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We consider the inelastic scattering of few photons by a ladder-type quantum system residing in
a semi-infinite waveguide. Two scenarios, namely 2-photon scattering and 3-photon scattering, are
investigated. The single photons are described by continuous temporal pulse functions, according
to which the exact forms of the stationary output field states can be derived. Based on the exact
analysis of the nonlinear dynamics, the spectral entanglement among the output photons mediated
by the ladder-type quantum system is simulated. In the 2-photon scattering case, strong correlation
between the output photons can be observed if each input photon is in resonance with a transition
frequency of the system. Particularly, there exists a weak two-photon process for the non-resonance
case, where two input photons can couple to the transition between the first and third levels of
the system if a two-photon resonance condition is satisfied. In the 3-photon scattering case, the
presence of an ancillary photon could significantly influence the correlation pattern. There exist
two nonlinear terms, one is for 2-photon inelastic scattering and the other for 3-photon inelastic
scattering, in the 3-photon output state. As a result, both two-photon and three-photon processes
can be observed in the pattern of spectral entanglement.

I. INTRODUCTION

The scattering of few photons by a quantum system
has received considerable attention recently, as the pre-
cise control of photons has fundamental interests in opti-
cal physics and potential applications in quantum infor-
mation science [1]. Single photon transistors and switches
could be realized by engineering photon-matter interac-
tions [2–4]. A single atom can induce a phase shift on
a photon [5]. When photons are used to encode quan-
tum information, the photon-photon interaction medi-
ated by a quantum system can be exploited to synthe-
size the controlled-phase gate for quantum computation
[6, 7]. Moreover, engineered routing and scattering of
single photons could provide a scalable way for imple-
menting quantum computation [8].

The nonlinear dynamics of few-photon scattering has
been studied both analytically and numerically [9–16].
The nonlinear interaction may induce correlations among
the frequency-domain variables of the photons. This
correlation is often referred to as spectral entanglement
[7, 17, 18] which can be observed using a frequency-
domain representation of the output state. The spec-
tral entanglement is the consequence of inelastic scat-
tering of the photons to other modes of the field, i.e.,
the frequency of a monochromatic single photon is not
conserved. Photon-photon interaction can be enhanced
by confining photons in a one-dimensional waveguide
[19, 20], with their interaction mediated by a finite-level
single atom or artificial atom coupled to the waveguide
[17–21]. The waveguide system in the context of quan-
tum electrodynamics (QED) has become one of the most
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promising platforms for studying the nonlinear behav-
iors of photon scattering, such as transmission and re-
flection properties [4, 10, 19, 20], non-markovian dynam-
ics [12, 14], and fundamental problems in light-matter
interaction [9, 11, 15, 22].

In this paper, we consider the scattering of two pho-
tons and three photons, respectively, by a ladder-type
quantum system. In particular, the output channels of
the input photons can be distinguished so that we can
focus on the analysis of spectral entanglement. With-
out the reflection process, the photon number is con-
served for each input-output channel. This setup is com-
monly seen in the construction of a quantum phase gate
[6, 7], where the scattering process only induces a phase
shift on the logical state of the flying photons via the
cross-Kerr effect [6, 7, 16, 23, 24]. The cross-Kerr effect
can further be enhanced by cascading a series of finite-
level systems [6, 7, 16], or by coupling the microwave
photons directly to an artificial atom in a QED system
[20]. Moreover, the 2-photon scattering of a three-level
ladder-type system has been studied in [17] by solving
the Schrödinger equation. In this paper, the photons
are encoded using a continuum of field modes, which re-
sults in a continuous pulse function for each photon. For
example, an atom can couple to a continuum of modes
of a one-dimensional waveguide [17, 18]. For arbitrarily
given pulse functions of the input photons, we derive the
exact output states for the 2-photon scattering and 3-
photon scattering. Since cross-Kerr interaction between
the photons dominates the scattering process, strongly
correlated photons can be generated at the output. Our
calculation makes use of the Heisenberg picture equations
of motion for the coupling operators. The exact scatter-
ing matrix in the frequency domain is derived, which is
found to be quite different from the scattering matrix of a
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FIG. 1. A 4-level quantum system in interaction with few
photons. When the input is in a 2-photon state with Photon
1 and Photon 2, the system state |3s〉 is not relevant and the
model is reduced to 3-level. The input photon i is exclusively
coupled to the transition |is〉 ↔ |(i − 1)s〉. For example,
Photon 1 can induce the transition between |0s〉 and |1s〉.
The output photons can be distinguished from each other as
well. The single input and output channel can be realized
by placing the quantum scatter at the end of a semi-infinite
waveguide. The incident photon is travelling to the right, and
the output photon is reflected and travelling unidirectionally
to the left.

V -type quantum system [6]. For the 3-photon scattering
case, the existence of an ancillary photon could signifi-
cantly influence the correlation pattern. Single-photon,
two-photon and three-photon resonances can be observed
both in the analytical form and in the simulation.

