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Abstract

The i-vector/PLDA framework has gained huge popularity in text-independent

speaker verification. This approach, however, lacks the ability to represent the

reliability of i-vectors. As a result, the framework performs poorly when pre-

sented with utterances of arbitrary duration. To address this problem, a method

called uncertainty propagation (UP) was proposed to explicitly model the re-

liability of an i-vector by an utterance-dependent loading matrix. However,

the utterance-dependent matrix greatly complicates the evaluation of likelihood

scores. As a result, PLDA with UP, or PLDA-UP in short, is far more computa-

tional intensive than the conventional PLDA. In this paper, we propose to group

i-vectors with similar reliability, and for each group the utterance-dependent

loading matrices are replaced by a representative one. This arrangement al-

lows us to pre-compute a set of representative matrices that cover all possible

i-vectors, thereby greatly reducing the computational cost of PLDA-UP while

preserving its ability in discriminating the reliability of i-vectors. Experiments

on NIST 2012 SRE show that the proposed method can perform as good as the

PLDA with UP while the scoring time is only 3.18% of it.

Keywords: Speaker verification, i-vector/PLDA, Uncertainty Propagation,

duration mismatch.
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1. Introduction1

Recent years have witnessed the significant advances in text-independent2

speaker recognition. With the state-of-the-art techniques like i-vector, PLDA3

and DNN acoustic models, an EER of 0.59% on NIST speaker recognition eval-4

uation has been reported [1]. Despite of these great advances, short-utterance5

speaker recognition remains a great challenge, as evident by a number of studies6

showing that system performance degrades rapidly when only short utterances7

are available [2, 3, 4]. However, in real applications users may not be willing to8

provide long utterances, especially during verification.9

It has now become clear that naive applications of advanced text-independent10

methods, such as i-vector/PLDA, to short-utterance speaker verification could11

result in performance even poorer than that of the GMM and HMM modeling12

[5, 6]. One of the problems associated with short-utterance speaker verification13

is duration mismatch, where the length of enrolment utterances and test utter-14

ances are very different. Hasan et al. [7] assumed that duration mismatches15

can cause a shift in PLDA scores and proposed a duration-dependent qual-16

ity measure function to compensate for the shift. Kanagasundaram et al. [4]17

compared joint factor analysis (JFA), i-vector PLDA, and i-vectors equipped18

with various subspace projections and variance normalization techniques under19

short-utterance scenarios. They found that no significant performance differ-20

ence between JFA and i-vector PLDA when the enrollment and test utterances21

are very short and that JFA and PLDA offer marginally better performance22

than i-vectors with LDA followed by WCCN. Li et al. [8] noticed that for23

GMM-UBM systems, when both enrollment and test utterances are very short,24

the Gaussian components covered by the test utterances will not be properly25

trained during enrollment. To address this problem, they proposed to distribute26

speech signals into a number of phonetic sub-regions and model speakers within27

the sub-regions by region-specific GMMs.28

A special concern for i-vector/PLDA is that it has no ability to represent29

the reliability of i-vectors. This problem is especially severe in short-utterance30
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speaker verification. Recall that an i-vector is a maximum-a-posteriori (MAP)31

estimate of the latent variable in a factor analysis model. For short utterances,32

the number of acoustic frames is not enough to estimate i-vectors reliablely. By33

ignoring the time dimension, i-vectors estimated from long and short utterances34

are essentially treated as equally reliable. Kenny et al. [9] proposed to tightly35

couple i-vector extraction with PLDA modelling instead of treating them as two36

separated procedures. Specifically, the posterior covariance matrix of the latent37

factor is propagated into the PLDA model by introducing an extra loading ma-38

trix to represent the reliability of the i-vector. The method is called uncertainty39

propagation (UP) and the modified PLDA model is called PLDA-UP in this40

paper.41

The extra loading matrix in PLDA-UP is utterance-dependent. As a result,42

the scoring of PLDA-UP is much more computationally intensive than conven-43

tional PLDA. Besides, PLDA-UP also requires to store the posterior covariance44

matrices of target-speakers’ i-vectors, which is much more memory consuming45

than storing the i-vectors alone. Thus, both computational cost and memory46

consumption restrict the applications of PLDA-UP. To reduce the computational47

cost of PLDA-UP, Cumani et al. [10] proposed using MAP-estimated i-vectors48

to represent target speakers and propagating the posterior covariance matrix of49

