))h2(t)b(t− fL(t), A(t− fL(t))),

dN(t)

dt
= (1− f ′L(t))h2(t)b(t− fL(t), A(t− fL(t)))− µN (t)N(t)

− (1− f ′N (t))h3(t)b(t− fN (t), A(t− fN (t))),

dA(t)

dt
= (1− f ′N (t))h3(t)b(t− fN (t), A(t− fN (t)))− µA(t)A(t)−DA(t, A(t))A2(t).

(4.4)
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Since variables E, L and N in system (4.4) do not appear in equation related to A, it suffices to study the

decoupled system:

dA(t)

dt
= (1− f ′N (t))h3(t)b(t− fN (t), A(t− fN (t)))− µA(t)A(t)−DA(t, A(t))A2(t). (4.5)

Note that the linearized system for equation (4.5) at the population extinction equilibrium is precisely

(4.2). Therefore, the previous theoretical results including the formulation of R0 and Theorem 4.3 remain

valid.

We can further show that the positive periodic solution is globally attractive when R0 > 1, which is

the main focus of this subsection. To do this, we will employ the theory of monotone and subhomogeneous

semiflows [32, Section 2.3]. To explore this result, the key idea is to show that the periodic semiflow of the

decoupled system (4.5) is (eventually) strongly monotone in a suitable phase space. However, in the natural

space Y := C([−f̂ , 0],R), the periodic semiflow is monotone but not strongly monotone. As a matter of fact,

a solution periodic semiflow Φ̃t can also be defined through a new phase space X := C([−fN (0), 0],R), see

[35]. Then we can show that the periodic semiflow Φ̃t is strongly monotone and strictly subhomogeneous.

Now we have two phase spaces for (4.5), X and Y with the following observation for the solution in these

two phase spaces [35, Lemma 3.3 and 3.5]:

A(t;φ) = A(t;ψ),∀φ ∈ Y, ∀ψ ∈ X, provided that φ(θ) = ψ(θ), ∀θ ∈ [−fN (0), 0].

However, since different phase spaces are used, R0 may not determine the stability of the linear periodic

system of (4.5) on X. It is necessary to prove the equivalence of stability properties for the linear periodic

system of (4.5) in two different spaces. Recall that P (t) is already defined as the solution map of linear

periodic system (4.2) on Y in the above proof. Then, we denote Q̃(t) as the solution map of the linear

periodic system of (4.5) on X. The following lemma reveals the equivalence of stability properties for the

linear periodic system in these two spaces, which can be obtained by an argument similar to that in [35].

Lemma 4.4. Poincaré maps P (T ) and Q̃(T ) have the same spectral radius, that is, r(P (T )) = r(Q̃(T )).

Let X+ := C([−fN (0), 0],R+). The subsequent two theorems show that Φ̃t is a strongly monotone and

strictly subhomogeneous periodic semiflow in X.

Theorem 4.5. For any φ1 and φ2 in X+ with φ1 > φ2 (that is, φ1 ≥ φ2 but φ1 6= φ2), the solutions u1(t)

and u2(t) of system (4.5) with u1(·) = φ1 and u2(·) = φ2, respectively, satisfy u1(t) > u2(t) for all t > f̂ ,

and hence Φ̃t(φ1)� Φ̃t(φ2) in X for all t > 2f̂ .

Proof. It is easy to prove u1(t) ≥ u2(t) for all t ≥ 0 by a repeated comparison argument on each interval

[nfN (0), (n + 1)fN (0)], n ∈ N. Since ui(t) (i = 1, 2) is bounded on [0,∞), then ui(t) (i = 1, 2) can be

restricted in an order interval [0, h] for all t ≥ 0, where h is a positive real number. Hence, we can construct
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a function g(t, A) = −µA(t)A−DA(t, A)A2+HA, where H > 0 is a large number to guarantee g is increasing

with respect to A when A ∈ [0, h]. It is noted that ui(t) (i = 1, 2) satisfy the integral equation:

A(t) = e−HtA(0) +

∫ t

0

e−H(t−s)g(s,A(s))ds+

∫ t

0

e−H(t−s)(1− f ′N (s))h3(s)b(s− fN (s), A(s− fN (s)))ds.

(4.6)

It is apparent that [−fN (0), 0] ⊂ [−fN (0), f̂ − fN (f̂)]. Since φ1 > φ2, there exists an η ∈ [−fN (0), 0] such

that u1(η) > u2(η). It follows from equation (4.6) and the comparison theorem [31, Theorem 5.1.1] that

u1(t) > u2(t) for all t > f̂ . Thus, the solution map Φ̃t is strongly monotone if t > 2f̂ .