II. MODEL OF A 4-LEVEL SYSTEM

The scattering model is depicted in Fig. 1. The
states of a 4-level ladder-type system are denoted
as |0s〉, |1s〉, |2s〉, |3s〉 respectively, with |0s〉 being the
ground and initial state. Invoking the rotating wave
approximation, the interaction Hamiltonian between the
system and the input photons is written as

Hint =
∑
i

∫ ∞
−∞

(liLib
†
i (ωi) + l∗iL

†
i bi(ωi))dωi, (1)

where {bi(ωi), i = 1, 2, 3} are frequency-domain field an-
nihilation operators defined on three independent input
channels. {li} are the coupling constants and {Li} are
transitions between two neighboring levels defined as

L1 = |0s〉〈1s|, L2 = |1s〉〈2s|, L3 = |2s〉〈3s|. (2)

The Hamiltonian of the system is

H = λ1|1s〉〈1s|+ λ2|2s〉〈2s|+ λ3|3s〉〈3s|, (3)

with the energy differences denoted as hi = λi − λi−1,
i = 1, 2, 3. We have let λ0 = 0 without loss of generality.

The interaction Hamiltonian (1) can be used to model
the scattering of one-dimensional waveguide photons.
For waveguide photons, Eq. (1) indicates that the input

and output photons are travelling unidirectionally. Ex-
perimentally, this type of interaction can be engineered
by placing the atom at the end of a semi-infinite waveg-
uide such that the input photon will be bounced back
after interacting with the atom. The interaction Hamil-
tonian (1) also indicates that different input photons
drive different transitions between two neighboring lev-
els, which can be achieved if the photons are encoded in
different polarizations, or the transition frequencies differ
significantly [17]. For example, the first input photon de-

fined using the field operators {b†1(ω1), b1(ω1)} can only
drive the transition |0s〉 ↔ |1s〉. The system Hamilto-
nian (3) can be realized as an artificial atom made by
superconducting circuits [20]. The artificial atom can be
tuned to possess anharmonic energy levels, which allow
the controlling of the atomic transitions with different
microwave photons.

The overall dynamics of the system plus the fields is
governed by a unitary operator U(t, t0), where t0 is the
initial time of the interaction. The dynamical equation
of U(t, t0), t ≥ t0, is given by [25]

dU(t, t0) = {b†(t)L− L†b(t)− (
1

2
L†L+ iH)}U(t, t0)dt,

(4)
with U(t0, t0) = I ⊗ I being the identity operator of the
composite system. Here, b(t) = (b1(t) b2(t) b3(t))T is the
column vector of field annihilation operators. Since the
input photons are coupled to the system in parallel [26],
the coupling operator L is

L =

 l1L1

l2L2

l3L3

 . (5)

Note that Markovian approximation has been invoked in
the derivation of dU(t, t0), as (4) indicates Markovian
dynamics for the open quantum system.

The Heisenberg-picture evolution of a system operator
X can be calculated by X(t) = U†(t, t0)(I ⊗X)U(t, t0),
with I being the identity operator on the fields. The
dynamical equation of X(t) is then given by [25–27]

Ẋ(t) = L†(X(t))

+b†(t)[X(t), L(t)] + [L†(t), X(t)]b(t), (6)

bout(t) = L(t) + b(t), (7)

where

L†(X(t))

=4−i[X(t), H(t)] + L†(t)X(t)L(t)

−1

2
L(t)†L(t)X(t)− 1

2
X(t)L†(t)L(t). (8)

Moreover, the output bout(t) is connected to the input
b(t) via the following relation [27]

bout(t) = U†(t, t0)b(t)U(t, t0). (9)
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In this paper, we define the Fourier transform as

f(ω) =
1√
2π

∫ ∞
−∞

f(t)e−iωtdt. (10)

For clarity, we use ω, v, p to denote the variables in the
frequency domain, and t, τ to denote the variables in the
time domain. u(t) is the Heaviside step function.

III. 2-PHOTON SCATTERING

A. Exact dynamics of 2-photon scattering

The 2-photon input state is defined as

|1ξ11ξ2〉 =

∫ ∞
−∞

dt1ξ1(t1)b†1(t1)

∫ ∞
−∞

dt2ξ2(t2)b†2(t2)|00〉,

(11)
where ξi(ti) is the temporal pulse function for the ith
photon which satisfies the condition

∫∞
−∞ |ξi(ti)|

2dti = 1.

|00〉 is the abbreviation for |0〉 ⊗ |0〉 which denotes the
vacuum field state of both input channels. Equation (11)
describes a product state, i.e., the two input photons
are uncorrelated. Assume initially there is no excitation
within the finite-level system, in other words, the system
is initialized in the ground |0s〉. The joint output state
of the total system is expressed as the unitary evolution
of the initial state:

|Ψ(∞)〉 = U(∞,−∞)|1ξ11ξ20s〉. (12)