test utterances into the PLDA model. This method relies on the assumption50

that enrolment utterances tend to be long. In [11], the author proposed to di-51

agonalise the matrices involved in scoring to reduce the computational cost of52

full matrix operations. Although this approach significantly reduces the com-53

putational cost and does not require long enrolment utterances, it still degrades54

the performance of PLDA-UP when test utterances are very short.55

The utterance-dependent matrix in PLDA-UP has no speaker specific in-56

formation. The only role it plays is to convey the reliability of i-vector. In-57

tuitively, if two utterances are close in duration, the corresponding i-vectors58

should have similar reliability. Based on this assumption, we have proposed in59

[12] to group i-vectors according to their utterance durations and model the60

reliability of i-vectors in each group by a single representative loading matrix.61
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Because these representative loading matrices can be pre-computed based on62

development data, we can pre-compute all of the relevant terms during scoring,63

thus saving lots of computation. In this paper, we extend our previous work in64

the following aspects:65

• We introduce a metric for measuring the distance between two covari-66

ance matrices. Through this metric, we define a within-group distance to67

measure the quality of the grouping schemes.68

• More extensive experiments are carried out to compare the performance of69

different grouping schemes. Also, the effectiveness of PLDA-UP and the70

proposed fast scoring schemes on utterances with different length-ranges71

was investigated.72

Experimental results on the NIST 2012 SRE show that the proposed method73

can perform as good as the PLDA-UP in all four different length-ranges inves-74

tigated, and the scoring time can be as low as 3.18% of the PLDA-UP.75

The organiaztion of this paper is as follows. In Section 2 and Section 3,76

we give a brief review of i-vector/PLDA framework and PLDA-UP. We show77

why PLDA-UP can deal with length variability and the source of computational78

burden is also identified. We then present the proposed fast scoring schemes79

in Section 4. Experimental setup and results are presented in Section 5 and80

Section 6, respectively. Finally, we conclude our findings in Section 7.81

2. Review of I-vector/PLDA82

2.1. I-vector Extraction83

The i-vector approach is an extension of joint factor analysis [13, 14]. It aims84

to extract from the acoustic vectors of an utterance a low-dimensional vector85

that incorporates most of the speaker information. It assumes that the speaker-86

and channel-dependent GMM-supervectors live in a low dimensional space:87

β = m + Tη, (1)
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where m is the speaker- and channel-independent GMM-supervector constructed88

by stacking up the means of a universal background model (UBM); T is a low-89

rank total variability matrix whose columns span the subspace where speaker-90

and channel-specific information varies; η is a latent variable which is assumed91

to follow a standard normal distribution. Given an utterance, its i-vector is a92

maximum-a-posteriori (MAP) estimate of the latent variable η, which we de-93

note as ω. To estimate an i-vector of an utterance with T acoustic frames,94

O = {o1, . . . ,oT }, the Baum-Welch statistics are used:95

Nc =

T∑
t=1

γc(ot) (2)

f̃ c =

T∑
t=1

γc(ot)(ot −mc), c = 1, . . . , C (3)

where96

γc(ot) =
λcN (ot|mc,Σc)∑C
c=1 λcN (ot|mc,Σc)

, (4)

where mc and Σc are the mean vector and covariance matrix of the c-th mixture97

in the UBM. The i-vector ω and its posterior covariance matrix cov(η,η) can98

be obtained by [13, 15]:99

ω = cov(η,η)

C∑
c=1

TT
c Σ−1c f̃ c (5)

cov(η,η) = L−1 =

(
I +

C∑
c=1

NcT
T
c Σ−1c Tc

)−1
, (6)

where L is a precision matrix and Tc is the c-th partition of T, i.e. T =100

[TT
1 , . . . ,T

T
C ]T.101

2.2. Probabilistic Linear Discriminant Analysis102

To suppress undesired intra-speaker variability in i-vectors, channel compen-103

sation is applied. Probabilistic linear discriminant analysis (PLDA) is found to104

be the most effective. Because of the heavy-tailed behaviour of i-vector distribu-105

tions, early PLDA is based on Students’s t distribution [16]. Garcia-Romero and106
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Espy-Wilson [17] found later that by simply length-normalizing the i-vectors,107