Before establishing the next result, we propose an additional assumption about the birth rate b(t, A),

that is,

(S1) The birth rate b(t, A) can be expressed as follows,

b(t, A) = B(t, A)A,

where B(t, A) is the per-capita birth rate and non-increasing in A for all t ∈ R.

This assumption is reasonable for ticks according to [14], as the per-capita birth rate for ticks is decreasing

with respect to the number of adults due to host grooming or host resistance. With this assumption, we can

show that Φ̃t is strictly subhomogeneous through the following theorem.

Theorem 4.6. For any ψ � 0 in X and any r ∈ (0, 1), the following two results hold, that is,

(i) u(t; rψ) > ru(t;ψ) for all t > f̂ ;

(ii) Φ̃nT (rψ)� rΦ̃nT (ψ) in X, for all integer n satisfing nT > 2f̂ .

Proof. Let u(t;ψ) be the unique solution of system (4.5) with u0 = ψ � 0 in X. For notational simplification,

we use w(t) = u(t; rψ) and v(t) = ru(t;ψ). It then follows from Theorem 2.2 that w(t) > 0 and v(t) > 0 for

all t ≥ 0 and w(θ) = rψ(θ) = v(θ) for all θ ∈ [−fN (0), 0].

Note that

dv

dt

∣∣∣
t=0

= r(1− f ′N (0))h3(0)B(0− fN (0), u(0− fN (0)))u(0− fN (0))− µA(0)v(0)− DA(0, u(0))

r
v2(0)

< (1− f ′N (0))h3(0)B(−fN (0), ru(−fN (0)))v(−fN (0))− µA(0)v(0)−DA(0, u(0))v2(0)

≤ (1− f ′N (0))h3(0)B(−fN (0), ru(−fN (0)))v(−fN (0))− µA(0)v(0)−DA(0, ru(0))v2(0)

= (1− f ′N (0))h3(0)b(−fN (0), w(−fN (0)))− µA(0)w(0)−DA(0, w(0))w2(0)

=
dw

dt

∣∣∣
t=0

.

It follows from w(0) = v(0) > 0 that there must be an ξ ∈ (0, f̂) such that w(t) > v(t) > 0 holds for

all t ∈ (0, ξ). We can further conclude that w(t) > v(t) holds for all 0 < t ≤ fN (0). If we assume the
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contrary, then there is a t̃ ∈ (0, fN (0)] such that w(t) > v(t) for all t ∈ (0, t̃) and w(t̃) = v(t̃), which indicates

dv
dt

∣∣∣
t=t̃
≥ dw

dt

∣∣∣
t=t̃

. However,

dv

dt

∣∣∣
t=t̃

= r(1− f ′N (t̃))h3(t̃)B(t̃− fN (t̃), u(t̃− fN (t̃)))u(t̃− fN (t̃))− µA(t̃)v(t̃)− DA(t̃, u(t̃))

r
v2(t̃)

< (1− f ′N (t̃))h3(t̃)B(t̃− fN (t̃), u(t̃− fN (t̃)))v(t̃− fN (t̃))− µA(t̃)v(t̃)−DA(t̃, u(t̃))v2(t̃)

≤ (1− f ′N (t̃))h3(t̃)B(t̃− fN (t̃), ru(t̃− fN (t̃)))v(t̃− fN (t̃))− µA(t̃)v(t̃)−DA(t̃, ru(t̃))v2(t̃)

= (1− f ′N (t̃))h3(t̃)b(t̃− fN (t̃), w(t̃− fN (t̃)))− µA(t̃)w(t̃)−DA(t̃, w(t̃))w2(t̃)

=
dw

dt

∣∣∣
t=t̃
,

which is a contradiction. Similarly, we can repeat this procedure to prove w(t) > v(t) for all t ∈ (nfN (0), (n+

1)fN (0)], where n can be any positive integer. Note that t−fN (t) > 0 when t > f̂ . Thus, u(t; rψ) > ru(t;ψ)

for all t > f̂ and Φ̃nT (rψ) = Φ̃nT (rψ)� rΦ̃nT (ψ) = rΦ̃nT (ψ) in X, where the integer n satisfies nT > 2f̂ .

We now prove the global stability of system (4.5) when R0 > 1 by focusing on the positive cone X+.

Theorem 4.7. If R0 > 1, then system (4.5) has a unique positive T -periodic solution A∗(t), which is globally

asymptotically stable in X+ \ {0}.