Note that (12) gives the steady-state output by letting
t0 → −∞ and t→∞. In the steady-state limit, the sys-
tem has returned to the ground state |0s〉 and the output
is a 2-photon field state [28, 29]. In order to obtain an an-
alytical form of the output field state, we take the partial
trace of |Ψ(∞)〉 on the system subspace, and then project
the resulting field state onto the 2-photon subspace. By
this way we arrive at

|Ψfield(∞)〉 =

∫ ∞
−∞

∫ ∞
−∞

dτ1dτ2ξ12(τ1, τ2)b†1(τ1)b†2(τ2)|00〉,

(13)
with

ξ12(τ1, τ2)

= 〈000s|b2(τ2)b1(τ1)

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

×U(∞,−∞)ξ1(t1)b†1(t1)ξ2(t2)b†2(t2)|000s〉. (14)

Here, ξ12(τ1, τ2) is the time-domain pulse function of the
2-photon output field state. The pulse function in (14)

can be further simplified, specifically,

ξ12(τ1, τ2)

=

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2 ξ1(t1)ξ2(t2)

×〈000s|U(∞,−∞)U†(∞,−∞)b2(τ2)U(∞,−∞)

×U†(∞,−∞)b1(τ1)U(∞,−∞)b†1(t1)b†2(t2)|000s〉

=

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2ξ1(t1)ξ2(t2)

×〈000s|bout,1(τ1)bout,2(τ2)b†1(t1)b†2(t2)|000s〉, (15)

where we have made use of the input-output re-
lation (9). More details on the derivation of
(15) can be found in [28]. The stationary out-
put field state can thus be expressed in terms of
a time-domain scattering matrix S(τ1, τ2; t1, t2) =

〈000s|bout,1(τ1)bout,2(τ2)b†1(t1)b†2(t2)|000s〉.
The frequency domain representation of the 2-photon

input state (11) is

|1ξ11ξ2〉 =

∫ ∞
−∞

dp1ξ1(p1)b†1(p1)

∫ ∞
−∞

dp2ξ2(p2)b†2(p2)|00〉,

(16)
with {ξi(pi)} being the frequency-domain pulse func-
tions for the two photons. As a result, the scatter-
ing matrix becomes S(τ1, τ2; p1, p2) with the input tak-
ing the form of (16). We can further transform the
time-domain variables τ1, τ2 of the scattering matrix
S(τ1, τ2; p1, p2) to frequency-domain variables ω1, ω2, re-
spectively, which leads to the following expression for the
frequency-domain pulse function of the stationary output
state

ξ12(ω1, ω2)

=

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2ξ1(p1)ξ2(p2)S(ω1, ω2; p1, p2),(17)

where the frequency-domain scattering matrix
S(ω1, ω2; p1, p2) has been calculated in Appendix A:

S(ω1, ω2; p1, p2) (18)

= T1(ω1)δ(ω1 + p1)δ(ω2 + p2)

+
i|l1|2|l2|2δ(ω2 + ω1 + p1 + p2)

2πΓ1(−p1,−λ1)Γ1(ω1,−λ1)Γ2(ω2 + ω1,−λ2)
,

with Γ1(ω1, a) = ω1−a− |l1|
2

2 i, Γ2(ω2, b) = ω2− b− |l2|
2

2 i

and T1(ω1) = (− |l1|
2

2 + iω1 + iλ1)/( |l1|
2

2 + iω1 + iλ1).
The energy conservation term δ(ω2 + ω1 + p1 + p2) in
the scattering matrix S(ω1, ω2; p1, p2) induces the cor-
relations between the frequency components of the two
photons. Plugging this scattering matrix back to (17),
ξ12(ω1, ω2) takes the form

ξ12(ω1, ω2) =

∫ ∞
−∞

dp2
i|l1|2|l2|2ξ1(−ω2 − ω1 − p2)ξ2(p2)

2πΓ1(ω1 + ω2 + p2,−λ1)Γ1(ω1,−λ1)Γ2(ω2 + ω1,−λ2)
+ T1(ω1)ξ1(−ω1)ξ2(−ω2). (19)
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FIG. 2. The center frequency are defined as Ω1 = −1,Ω2 =
−0.9 and we let λ2 = 1.9, λ1 = −Ω1 and |l1|2 = κ1. The prob-
ability amplitudes are plotted for different κ1, κ2 and coupling
strength |l2|2. The top left figure corresponds to probability
amplitude of the interaction-free linear term which is not in-
fluenced by |l2|2.

The second term on the RHS of the equality in (19) cor-
responds to a linear process: the two photons just pick
up a single photon phase factor T1(ω1) without induc-
ing any correlation. That is, the frequency of the in-
put photon is conserved if it is a monochromatic wave.
Note that the second photon passes the system without
picking up a phase factor, which is in contrast to the
other schemes (V -type system [6], or interacting two-level
atoms [16]) for inducing Kerr interaction. This particu-
lar phenomenon has been observed before for a ladder-
type system by calculating the output wavepackets in
Schrödinger picture [17]. T1(ω1) is called a single photon
phase factor because a single photon input |1ξ1〉 will pick
up this phase factor after interaction with a two-level
quantum system [10, 30, 31]. The first term on the RHS
of the equality in (19) indicates a nonlinear scattering
process involving ω1+ω2, which is responsible for the cor-
relation of frequency-domain variables between the two
output channels.