Gaussian PLDA can perform equally well. Because of the nice analytical solu-108

tion that Gaussian PLDA can offer, it is more preferable in practice.109

2.2.1. Pre-processing for Gaussian PLDA110

To use Gaussian PLDA, two pre-processing steps are necessary to Gaus-111

sianalize i-vectors. First, a whitening transform is applied to i-vectors:112

ωwht = WT(ω − ω̄), (7)

where ω̄ is the global mean of i-vectors, W is a transformation matrix obtained113

from the Cholesky decomposition of the within-class covariance matrix of i-114

vectors [18] and ωwht is the whitened i-vector. The second step is to apply a115

simple length-normalization to the whitened i-vectors:116

ωl-norm =
ωwht

‖ωwht‖
. (8)

It is customary to include linear discriminant analysis (LDA) and within-class117

covariance normalization (WCCN) [18] in the pre-processing steps. The whole118

pre-processing can be written in a more succinct fashion:119

w =
P(ω − ω̄)

‖ωwht‖
, (9)

where P denotes the transformation matrix that combines whitening, LDA and120

WCCN and w is the pre-processed i-vector that is ready for PLDA modelling.121

2.2.2. Gaussian PLDA as a Generative Model122

Given R i-vectors {wr; r = 1, . . . , R} from a speaker, PLDA assumes that123

they can be decomposed in the following manner:124

wr = µ+ Vh + Gzr + εr. (10)

This decomposition has two distinct parts: (1) the speaker-dependent part,125

µ + Vh, which is the same for all i-vectors from the same speaker; (2) the126

utterance-dependent part, Gzr + εr, which varies even for the utterances from127
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the same speaker. In Eq. 10, µ is the global mean of i-vectors and the matrix128

V represents the speaker subspace on which the speaker factor h can vary. The129

columns of matrix U span the subspace where the channel factor zr varies. εr130

models the residue that is not captured by both speaker and channel subspaces131

and is assumed to follow a Gaussian distribution with zero mean and a diagonal132

covariance matrix.133

The low dimensionality of i-vector makes it possible to conflate the channel134

variability and residue by using a full covariance matrix Σ such that:135

wr = µ+ Vh + εr, εr ∼ N (0,Σ) . (11)

2.2.3. Scoring in Gaussian PLDA136

Given a target speaker’s i-vector ws and a test i-vector wt, the log-likelihood137

ratio of the same-speaker hypothesis to different-speaker hypothesis can be com-138

puted by [17]:

SLR(ws,wt) = log
p(ws,wt|same-speaker)

p(ws,wt|different-speaker)

=
1

2
wT

s Φws + wT
s Ψwt +

1

2
wT

t Φwt + const (12)

where

Φ = Σ−1tot − (Σtot −ΣacΣ
−1
totΣac)

−1 (13)

Ψ = Σ−1totΣac(Σtot −ΣacΣ
−1
totΣac)

−1 (14)

Σac = VVT Σtot = VVT + Σ. (15)

Note that Eqs. 13–14 can be computed beforehand. Only Eq. 12 needs to be139

evaluated during verification. As a result, PLDA scoring is very efficient.140

3. Gaussian PLDA with Uncertainty Propagation141

Despite the great success of the i-vector/PLDA framework, its performance142

becomes very poor if both the enrolment and test utterances have a wide range143

of durations. There are several reasons for this. First, in i-vector extraction,144
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the duration of utterances is totally ignored, i.e., utterances are represented by145

vectors of fixed dimension regardless of their duration. Recall that an i-vector is146

the MAP estimate of latent variable η; the accuracy of such estimate depends on147

the number of acoustic vectors. By ignoring durations, all i-vectors are treated148

as equally reliable. Second, in PLDA modelling, it is assumed that all of the149

intra-speaker variabilities are represented by the covariance matrix Σ, which is150

the same across all i-vectors. This is apparently not a satisfactory assumption151

because short utterances have more severe intra-speaker variabilities than long152

utterances.153

To better accommodate utterance-length variability, a modified PLDA is154

proposed in [9]. The basic idea is to tightly couple i-vector extraction and PLDA155

modelling by propagating the uncertainty during i-vector extraction into the156

PLDA model. Recall that the posterior covariance matrix in Eq. 6 represents the157