Proof. Note that Φ̃t can be regarded as an n0T -periodic semiflow in X+ if we choose proper integer n0

such that n0T > 2f̂ . It follows from Theorems 4.5 and 4.6 that Φ̃n0T is a strongly monotone and strictly

subhomogeneous map on X+. It is shown that the sign of R0− 1 is the same as r(DΦ̃n0T (0))− 1 [28], where

r(DΦ̃n0T (0)) = r(Q̃(n0T )) = (r(Q̃(T )))n0 . Based on [32, Theorem 2.3.4] for periodic maps, if r(DΦ̃n0T (0)) >

1, system (4.5) admits a unique positive n0T -periodic solution A∗(t), which is globally asymptotically stable

for system (4.5) in X+ \ {0}. In addition, A∗(t) is T -periodic. This is true since

Φ̃n0

T (Φ̃Tψ
∗) = Φ̃T (Φ̃n0

T ψ
∗) = Φ̃T (Φ̃n0Tψ

∗) = Φ̃T (ψ∗),

where ψ∗ = A∗0 ∈ X guarantees Φ̃n0Tψ
∗ = ψ∗. It follows from the uniqueness of the positive fixed point for

Φ̃n0

T = Φ̃n0T that Φ̃Tψ
∗ = ψ∗ holds. Thus, A∗(t) is a T -periodic solution of system (4.5).

Based on the information about the decoupled variable A(t), we can also deduce the solution property
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for other variables E(t), L(t) and N(t) by their integral expressions:

E(t) =

∫ t

t−τE(t)

exp

(
−
∫ t

ξ

µE(r)dr

)
b(ξ, A(ξ))dξ,

L(t) =

∫ t

t−τL(t)
(1− f ′E(ξ)) exp

(
−
∫ t

ξ

µL(r)dr −
∫ ξ

ξ−fE(ξ)

µE(r)dr

)
b(ξ − fE(ξ), A(ξ − fE(ξ)))dξ,

N(t) =

∫ t

t−τN (t)

(1− f ′L(ξ)) exp

(
−
∫ t

ξ

µN (r)dr −
∫ ξ

ξ−τL(ξ)
µL(r)dr −

∫ ξ−τL(ξ)

ξ−fL(ξ)
µE(r)dr

)
b(ξ − fL(ξ), A(ξ − fL(ξ)))dξ.

It easily follows from the global attractivity of A(t) that

lim
t→∞

[E(t)− E∗(t)] = 0, lim
t→∞

[L(t)− L∗(t)] = 0 and lim
t→∞

[N(t)−N∗(t)] = 0,

where

E∗(t) =

∫ t

t−τE(t)

exp

(
−
∫ t

ξ

µE(r)dr

)
b(ξ, A∗(ξ))dξ,

L∗(t) =

∫ t

t−τL(t)
(1− f ′E(ξ)) exp

(
−
∫ t

ξ

µL(r)dr −
∫ ξ

ξ−fE(ξ)

µE(r)dr

)
b(ξ − fE(ξ), A∗(ξ − fE(ξ)))dξ,

N∗(t) =

∫ t

t−τN (t)

(1− f ′L(ξ)) exp

(
−
∫ t

ξ

µN (r)dr −
∫ ξ

ξ−τL(ξ)
µL(r)dr −

∫ ξ−τL(ξ)

ξ−fL(ξ)
µE(r)dr

)
b(ξ − fL(ξ), A∗(ξ − fL(ξ)))dξ,

are all positive T -periodic functions. Thus, the global attractivity of the full system (4.4) can be obtained.

Theorem 4.8. If R0 > 1, then system (4.4) has a unique positive T -periodic solution (E∗(t), L∗(t), N∗(t),

A∗(t)), which is globally attractive for all nontrivial solutions.

5. Discussion

This paper starts from a periodic version of McKendrick-von Foerster equation with periodic coefficients

to describe the population growth with seasonal effects. Using the equivalent integral equation obtained by

the method of integration along characteristics, we present a detailed proof of the uniqueness and existence

of the solution in light of contraction mapping theorem. It is worth noting that the age-dependent models

can also be studied by using the semigroup theory [36] and similar models have been extensively studied in

[22]. Our approach is highly motivated by [22, 23].

Then the hyperbolic equation is reduced to a periodic differential system with periodic delays through

rigorous biological and mathematical arguments, with the tick population growth as our motivating example.