It is worth mentioning that the input-output relation
(7) brings an extra minus sign to the frequency vari-
ables (ωi → −ωi) as compared to other input-output
formalisms, e.g. [10].

B. Spectral entanglement

For arbitrarily given pulse functions for the input pho-
tons, the output state can be exactly calculated by (19).
Here we consider Lorentzian-type pulse functions as

ξi(pi) =
i
√
κi√

2π(−κi

2 i + pi + Ωi)
, κi > 0, i = 1, 2, (20)

which correspond to exponentially rising pulse function
in the time domain. Ωi is the center frequency for the
ith photon. κi characterizes the width of the pulse. We
assume κ1 = |l1|2 and −Ω1 = λ1 for the calculation of the
output state. In this case, the first input photon alone
can fully excite the system from |0s〉 to |1s〉 at t = 0
[30, 31].

In order to demonstrate the spectral entanglement in-
duced by the photon-photon nonlinear interaction, firstly
we remove the linear deformation from the 2-photon out-
put state in (19). The operation that removes the linear
deformation is given by

T−1
1 (ω1) = −Γ1(ω1,−λ1)

Γ1(−ω1, λ1)
. (21)

Note that it is experimentally feasible to implement this
reverse operation using linear optics [6, 32]. In this sec-
tion and Fig. 2, the notation ξ12(ω1, ω2) is redefined as
T−1

1 (ω1)ξ12(ω1, ω2). Accordingly, the linear component
of the pulse function is thus given by ξ1(−ω1)ξ2(−ω2),
which is just the product of the pulse functions of the
two input photons. As shown in the top left figure of
Fig. 2, there exists no correlation between the two input
channels. The probability amplitude of ξ1(−ω1)ξ2(−ω2)
peaks at the single-photon resonance point ω1 = −1 =
−λ1 = Ω1, ω2 = −0.9 = −(λ2 − λ1) = Ω2.

The nonlinear term in (19) interferes with the linear
one and scatters the frequencies of the photons around
the line ω1 + ω2 = −1.9 = Ω1 + Ω2 (top right figure of
Fig. 2). Therefore, strong interference occurs when the
two photons are resonant with the transition between |2s〉
and |0s〉 [33]. As we increase the coupling strength |l2|2
and κ1, κ2, the frequency components of the output state
is distributed more and more uniformly around the line
ω1 + ω2 = −1.9. In particular, we can see that the non-
linear process dominates over the linear process for the
extreme case |l2|2 = 0.5 and κ1 = κ2 = 0.3 (the bottom
right figure of Fig. 2). That is, the probability ampli-
tude of ξ12(ω1, ω2) vanishes at the single-photon reso-
nance point ω1 = −1, ω2 = −0.9 where the linear term
reaches its maximum. It is worth mentioning that sim-
ilar pattern of spectral entanglement has been observed
in [17, 18] based on different calculation methods.

Fig. 3 depicts the calculation results of the output
state in the frequency domain with Ω1 + Ω2 6= −λ2.
If one photon is not resonant with the transition fre-
quency, i.e., Ω1 6= −λ1 or Ω2 6= −(λ2 − λ1), only
one peak can be observed for |ξ12(ω1, ω2)|2 with the
other one reduced, which corresponds to a weakened two-
photon process. For the off-resonance case, the pattern
of photon-photon interference is determined by the dif-
ference Ω1 + Ω2− (−λ2). The figures on the top left and
bottom left are similar and they correspond to a nega-
tive difference Ω1 + Ω2− (−λ2) < 0. The rest two figures
correspond to a positive difference Ω1 + Ω2 − (−λ2) > 0.
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FIG. 3. The parameters are set as |l2|2 = κ1 = κ2 = 0.3.
λ2 = 1.9 and |l1|2 = κ1 = 0.3. The figures are plotted for
different center frequencies Ω1 and Ω2 and λ1 = −Ω1.

IV. 3-PHOTON SCATTERING

A. Exact dynamics of 3-photon scattering

In analogy to the development in Section III A, for a
3-photon input state

|1ξ11ξ21ξ3〉

=

∫ ∞
−∞

dt1

∫ ∞
−∞

dt2

∫ ∞
−∞

dt3

×ξ1(t1)b†1(t1)ξ2(t2)b†2(t2)ξ3(t3)b†3(t3)|000〉, (22)

the time-domain pulse function of the stationary 3-
photon output state can be expressed as

ξ123(τ1, τ2, τ3)

= 〈0000s|b1(τ1)b2(τ2)b3(τ3)U(∞,−∞)|1ξ11ξ21ξ30s〉
= 〈0000s|bout,1(τ1)bout,2(τ2)bout,3(τ3)|1ξ11ξ21ξ30s〉.