uncertainty of the MAP point-estimate in i-vector extraction. The shorter the158

utterance, the larger the posterior covariances. By propagating this information159

into PLDA and using a loading matrix to model the variability due to duration160

variation, this PLDA model can better handle the length-variability than the161

conventional PLDA model.162

3.1. Preprocessing for Gaussian PLDA with UP163

The pre-processing steps in Section. 2.2.1 also need to be applied to the164

posterior covariance matrices. If only linear transform P is applied to an i-165

vector, the corresponding pre-processed covariance matrix can be obtained by:166

167

cov(Pη,Pη) = PL−1PT, (16)

which we denote as Λ. When length-normalization is applied to an i-vector, the168

pre-processed covariance matrix can be approximated by [9]:169

Λ← PL−1PT

‖ωwht‖
. (17)

Other methods to deal with this non-linear transform on posterior matrix can170

be found in [9, 19].171

8



3.2. Generative Model for Gaussian PLDA with UP172

To propagate the uncertainty of an i-vector into the PLDA model, an utterance-173

dependent loading matrix is added to the factor analysis model:174

wr = µ+ Vh + Urzr + εr, (18)

where Ur is the Cholesky decomposition of the posterior covariance matrix Λr,175

and zr is a latent variable assumed to follow a standard normal distribution.176

The intra-speaker variability of wr in Eq. 18 is:177

cov(wr,wr|h) = Λr + Σ, (19)

where Λr varies from utterances to utterances, thus reflecting the reliability of178

i-vector wr.179

3.3. Scoring in Gaussian PLDA with UP180

Given a target speaker’s i-vector ws together with its posterior covariance181

matrix Λs and a test i-vector wt together with its posterior covariance matrix182

Λt, the log-likelihood ratio can be written as:

SLR(ws,wt; Λs,Λt) = log
p(ws,wt; Λs,Λt|same-speaker)

p(ws,wt; Λs,Λt|different-speaker)

= log p

ws

wt

 ∣∣∣∣∣
0

0

 ,
Σs Σac

Σac Σt


− log p

ws

wt

 ∣∣∣∣∣
0

0

 ,
Σs 0

0 Σt


=

1

2
wT

s As,tws + wT
s Bs,twt +

1

2
wT

t Cs,twt +Ds,t (20)
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where

As,t = Σ−1s − (Σs −Σ−1t Σac)
−1 (21)

Bs,t = Σ−1s Σac(Σt −ΣacΣ
−1
s Σac)

−1 (22)

Cs,t = Σ−1t − (Σt −Σ−1s Σac)
−1 (23)

Ds,t = −1

2
log

∣∣∣∣∣∣Σs Σac

Σac Σt

∣∣∣∣∣∣+
1

2
log

∣∣∣∣∣∣Σs 0

0 Σt

∣∣∣∣∣∣ (24)

Σt = VVT + Λt + Σ (25)

Σs = VVT + Λs + Σ (26)

Σac = VVT. (27)

It is worth to notice that Eqs. 21–24 involve terms dependent on both the target183

speaker’s utterance and the test utterance, which means that these terms need184

to be evaluated during scoring.185

4. Fast Scoring via I-vector Grouping186

The computational burden of PLDA-UP comes from the utterance-dependent187

loading matrix Ur in Eq. 18, where the uncertainty is represented by UrU
T
r .188

If we have a group of i-vectors with similar reliability, one prescribed loading189

matrix should be sufficient to model the reliability of all of the i-vectors in the190

group. Furthermore, if the prescribed loading matrix can be estimated from191

development data, the utterance-dependent terms in Eqs. 21–24 can be pre-192

computed, which would greatly speed up the scoring process.193

Suppose we have a collection of i-vectors from a speaker and they are dis-194

tributed into K groups indexed by k, with the members within the k-th group195

indexed by (k, i). Then, the factor analysis model can be written as:196

wk,i = µ+ Vh + Ukzk,i + εk,i, (28)

where the loading matrices {Uk}Kk=1 are obtained from development data. Dif-197

ferent grouping schemes [12] will be explored in this paper:198
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• Grouping i-vectors by utterance durations.199