The derived age-structured model with time-dependent periodic delays is quite different from previous time-

independent delay system and challenging to conduct global analysis. The basic reproduction number R0 is
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defined as the spectral radius of the next generation operator following the work [28]. We should mention that

the study [18] has also used the approach in [37] to define and derive the basic reproduction number for tick

population dynamics, with some numerical computations for the model parameterized by the blacklegged

ticks. The formulation of the basic reproduction number for models with periodic coefficients has been

extensively studied and interesting readers can find more details from [38, 39, 40, 41] and references therein.

Even though the specific form of R0 is not known, it is shown that R0 is a threshold value for the

stability of zero solution of the corresponding linear equation [28, Theorem 2.1]. Given this, the extinction

and uniform persistence of tick population can be proved in terms of R0. Other than that, we acquire

the existence of at least one positive periodic solution. When the host community for immature ticks is

very rich, the intra-specific competition between immature stages of ticks is negligible. In this scenario, we

further obtain the global stability of the positive periodic solution with the following two steps. Firstly,

we investigate the global attractivity of the equation for the adult stage when R0 > 1 by applying the

theory of monotone systems. We can show that the solution semiflow is strongly monotone and strictly

subhomogeneous in a novel space X := C([−fN (0), 0],R), different from the usual space Y := C([−f̂ , 0],R).

Then, we extend the result to the full system as the other variables can be represented as integral forms

of the adult size. However, the introduction of novel phase space gives rise new challenges and we need to

argue the following facts: (1) the solution map can define a periodic semiflow; (2) the basic reproduction

number R0 can not only determine the stability of the system on Y , but also indicate the stability in X;

and (3) the periodic semilfow is (eventually) strongly monotone and strictly subhomogeneous.

In this paper, the basic reproduction number R0 is defined through a scalar periodic delay equation.

However, we can not conclude that its value is equal to the coefficient-averaged system as that for a periodic

ordinary differential equation in [41, Lemma 2.2] since a delay is involved. This remains a future question.

This paper is focusing on the mathematical analysis of the model and simulations have not been presented.

Interesting simulations can also be performed for the model system to study the effects of seasonal weather

variations and global warming on the population growth, as done in [16, 42]. Furthermore, in the current

study, the global stability of the positive periodic solution is obtained when R0 > 1, however with the

condition that the intra-specific competition for immature ticks is negligible due to the sufficient availability

of immature tick hosts. When the competition exists, we only show the uniform persistence of the system

and existence of a positive periodic solution in this scenario. The number of the positive periodic solutions

is an interesting question to address in the future.
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Appendix A: The derivation of integral form by integration along characteristic

Set ρ̂(h) := ρ(t0 + h, a0 + h) and µ̂(h) := µ(t0 + h, a0 + h,
∫∞
0
q(t0 + h, s)ρ(t0 + h, s)ds), where t0 and a0

are fixed. Differentiating ρ̂(h) with respect to h yields

dρ̂(h)

dh
= (

∂

∂t
+

∂

∂a
)ρ(t0 + h, a0 + h)

= −µ(t0 + h, a0 + h,

∫ ∞
0

q(t0 + h, s)ρ(t0 + h, s)ds)

= −µ̂(h)ρ̂(h).

(5.1)

Integrating (5.1) from 0 to h, we have

ρ̂(h) = ρ̂(0) exp

(
−
∫ h

0

µ̂(r)dr

)
,

that is

ρ(t0 + h, a0 + h) = ρ(t0, a0) exp

(
−
∫ h

0

µ(t0 + r, a0 + r,

∫ ∞
0

q(t0 + r, s)ρ(t0 + r, s)ds)dr

)
.

In case where a ≥ t, setting (t0, a0) = (0, a− t) and h = t, it follows that

ρ(t, a) = ρ(0, a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)ρ(r, s)ds)dr

)
= φ(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)ρ(r, s)ds)dr

)
.

Similarly, in case where t ≥ a, setting (t0, a0) = (t− a, 0) and h = a yields

ρ(t, a) = ρ(t− a, 0) exp

(
−
∫ a

0

µ

(
t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)ρ(t− a+ r, s)ds

)
dr

)
= b

(
t− a,

∫ ∞
0

p(t− a, s)ρ(t− a, s)ds
)

exp

(
−
∫ a

0

µ

(
t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)ρ(t− a+ r, s)ds

)
dr

)
.
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Appendix B: Three steps in the proof of Theorem 2.1

Step (I): For any η ∈ B, it follows from equation (2.3) that

∫ ∞
0

|Λ(η)(t, x)(a)| da =

∫ ∞
0

∣∣∣∣b(t− a,∫ ∞
0

p(t− a, s)η(t− a, x)(s)ds

)
exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η(t− a+ r, x)(s)ds)dr

)
1{t>a}

+x(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t}

∣∣∣∣ da
≤bmax

∫ t

0

e−µminada+

∫ ∞
t

exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
|x(a− t)| da

≤bmax
1− e−µmint

µmin
+

∫ ∞
t

e−µmint|x(a− t)|da

≤bmax
1− e−µmint

µmin
+ ‖x‖ <∞,

for all t ∈ [0, ε], where ε is sufficiently small number, ‖ · ‖ is defined as
∫∞
0
|x(a)|da, and bmax > 0 is the

maximal value of b
(
t,
∫∞
0
p(t, s)η(t, x)(s)ds

)
on B0 since the birth function is continuous in the closed region.