(23)

Similar to the 2-photon scattering case, the
output state is expanded on the basis vectors
{〈000|b1(τ1)b2(τ2)b3(τ3)}. In order to get the frequency-
domain expression of the pulse function of the 3-photon
output state, we first transform 〈0000s|bout,1(τ1)bout,2(τ2)
in (23) to the frequency domain with respect to the two
variables τ1, τ2. By this we can express ξ123(ω1, ω2, τ3)
in terms of the 2-photon scattering matrix as

ξ123(ω1, ω2, τ3)

=

∫ ∞
−∞

dp1

∫ ∞
−∞

dp2S(ω1, ω2; p1, p2)

×〈0000s|b1(p1)b2(p2)bout,3(τ3)|1ξ11ξ21ξ30s〉. (24)
The key step is the calculation of the Fourier transform
of the following term

〈0000s|b1(p1)b2(p2)bout,3(τ3)|1ξ11ξ21ξ30s〉
= 〈0000s|b1(p1)b2(p2)(l3L3(τ3) + b3(τ3))|1ξ11ξ21ξ30s〉.

(25)

The Fourier representation of the term

f2(p1, p2, τ3) (26)

= 〈0000s|b1(p1)b2(p2)L3(τ3)b†1(v1)b†2(v2)b†3(v3)|0000s〉

with respect to the variable τ3 is given in Appendix B.
Based on (24), the frequency-domain pulse function of
the 3-photon output field state is given by

ξ123(ω1, ω2, ω3)

= T1(ω1)ξ1(−ω1)ξ2(−ω2)ξ3(−ω3) +

∫ ∞
−∞

dv1
i|l1|2|l2|2ξ1(v1)ξ2(−v1 − ω1 − ω2)ξ3(−ω3)

2πΓ1(λ1, v1)Γ1(ω1,−λ1)Γ2(ω1 + ω2, λ2)

+

∫ ∞
−∞

dv1

∫ ∞
−∞

dv2
i|l1|2|l2|2|l3|2ξ1(v1)ξ2(v2)ξ3(−v1 − v2 − ω3 − ω1 − ω2)

4π2Γ1(ω1,−λ1)Γ1(−v1,−λ1)Γ2(−v1 − v2,−λ2)Γ2(ω1 + ω2,−λ2)Γ3(ω3 + ω1 + ω2,−λ3)

= T1(ω1)ξ1(−ω1)ξ2(−ω2)ξ3(−ω3) +

∫ ∞
−∞

dv1
i|l1|2|l2|2ξ1(v1)ξ2(−v1 − ω1 − ω2)

2πΓ1(λ1, v1)Γ1(ω1,−λ1)Γ2(ω1 + ω2, λ2)
ξ3(−ω3)

+

∫ ∞
−∞

dv1

∫ ∞
−∞

dv2
i|l1|2|l2|2|l3|2ξ1(v1)ξ2(v2)ξ3(−v1 − v2 − ω3 − ω1 − ω2)

4π2Γ1(ω1,−λ1)Γ1(−v1,−λ1)Γ2(−v1 − v2,−λ2)Γ2(ω1 + ω2,−λ2)Γ3(ω3 + ω1 + ω2,−λ3)
.

(27)

Here we have used the notation Γ3(ω, λ) = 1/(ω − λ −
|l3|2

2 i). The first two terms of (27) can be expressed as
ξ12(ω1, ω2)ξ3(−ω3), which corresponds to the case that
only the photon-photon interaction between |1ξ1〉 and

|1ξ2〉 is in effect. The third photon just passes the system
without any interaction. Similar to the 2-photon scat-
tering case, the third photon does not pick up a phase
factor in this process. The last term in (27) describes a 3-
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FIG. 4. |l1|2 = |l2|2 = |l3|3 = κ1 = κ2 = κ3 =
0.3. The energy differences are defined by λ3 = 2.7, λ2 =
1.9 and λ1 = −Ω1 = 1. The probability amplitudes
|T−1

1 (ω1)ξ123(ω1, ω2, ω3)|2 are plotted with fixed ω3.

photon inelastic scattering process, where ω3 +ω1 +ω2 is
responsible for the correlation among the frequency com-
ponents of all the three photons. As a result, there exist
two terms in (27) that are related to the nonlinear in-
teraction among photons. The interference between the
two nonlinear terms has significant impact on the photon-
photon correlations.