• Grouping i-vectors by the characteristics of the posterior covariance ma-200

trices.201

4.1. Three Approaches to Grouping I-vectors202

In this section, we describe and assess the quality of proposed grouping203

schemes. The first scheme is based on utterance durations and the last two are204

based on the characteristics of posterior covariance matrices.205

One intuitive way to group i-vectors with similar reliability is to group them206

according to the durations of their utterances. This can be easily done by207

dividing the time axis (starting from the shortest duration) into a number of208

equal-length intervals. Then, for each interval, the uncertainties of i-vectors are209

represented by the posterior covariance matrix of the i-vector whose utterance210

duration falls on or nearest to the middle of that interval. For example, if the211

interval is between 10 to 20 seconds, we select the covariance matrix whose212

corresponding utterance duration is closest to 15 seconds.213

Suppose the time axis is divided into K equal-length time intervals indexed214

by k. Then, the i-th i-vector in the k-th interval is denoted as wk,i and its pre-215

processed posterior covariance matrix is denoted as Λk,i,
1 where i = 1, 2, . . . , Ik.216

Among the Ik posterior covariance matrices in the k-th interval, the one with217

utterance-length closest to the middle of the k-th interval is selected to represent218

the uncertainty of all the i-vectors insider the interval. We denote the selected219

matrix as Λk,r. As Λk,r represents the uncertainty of all of the i-vectors insider220

the k-th interval, we need to assume:221

Λk,i ≈ Λk,r ∀i 6= r. (29)

To see if the above assumption holds, we introduce a within-group distance222

d(Λk,i,Λk,r) to measure the distances between the selected matrix and other223

1For simplicity, in the sequel we will refer the pre-processed posterior covariance matrix in

Eq. 17 as the posterior covariance matrix Λ when the context is clear.
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matrices in the k-th group [20]:224

d(Λk,i,Λk,r) =

√
trace{(Λk,i −Λk,r)T(Λk,i −Λk,r)}

trace{(ΛT
k,iΛk,i) + (ΛT

k,rΛk,r)}
i 6= r. (30)

Note that the distance has a range between 0.0 and 1.0 such that the smaller the225

distance the more similar are the two matrices. We truncated 7,156 telephone226

conversations from NIST 2008–2010 SRE (see Section 6) into short segments so227

that their durations are uniformly distributed between 3 and 60 seconds. After i-228

vector extraction and pre-processing, we applied the above mentioned procedure229

to group i-vectors, i.e., the time axis was divided into five 11.4-second intervals230

starting from 3 seconds and ending at 60 seconds. Λk,i, i = 1, 2, . . . , Ik, represent231

the posterior covariance matrices inside the k-th interval, among which Λk,r232

was selected as the representative of the interval. The within-group distances233

are computed for Ik − 1 pairs of Λk,r and Λk,i, where i 6= r, for a total of234

5 groups. The results are presented in Fig. 1(a). Each box together with its235

whiskers represent the variability of the within-group distances of that group.236

The central mark inside each box indicates the median within-group distance,237

and the bottom and top edges of each box indicate the 25th and 75th percentiles,238

respectively. The whiskers extend to the most extreme non-outliers, and the239

outliers are represented by the ‘+’ symbol [21].240

We can see from Fig. 1(a) that the majority of the distances are quite small241

(75% of the distances are smaller than the value indicated by the upper edge242

of each box). As small distance means high similarity between representative243

matrix and the other matrices in the group, we conclude that selecting rep-244

resentative matrices based on utterance durations is a reasonable approach.245

Nevertheless, there are still some outliers in the five groups. The reason for the246

outliers is that utterance duration does not totally capture the information in247

the posterior covariance matrix. Even for utterances of exactly the same du-248

ration, their zero-th oder statistics (Nc in Eq. 2) can be quite different, which249

could result in different posterior covariance matrices. Even if the posterior250

covariance matrices of two i-vectors are exactly the same, i.e., L−11 = L−12 in251

Eq. 6, their post-processed covariance matrices (Λ1 and Λ2 in Eq. 17) could252
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Figure 1: Distances between the representative matrix Λk,r of the k-th group and all of the

other matrices in the group. I-vector grouping schemes based on (a) utterance duration, (b)

the largest eigenvalue of UUT and (c) the trace of UUT.