Therefore, it can be concluded that Λ(η) ∈ Y for any η ∈ B.

Step (II): Set B0 = U(x0,
r
2 ), a ball in L[0,∞) with radius r

2 and x0 = ρ(0, ·), then it follows that for

all x ∈ B0, we have

‖Λ(η)(t, x)− x0‖

=

∫ ∞
0

∣∣∣∣b(t− a,∫ ∞
0

p(t− a, s)η(t− a, x)(s)ds

)
exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η(t− a+ r, x)(s)ds)dr

)
1{t>a}

+x(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t} − ρ(0, a)

∣∣∣∣ da
≤bmax

1− e−µmint

µmin
+

∫ ∞
0

∣∣∣∣x(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t} − ρ(0, a)

∣∣∣∣ da
≤bmax

1− e−µmint

µmin
+

∫ ∞
0

exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t} |x(a− t)− ρ(0, a− t)| da

+

∫ ∞
0

∣∣∣∣exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t}ρ(0, a− t)− ρ(0, a)

∣∣∣∣ da.
Note that

∫ ∞
0

exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t}|x(a− t)− ρ(0, a− t)|da ≤ ‖x(·)− ρ(0, ·)‖,
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and ∫ ∞
0

∣∣∣∣exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t}ρ(0, a− t)− ρ(0, a)

∣∣∣∣ da
≤
∫ ∞
0

1{a≥t}ρ(0, a− t)
∣∣∣∣exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
− 1

∣∣∣∣ da
+

∫ ∞
0

∣∣ρ(0, a− t)1{a≥t} − ρ(0, a)
∣∣ da.

Hence the dominated-convergence theorem implies

lim
t→0

∫ ∞
0

1{a≥t}ρ(0, a− t)
∣∣∣∣exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
− 1

∣∣∣∣ da = 0.

Therefore, if ε is sufficiently small, the following inequality holds for all t ∈ [0, ε]:

∫ ∞
0

1{a≥t}ρ(0, a− t)
∣∣∣∣exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
− 1

∣∣∣∣ da < r

16
.

Since the set of all continuous functions with compact support is dense in L[0,∞), there exists a con-

tinuous function ξ with compact support in [0, ∞) such that ‖ρ(0, ·) − ξ‖ ≤ r
16 . Besides, the function

with compact support vanishes at the boundary, which indicates there exists a bounded and closed interval

I ⊂ [0,∞) such that ξ(y) = 0 for ∀y /∈ I. Then,

∫ ∞
0

|ρ(0, a− t)1{a≥t} − ρ(0, a)|da

≤
∫ t

0

|ρ(0, a)|da+

∫ ∞
t

|ρ(0, a− t)− ρ(0, a)|da

≤
∫ t

0

|ρ(0, a)|da+

∫ ∞
t

|ρ(0, a− t)− ξ(a− t)|da+

∫ ∞
t

|ξ(a− t)− ξ(a)|da+

∫ ∞
t

|ξ(a)− ρ(0, a)|da

≤
∫ t

0

|ρ(0, a)|da+ 2

∫ ∞
0

|ξ(a)− ρ(0, a)|da+

∫
I

|ξ(a− t)− ξ(a)|da

≤ r

32
+
r

8
+

r

32
=

3r

16
,

where ε should be very small.

Hence,

∫ ∞
0

∣∣∣∣exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
1{a≥t}ρ(0, a− t)− ρ(0, a)

∣∣∣∣ da
≤
∫ ∞
0

1{a≥t}ρ(0, a− t)
∣∣∣∣exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η(r, x)(s)ds)dr

)
− 1

∣∣∣∣ da
+

∫ ∞
0

∣∣ρ(0, a− t)1{a≥t} − ρ(0, a)
∣∣ da

<
r

16
+

3r

16
=
r

4
.
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In summary, we have

‖Λ(η)(t, x)− x0‖ ≤ bmax
1− e−µmint

µmin
+ ‖x(·)− ρ(0, ·)‖+

r

4
<
r

4
+
r

2
+
r

4
= r,

for all t ∈ [0, ε], where constant ε > 0 is small enough. Therefore, for any η ∈ B, we have Λ(η) ∈ B, that is

Λ : B → B.