B. Spectral entanglement mediated by an ancillary
photon

We define the pulse functions ξi(vi), i = 1, 2, 3 by (20).
The parameters for the simulation are explained in Fig. 4.
We fix ω3 such that the plot of |T−1

1 (ω1)ξ123(ω1, ω2, ω3)|2
can be obtained. In contrast to 2-photon scattering,
the correlation between the frequency variables ω1, ω2

of the first two photons is mediated by a third pho-
ton which is coupled to an additional level |3s〉. For
the resonant case (the top left figure of Fig. 4), the
plot is similar to the 2-photon scattering case. How-
ever, an interesting feature for this case is that there is
non-vanishing probability around the single-photon res-
onance point ω1 = −1, ω2 = −0.9, in contrast to the
2-photon scattering. The inelastic scattering occurs ex-
actly along the line ω1 + ω2 = −1.9. When ω3 6= λ3 − λ2

(the top right figure of Fig. 4), the two peaks for the
probability amplitudes are unbalanced. In this case, the
third photon is not resonant with |2s〉 ↔ |3s〉 and so the
three-photon process is weak. However, we can still ob-
serve the effect of two-photon resonance in the bottom
left figure of Fig. 4, where the center frequencies satisfy
Ω2 + Ω3 = −1.7 = −(λ3 − λ1). Although the Ω3 in the

bottom right figure (Ω2 +Ω3 6= −1.7) is more close to the
single photon transition frequency−(λ3−λ2) = −0.8, the
two peaks of the correlation pattern is less symmetric as
compared to the two-photon resonance case.

V. CONCLUSION

We have investigated inelastic scattering of few pho-
tons by a Ladder-type four-level system. The whole sys-
tem could be easily realized by waveguide QED systems.
The exact forms of the stationary output field states have
been derived, for the 2-photon scattering and 3-photon
scattering cases. By means of exponentially rising func-
tions as input pulse shapes, spectral entanglement of the
output photons have been visualized. For the 2-photon
scattering scenario, if the two input photons are resonant
with the finite-level system, strong nonlinear correlation
between the two output photons can be observed; on the
other hand, for the non-resonance case, there exists a
weak two-photon process. For the 3-photon scattering
scenario, a non-vanishing probability amplitude around
the single-photon resonance point can be observed even
when the three input photons are all resonant with the
four-level system. Moreover, due to the presence of two
nonlinear terms, the peaks of the probability amplitudes
are unbalanced.

ACKNOWLEDGMENTS

We wish to thank financial support from the Hong
Kong Research Grant Council under grant 531213 and
15206915, the National Natural Science Foundation of
China under grant 61374057 and the Fundamental Re-
search Funds for the Central Universities under grant
2017QNA5012.

Appendix A: Calculation of S(ω1, ω2; p1, p2) in (18)

In this appendix, we give an exact calculation of
S(ω1, ω2, p1, p2) in (18). Let X = L1 in (6). We have

〈000s|L̇1(t) = 〈000s|[−(iλ1 +
1

2
|l1|2)L1(t)− l∗1b1(t)],

(A1)
The solution to the above ordinary differential equation
is given by

〈000s|L1(τ) = −〈000s|
∫ τ

−∞
l∗1e

(−iλ1− 1
2 |l1|

2)(τ−r)b1(r)dr.

(A2)
Using (9) we have S(τ1, τ2; p1, p2) = 〈000s|(l1L1(τ1) +

b1(τ1))(l2L2(τ2) + b2(τ2))b†1(p1)b†2(p2)|000s〉. Since

〈000s|(l1L1(τ1) + b1(τ1))

= 〈000s|
∫ ∞
−∞

[−|l1|2e(−iλ1− 1
2 |l1|

2)(τ1−r)u(τ1 − r)
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+δ(τ1 − r)]b1(r)dr, (A3)

the Fourier transform of the 1-photon state (A3) with
respect to the variable r is given by

〈000s|
∫ ∞
−∞

Γ(ω, τ1)b1(ω)dω, (A4)

with the pulse function being

Γ(ω, τ1) =
1√
2π
e−iωτ1−

|l1|2
2 − iω + iλ1

|l1|2
2 − iω + iλ1

. (A5)

Transforming τ1 to ω1 yields

S(ω1, ω2; p1, p2)

= T1(ω1)[l2f1(−ω1, ω2; p1, p2) + δ(ω1 + p1)δ(ω2 + p2)].

(A6)

Here we have defined

T1(ω1) =
− |l1|

2

2 + iω1 + iλ1

|l1|2
2 + iω1 + iλ1

,

and

f1(−ω1, ω2; p1, p2) (A7)

= 〈000s|b1(−ω1)L2(ω2)b†1(p1)b†2(p2)|000s〉. (A8)

Eq. (A8) can be calculated by considering the term

f1(ω1, τ2; p1, p2) = 〈000s|b1(ω1)L2(τ2)b†1(p1)b†2(p2)|000s〉.
A powerful approach to calculate this term is by taking
the derivative with respect to the time-domain variable
τ2 [10, 34] as

∂

∂τ2
f1(ω1, τ2; p1, p2)

= (−ih2 −
|l1|2 + |l2|2

2
)f(ω1, τ2; p1, p2)