be different. This is because the whitened i-vectors (ωwht
1 and ωwht

2 ) are not253

identical in general.254

To solve these problems, we propose two alternative approaches to grouping255

i-vectors using the characteristics of the posterior covariance matrices [12]. To256

this end, we define a scalar α, which is a function of the posterior covariance257

matrix:258

α = f(Λ). (31)

In Eq. 31, α could be:259

1. the largest eigenvalue of Λ, because the largest eigenvalue could dominate260

the variances of all components; and261
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2. the trace of Λ, because the trace of a covariance matrix is the sum of262

its eigenvalues, which summarizs the variability of all components in the263

corresponding i-vector.264

Specifically, we computed α for every posterior covariance matrix after prepro-265

cessing. Then we divided the α–axis into K equal-spaced intervals indexed by266

k. The i-vectors associated with the k-th interval are denoted as wk,i and their267

posterior covariance matrices are denoted as Λk,i, where i = 1, 2, . . . , Ik. The268

posterior covariance matrix whose value of α is closest to the middle of the269

k-th interval is selected to represent the uncertainty of i-vectors in this inter-270

val and denoted as Λk,r. Following this procedure, we divided the i-vectors271

extracted from the above mentioned 3–60 seconds utterances into 5 groups us-272

ing the largest eigenvalues and matrix traces, respectively. To evaluate the273

quality of these two grouping schemes, we compute the within-group distances274

d(Λk,i,Λk,r) for Ik−1 pairs of Λk,i and Λk,r, where i 6= r, for a total of 5 groups.275

The results are shown in Fig. 1(b) and Fig. 1(c) for using the largest eigenvalues276

and matrix traces, respectively. When compared with Fig. 1(a), there are con-277

siderably less outliers in Groups 1–4 in both Fig. 1(b) and Fig. 1(c), although278

Group 5 still has a large number of outliers.279

4.2. Fast Scoring Procedure280

Given a target speaker’s i-vector ws and a test i-vector wt, we need to281

determine their group index first, which we denoted as m and n, respectively.282

For the grouping scheme based on utterance duration, this can be achieved by283

comparing their utterance duration, denoted as l(s) and l(t), with the durations284

of the representative matrices, {lk; k = 1, . . . ,K}:

m = arg min
k∈{1,...,K}

|lk − l(s)| (32)

n = arg min
k∈{1,...,K}

|lk − l(t)|. (33)

For the grouping schemes based on the characteristics of the posterior covariance285

matrices, we need to evaluate the α-value of target speaker’s posterior covari-286

ance matrix Λs, which we denoted as α(s), and the α-value of test utterance’s287
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posterior covariance matrix Λt, which we denoted as α(t). Then we compared288

α(s) and α(t) with the α-value of the representative matrices, {αk; k = 1, . . . ,K},289

to determine the group identities of target speaker and test utterances:

m = arg min
k∈{1,...,K}

|αk − α(s)| (34)

n = arg min
k∈{1,...,K}

|αk − α(s)|. (35)

Then the log-likelihood ratio can be written as:290

SLR(ws,wt;m,n) =
1

2
wsAm,nws + wT

s Bm,nwt +
1

2
wT

t Cm,nwt +Dm,n, (36)

where

Am,n = Σ−1m − (Σm −Σ−1n Σac)
−1 (37)

Bm,n = Σ−1m Σac(Σn −ΣacΣ
−1
m Σac)

−1 (38)

Cm,n = Σ−1n − (Σn −Σ−1m Σac)
−1 (39)

Dm,n = −1

2
log

∣∣∣∣∣∣Σm Σac

Σac Σn

∣∣∣∣∣∣+
1

2
log

∣∣∣∣∣∣Σm 0

0 Σn

∣∣∣∣∣∣ (40)

Σn = VVT + Λn + Σ (41)

Σm = VVT + Λm + Σ (42)

Σac = VVT. (43)

Because Eqs. 37–40 do not depend on the test utterance, they can be pre-291

computed. For the grouping scheme based on utterance duration, the only extra292

computation is Eq. 33 during verification. For the grouping schemes based on293

covariance matrix’s characteristics, we need to evaluate Eq. 31 and Eq. 35.294

5. Experimental Setup295

5.1. Acoustic Front-End Processing296

Speech data from NIST 2005–2010 Speaker Recognition Evaluation (SRE)297

were used for system development. For performance evaluation, NIST 2012 SRE298
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[22] were used. For each utterance, a two-channel voice activity detector (VAD)299