Step (III): In the final step, we will show that Λ is a contraction mapping on B for ε small enough. For
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any η1, η2 ∈ B, it then follows that

‖Λ(η1)(t, x)− Λ(η2)(t, x)‖ ≤
∫ ∞
0

∣∣∣∣b(t− a,∫ ∞
0

p(t− a, s)η1(t− a, x)(s)ds

)
exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η1(t− a+ r, x)(s)ds)dr

)
−b
(
t− a,

∫ ∞
0

p(t− a, s)η2(t− a, x)(s)ds

)
exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η2(t− a+ r, x)(s)ds)dr

)∣∣∣∣
1{t>a}da+

∫ ∞
0

∣∣∣∣x(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η1(r, x)(s)ds)dr

)
1{a≥t}

−x(a− t) exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η2(r, x)(s)ds)dr

)
1{a≥t}

∣∣∣∣ da
≤
∫ t

0

∣∣∣∣b(t− a,∫ ∞
0

p(t− a, s)η1(t− a, x)(s)ds

)
− b

(
t− a,

∫ ∞
0

p(t− a, s)η2(t− a, x)(s)ds

)∣∣∣∣
exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η1(t− a+ r, x)(s)ds)dr

)
da

+

∫ t

0

b

(
t− a,

∫ ∞
0

p(t− a, s)η2(t− a, x)(s)ds

)
∣∣∣∣exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η1(t− a+ r, x)(s)ds)dr

)
− exp

(
−
∫ a

0

µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η2(t− a+ r, x)(s)ds)dr

)∣∣∣∣ da
+

∫ ∞
t

|x(a− t)|| exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η1(r, x)(s)ds)dr

)
− exp

(
−
∫ t

0

µ(r, a− t+ r,

∫ ∞
0

q(r, s)η2(r, x)(s)ds)dr

)∣∣∣∣ da
≤ b̄

∫ t

0

e−µmina

∫ ∞
0

p(t− a, s) |η1(t− a, x)(s)− η2(t− a, x)(s)| dsda

+

∫ t

0

bmax

∫ a

0

∣∣∣∣µ(t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η1(t− a+ r, x)(s)ds

)
−µ
(
t− a+ r, r,

∫ ∞
0

q(t− a+ r, s)η2(t− a+ r, x)(s)ds

)∣∣∣∣ drda
+

∫ ∞
t

|x(a− t)|
∫ t

0

∣∣∣∣µ(r, a− t+ r,

∫ ∞
0

q(r, s)η1(r, x)(s)ds

)
− µ

(
r, a− t+ r,

∫ ∞
0

q(r, s)η2(r, x)(s)ds

)∣∣∣∣ drda
≤ b̄

∫ t

0

e−µminapsup‖η1 − η2‖da+ bmax

∫ t

0

∫ a

0

qsupµ̄‖η1 − η2‖drda

+

∫ ∞
t

|x(a− t)|
∫ t

0

qsupµ̄‖η1 − η2‖drda

≤ psupb̄
1− e−µmint

µmin
‖η1 − η2‖+

t2

2
qsupµ̄bmax‖η1 − η2‖+ qsuptµ̄‖x‖‖η1 − η2‖

≤
(
psupb̄

1− e−µmint

µmin
+
t2

2
qsupµ̄bmax + qsuptµ̄‖x‖

)
‖η1 − η2‖

≤ εM‖η1 − η2‖,

with some constant M > 0, psup = sup
a≥0,t≥0

{p(t, a)} and qsup = sup
a≥0,t≥0

{q(t, a)}. It is noted that, in the

above proof, |e−x − e−y| ≤ |x− y|, ∀x, y > 0.
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Appendix C: Detailed derivation of the system (3.3) of delay differential equations

Differentiating the equations in system (3.2) with respect to time t on both sides yields

dE(t)

dt
=

∫ fE(t)

0

∂ρ(t, a)

∂t
da+ ρ(t, fE(t))f ′E(t)

= ρ(t, 0)− ρ(t, fE(t))− µE(t)E(t) + ρ(t, fE(t))f ′E(t)

= b(t, A(t))− µE(t)E(t)− (1− f ′E(t))ρ(t, fE(t)),

dL(t)

dt
=

∫ fL(t)

fE(t)