− l∗2√
2π
e−ip2τ2〈000s|b1(ω1)L†1(τ2)L1(τ2)b†1(p1)|000s〉

− l1√
2π
eiω1τ2〈000s|L1(τ2)L2(τ2)b†1(p1)b†2(p2)|000s〉,

(A9)

where the derivative of L2(τ2) is obtained
using (6). Also we have used the equali-

ties 〈000s|b1(ω1)b†1(τ2) = 1√
2π
〈000s|eiω1τ2 and

〈000s|b2(p2)b†2(τ2) = 1√
2π
〈000s|eip2τ2 . Sandwiching

the identity operator between L†1(τ2) and L1(τ2) on the
third line of (A9) and making use of (A2), we can obtain

∂

∂τ2
f1(ω1, τ2; p1, p2)

= (−ih2 −
|l1|2 + |l2|2

2
)f(ω1, τ2; p1, p2)− l∗2|l1|2

2π
√

2π
e−ip2τ2

∫ ∞
−∞

eiω1r1e(iλ1− 1
2 |l1|

2)(τ2−r1)u(τ2 − r1)dr1

×
∫ ∞
−∞

e(−iλ1− 1
2 |l1|

2)(τ2−r2)u(τ2 − r2)e−ip1r2dr2 −
l1√
2π
eiω1τ2〈000s|L1(τ2)L2(τ2)b†1(p1)b†2(p2)|000s〉. (A10)

Note that the inserted identity operator re-

duces to |000s〉〈000s| since 〈000s|b1(ω1)L†1(τ2) =

〈000s|b1(ω1)U†(τ2,−∞)L†1U(τ2,−∞) contains no exci-
tation. Using (A4) and (A7) we can rewrite the last
term as

=
|l1|2

2π

∫ ∞
−∞

ei(ω1−ω)τ2

|l1|2
2 − iω + iλ1

f1(ω, τ2; p1, p2)dω. (A11)

Then we transform τ2 to frequency domain and get

=
|l1|2

2π

∫ ∞
−∞

1
|l1|2

2 − iω + iλ1

f1(ω, ω2 + ω − ω1; p1, p2)dω.

(A12)
As a result, the frequency-domain representation of (A9)
is given by

iω2f1(ω1, ω2; p1, p2)

= (−ih2 −
|l1|2 + |l2|2

2
)f1(ω1, ω2; p1, p2)

− l∗2|l1|2

2π

δ(ω2 − ω1 + p1 + p2)

(iω1 − iλ1 + |l1|2
2 )(−ip1 + iλ1 + |l1|2

2 )

+
|l1|2

2π

∫ ∞
−∞

1
|l1|2

2 − iω + iλ1

f1(ω, ω2 + ω − ω1; p1, p2)dω.

(A13)

Now we follow the procedure in [16, Appendix A.2]
to solve the above equation. First, make the replace-
ment ω2 → ω2 + ω1 and define g(ω1, ω2) = f1(ω1, ω2 +
ω1; p1, p2). Then we can write the above equation as

[i(ω2 + ω1 + h2) +
|l1|2 + |l2|2

2
]g(ω1, ω2)



8

= − l
∗
2|l1|2

2π

δ(ω2 + p1 + p2)

(iω1 − iλ1 + |l1|2
2 )(−ip1 + iλ1 + |l1|2

2 )
+
|l1|2

2π

∫ ∞
−∞

1
|l1|2

2 − iω + iλ1

g(ω, ω2)dω. (A14)

Next, define G(ω2) =
∫∞
−∞

1
|l1|2

2 −iω+iλ1

g(ω, ω2)dω and

rewrite (A14) as

G(ω2) =

∫ ∞
−∞

−l∗2|l1|2δ(ω2 + p1 + p2)

2π(iω1 − iλ1 + |l1|2
2 )(−ip1 + iλ1 + |l1|2

2 )( |l1|
2

2 − iω1 + iλ1)(i(ω2 + ω1 + h2) + |l1|2+|l2|2
2 )

dω1

+G(ω2)

∫ ∞
−∞

|l1|2

2π( |l1|
2

2 − iω1 + iλ1)(i(ω2 + ω1 + h2) + |l1|2+|l2|2
2 )

dω1. (A15)

The integrals can be calculated using the residue theo-
rem, which yields

G(ω2) =
l∗2δ(ω2 + p1 + p2)

(λ1 − p1 − |l1|
2

2 i)(ω2 + λ2 − |l2|
2

2 i)
. (A16)

Plugging this back to (A14) gives

g(ω1, ω2) = −|l1|
2l∗2i

2π

δ(ω2 + p1 + p2)

Γ1(λ1, p1)Γ1(ω1, λ1)Γ2(ω2,−λ2)
,

(A17)

where Γ1(ω1, a) = (ω1 − a− |l1|
2

2 i),Γ2(ω2, b) = (ω2 − b−
|l2|2

2 i). Finally, we obtain

f1(ω1, ω2; p1, p2) (A18)

= −|l1|
2l∗2i

2π

δ(ω2 − ω1 + p1 + p2)

Γ1(λ1, p1)Γ1(ω1, λ1)Γ2(ω2 − ω1,−λ2)
.

Substituting (A18) into (A6) yields (18).