∂ρ(t, a)

∂t
da+ ρ(t, fL(t))f ′L(t)− ρ(t, fE(t))f ′E(t)

= ρ(t, fE(t))− ρ(t, fL(t))− µL(t)L(t)−DL(t, L(t))L2(t) + ρ(t, fL(t))f ′L(t)− ρ(t, fE(t))f ′E(t)

= (1− f ′E(t))ρ(t, fE(t))− µL(t)L(t)−DL(t, L(t))L2(t)− (1− f ′L(t))ρ(t, fL(t)),

dN(t)

dt
=

∫ fN (t)

fL(t)

∂ρ(t, a)

∂t
da+ ρ(t, fN (t))f ′N (t)− ρ(t, fL(t))f ′L(t)

= ρ(t, fL(t))− ρ(t, fN (t))− µN (t)N(t)−DN (t,N(t))N2(t) + ρ(t, fN (t))f ′N (t)− ρ(t, fL(t))f ′L(t)

= (1− f ′L(t))ρ(t, fL(t))− µN (t)N(t)−DN (t,N(t))N2(t)− (1− f ′N (t))ρ(t, fN (t)),

dA(t)

dt
=

∫ amax

fN (t)

∂ρ(t, a)

∂t
da− ρ(t, fN (t))f ′N (t)

= ρ(t, fN (t))− µA(t)A(t)−DA(t, A(t))A2(t)− ρ(t, fN (t))f ′N (t)

= (1− f ′N (t))ρ(t, fN (t))− µA(t)A(t)−DA(t, A(t))A2(t).

To get the closed form of the above system, ρ(t, fi(t))(for i = E,L,N) is evaluated by the method of

integration along characteristics. Setting t = t0 + h, a = a0 + h and V (h) = ρ(t0 + h, a0 + h). Then,

dV (h)

dh
=
( ∂
∂t

+
∂

∂a

)
ρ(t, a)

= −µ
(
t0 + h, a0 + h,

∫ amax

0

q(t0 + h, s)ρ(t0 + h, s)ds

)
ρ(t0 + h, a0 + h)

= −µ
(
t0 + h, a0 + h,

∫ amax

0

q(t0 + h, s)ρ(t0 + h, s)ds

)
V (h).

(5.2)

Integrating equation (5.2) from h1 to h2 yields,

V (h2) = V (h1)e−
∫ h2
h1

µ(t0+r,a0+r,
∫ amax
0

q(t0+r,s)ρ(t0+r,s)ds)dr.

For t ≥ fi(t), setting t0 = t− fi(t), h = fi(t) and a0 = 0, for i = E,L,N , we have

ρ(t, fi(t)) = ρ(t− fi(t), 0)e−
∫ fi(t)
0 µ(t−fi(t)+r,r,

∫ amax
0

q(t−fi(t)+r,s)ρ(t−fi(t)+r,s)ds)dr

= b(t− fi(t), A(t− fi(t)))e−
∫ fi(t)
0 µ(t−fi(t)+r,r,

∫ amax
0

q(t−fi(t)+r,s)ρ(t−fi(t)+r,s)ds)dr.
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Since we focus on the long-term behavior of population dynamics, the closed form of the model for t ≥ fN (t)

is obtained as follows.

dE(t)

dt
= b(t, A(t))− µE(t)E(t)− (1− f ′E(t))b(t− fE(t), A(t− fE(t)))

exp

(
−
∫ fE(t)

0

µ

(
t− fE(t) + r, r,

∫ amax

0

q(t− fE(t) + r, s)ρ(t− fE(t) + r, s)ds

)
dr

)

= b(t, A(t))− µE(t)E(t)− (1− f ′E(t))b(t− fE(t), A(t− fE(t))) exp

(
−
∫ fE(t)

0

µE(t− fE(t) + r)dr

)

= b(t, A(t))− µE(t)E(t)− (1− f ′E(t))b(t− fE(t), A(t− fE(t))) exp

(
−
∫ t

t−fE(t)

µE(r)dr

)
,

dL(t)

dt
= (1− f ′E(t))b(t− fE(t), A(t− fE(t))) exp

(
−
∫ t

t−fE(t)

µE(r)dr

)
− µL(t)L(t)−DL(t, L(t))L2(t)

− (1− f ′L(t))b(t− fL(t), A(t− fL(t)))

exp

(
−
∫ fL(t)

0

µ

(
t− fL(t) + r, r,

∫ amax

0

q(t− fL(t) + r, s)ρ(t− fL(t) + r, s)ds

)
dr

)

= (1− f ′E(t))b(t− fE(t), A(t− fE(t))) exp

(
−
∫ t

t−fE(t)

µE(r)dr

)
− µL(t)L(t)−DL(t, L(t))L2(t)

− (1− f ′L(t))b(t− fL(t), A(t− fL(t))) exp

(
−
∫ t

t−fL(t)

µ

(
r, r − (t− fL(t)),

∫ amax

0

q(r, s)ρ(r, s)ds

)
dr

)

= (1− f ′E(t))b(t− fE(t), A(t− fE(t))) exp

(
−
∫ t

t−fE(t)

µE(r)dr

)
− µL(t)L(t)−DL(t, L(t))L2(t)

− (1− f ′L(t))b(t− fL(t), A(t− fL(t))) exp

(
−
∫ t

t−τL(t)

(µL(r) +DL(r, L(r))L(r))dr −
∫ t−τL(t)

t−fL(t)

µE(r)dr

)

= (1− f ′E(t))b(t− fE(t), A(t− fE(t))) exp

(
−
∫ t

t−fE(t)

µE(r)dr

)
− µL(t)L(t)−DL(t, L(t))L2(t)

− (1− f ′L(t))b(t− fL(t), A(t− fL(t))) exp

(
−
∫ t

t−τL(t)

µL(r)dr −
∫ t−τL(t)

t−fL(t)

µE(r)dr

)

exp

(
−
∫ t

t−τL(t)

DL(r, L(r))L(r)dr

)
,
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dN(t)

dt
= (1− f ′L(t))b(t− fL(t), A(t− fL(t))) exp

(
−
∫ t

t−τL(t)

µL(r)dr −
∫ t−τL(t)

t−fL(t)

µE(r)dr

)

exp

(
−
∫ t

t−τL(t)

DL(r, L(r))L(r)dr

)
− µN (t)N(t)−DN (t,N(t))N2(t)

− (1− f ′N (t))b(t− fN (t), A(t− fN (t)))

exp

(
−
∫ fN (t)

0

µ

(
t− fN (t) + r, r,

∫ amax

0

q(t− fN (t) + r, s)ρ(t− fN (t) + r, s)ds

)
dr

)

= (1− f ′L(t))b(t− fL(t), A(t− fL(t))) exp

(
−
∫ t

t−τL(t)

µL(r)dr −
∫ t−τL(t)

t−fL(t)

µE(r)dr

)

exp

(
−
∫ t

t−τL(t)

DL(r, L(r))L(r)dr

)
− µN (t)N(t)−DN (t,N(t))N2(t)

− (1− f ′N (t))b(t− fN (t), A(t− fN (t))) exp

(
−
∫ t

t−τN (t)

(µN (r) +DN (r,N(r))N(r))dr

−
∫ t−τN (t)

t−τN (t)−τL(t−τN (t))

(µL(r) +DL(r, L(r))L(r))dr −
∫ t−τN (t)−τL(t−τN (t))

t−fN (t)

µE(r)dr

)

= (1− f ′L(t))b(t− fL(t), A(t− fL(t))) exp

(
−
∫ t

t−τL(t)

µL(r)dr −
∫ t−τL(t)

t−fL(t)

µE(r)dr

)

exp

(
−
∫ t

t−τL(t)

DL(r, L(r))L(r)dr

)
− µN (t)N(t)−DN (t,N(t))N2(t)

− (1− f ′N (t))b(t− fN (t), A(t− fN (t))) exp

(
−
∫ t

t−τN (t)

µN (r)dr −
∫ t−τN (t)

t−τN (t)−τL(t−τN (t))

µL(r)dr

−
∫ t−τN (t)−τL(t−τN (t))

t−fN (t)

µE(r)dr

)

exp

(
−
∫ t

t−τN (t)

DN (r,N(r))N(r)dr −
∫ t−τN (t)

t−τN (t)−τL(t−τN (t))

DL(r, L(r))L(r)dr

)
,

dA(t)

dt
= (1− f ′N (t))b(t− fN (t), A(t− fN (t))) exp

(
−
∫ t

t−τN (t)

µN (r)dr −
∫ t−τN (t)

t−τN (t)−τL(t−τN (t))

µL(r)dr

−
∫ t−τN (t)−τL(t−τN (t))

t−fN (t)

µE(r)dr

)
exp

(
−
∫ t

t−τN (t)

DN (r,N(r))N(r)dr

−
∫ t−τN (t)

t−τN (t)−τL(t−τN (t))

DL(r, L(r))L(r)dr

)
− µA(t)A(t)−DA(t, A(t))A2(t).
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