Appendix B: Calculation of the frequency-domain
counterpart f2(p1, p2, ω3) of f2(p1, p2, τ3) in (26)

Take the derivative of f2(p1, p2, τ3) with respect to τ3
yields

∂

∂τ3
f2(p1, p2, τ3)

= (−ih3 −
|l2|2 + |l3|2

2
)f2(p1, p2, τ3)

−l∗3〈0000s|b1(p1)b2(p2)(|2s〉〈2s|)(τ3)b3(τ3)

×b†1(v1)b†2(v2)b†3(v3)|0000s〉
−l2〈0000s|b1(p1)b2(p2)b†2(τ3)(|1s〉〈3s|)(τ3)

×b†1(v1)b†2(v2)b†3(v3)|0000s〉. (B1)

By simplifying the equation and transforming τ3 to the
frequency domain, we arrive at

iω3f2(p1, p2, ω3)

= (−ih3 −
|l2|2 + |l3|2

2
)f2(p1, p2, ω3)

− l
∗
3

2π
δ(p1 + p2 − v3 − v1 − v2 − ω3)

∫
dω

×F ∗1 (ω, ω − v1 − v2 − ω3 − v3, p1)F1(ω, ω − v1 − v2, v1)

− l2
2π

∫ ∞
−∞

dω4

∫ ∞
−∞

dω5F1(p1, p1 − ω4 − ω5, ω4)

×f2(ω4, ω5, ω3 + ω4 + ω5 − p1 − p2). (B2)

In (B2), we denote f1(ω1, ω2; p1, p2) by
F1(ω1, ω2, p1)δ(ω2 − ω1 + p1 + p2), where

F1(ω, ω2, p1) =
c

Γ1(λ1, p1)Γ1(ω, λ1)Γ2(ω2 − ω,−λ2)
(B3)

with c = − |l1|
2l∗2i

2π . Making the replacement ω3 → ω3 +
p1 + p2 and define

G(ω3)

=

∫
dp1

∫
dp2

1

Γ1(λ1, p1)Γ2(−p1 − p2,−λ2)

×f2(p1, p2, ω3 + p1 + p2), (B4)

Eq. (B2) can be expressed as

G(ω3)

=
l∗3|c|2δ(v3 + v1 + v2 + ω3)i

|l1|2Γ1(λ1, v1)Γ2(−v1 − v2,−λ2)

×
∫
dp1

∫
dp2

1

ω3 + h3 + p1 + p2 − |l2|
2+|l3|2

2 i

× 1

Γ1(λ1, p1)Γ2(−p1 − p2,−λ2)

× 1

Γ∗1(λ1, p1)Γ∗2(−v1 − v2 − ω3 − p1 − p2 − v3,−λ2)

+
l2ci

2π
G(ω3)

∫
dp1

∫
dp2

1

Γ1(λ1, p1)Γ1(p1, λ1)

× 1

Γ2(−p1 − p2,−λ2)(ω3 + h3 + p1 + p2 − |l2|
2+|l3|2

2 i)
.

(B5)
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As a result, G(ω3) can be calculated using the residue
theorem as

G(ω3) =
l∗3|l2|2δ(v3 + v1 + v2 + ω3)

Γ1(λ1, v1)Γ2(−v1 − v2,−λ2)

× 1

(v1 + v2 + ω3 + v3 − |l2|2i)(ω3 + λ3 − |l3|
2

2 i)
.

(B6)

Since

[i(ω3 + h3 + p1 + p2) +
|l2|2 + |l3|2

2
]

×f2(p1, p2, ω3 + p1 + p2)

= − l∗3|c|2δ(v3 + v1 + v2 + ω3)

|l1|2Γ∗1(λ1, p1)Γ1(λ1, v1)Γ2(−v1 − v2,−λ2)

× 1

Γ∗2(−v1 − v2 − ω3 − p1 − p2 − v3,−λ2)

− l2c

2πΓ1(p1, λ1)
G(ω3), (B7)

replacing ω3 with ω3 − p1 − p2 we finally obtain

l3f2(p1, p2, ω3)

= F2(ω3, p1, p2, v1, v2, v3)δ(v3 + v1 + v2 + ω3 − p1 − p2),

(B8)

with

F2(ω3, p1, p2, v1, v2, v3)

=
|l1|2|l2|2|l3|2

4π2(i(ω3 + h3) + |l2|2+|l3|2
2 )

× 1

Γ1(p1, λ1)Γ1(λ1, v1)Γ2(−v1 − v2,−λ2)

×[
1

Γ∗2(−v1 − v2 − ω3 − v3,−λ2)

+
|l2|2i

(v1 + v2 + ω3 − p1 − p2 + v3 − |l2|2i)

× 1

(ω3 − p1 − p2 + λ3 − |l3|
2

2 i)
]. (B9)

Thus, f2(p1, p2, ω3), the frequency-domain counterpart
of (26) follows from (B9). Then a lengthy calculation
leads to the 3-photon pulse function (27).
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