[23] was applied to remove silent regions. Then a 25-ms Hamming window300

was used to extract 19 mel frequency cepstral coefficients (MFCC) and log-301

energy plus their first and second derivatives. Cepstral mean normalization and302

feature warping [24] were applied to compensate for channel variability in the303

MFCC vectors. In order to simulate utterances with arbitrary duration, four304

set of utterances with duration ranging from 3–20 seconds, 3–30 seconds, 3–40305

seconds and 3–60 seconds, respectively, were created by truncating speech files306

from NIST 2012 SRE (core set, male speaker).307

5.2. Speaker Model Training308

Full-length microphone and telephone utterances from NIST 2005–2008 SREs309

were used to train a gender-dependent UBM with 1024 Gaussian components310

and an i-vector extractor with 500 total factors. Then, i-vectors were extracted311

from the above mentioned truncated speech files. WCCN together with length-312

normalization were applied to reduce the heavy-tailed behavior of i-vectors.313

LDA was applied to project the i-vectors to a 200 dimensional subspace with314

better speaker discrimination. Another WCCN was then applied to reduce315

the undesired high within-class variability in the LDA-projected space. Then a316

PLDA models were trained using the pre-processed i-vectors (Eq. 9). PLDA-UP317

model was trained using the pre-processed i-vectors together with their posterior318

covariance matrices. For fast scoring systems, we obtained the representative319

matrices from the truncated telephone utterances in NIST 2006–2010 SRE, fol-320

lowing the procedures described in Section 4. According to different schemes321

specified in Table. 5.2, we have three fast scoring systems.322

6. Results and Analysis323

System performance was based on the truncated speech segments of Common324

Conditions 2 and 4 of NIST 2012 SRE (core set, male speakers). Equal error325

rate (EER), minimum detection cost function (minDCF) in NIST 2012 SRE326

were used as performance metrics.327
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System Criteria for Grouping i-vectors

Sys. 1 Utterance length (after VAD)

Sys. 2 The largest eigenvalue of posterior covariance matrix

Sys. 3 The trace of posterior covariance matrix

Table 1: The criteria for grouping i-vectors used by the 3 systems.

Fig 2 shows a bar chart of the EERs and total scoring time of PLDA, PLDA-328

UP and the three fast scoring systems with different numbers of i-vector groups.329

Obviously, the bar chart suggests that our fast scoring systems significantly330

reduce the scoring time while maintaing the good performance of PLDA-UP.331

The following sub-sections gives a detailed analysis of the results.332

6.1. Performance of Fast Scoring Systems333

Table 2 shows the EER and minDCF obtained by PLDA, PLDA-UP and334

the three fast scoring systems in common conditions 2 and 4, respectively. The335

results have two implications:336

• PLDA-UP outperforms the conventional PLDA in all the four duration337

ranges. The extent of improvement depends on the range of utterance338

length. We can see that the performance margin is the greatest when339

utterance-length ranges from 3–20 seconds.340

• Dividing i-vectors into five groups (K = 5) seems to be sufficient for all341

of the four duration ranges. Only System 1 in CC2 and System 2 in CC4342

show noticeable improvement in both EER and minDCF when the number343

of groups increases from 5 to 10.344

• There is no clear winner among the three fast scoring systems. All three345

perform equally well as compared to PLDA-UP. In some settings, the fast346

scoring systems even perform better than PLDA-UP, although by a very347

small margin only.348
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Duration Range (seconds)

3–20 3–30 3–40 3–60

Method K EER(%) minDCF EER(%) minDCF EER(%) minDCF EER(%) minDCF

C

C

2

PLDA - 7.41 0.802 6.42 0.665 5.35 0.576 4.20 0.520

PLDA-UP - 6.25 0.714 5.43 0.637 4.73 0.563 3.81 0.493

Sys. 1

5 6.35 0.711 5.54 0.625 4.92 0.554 3.94 0.478

10 6.17 0.703 5.33 0.625 4.57 0.553 3.80 0.479

15 6.11 0.710 5.33 0.628 4.69 0.562 3.81 0.479

Sys. 2

5 6.10 0.723 5.50 0.633 4.66 0.580 3.91 0.485

10 6.28 0.712 5.49 0.630 4.73 0.566 3.76 0.49

15 6.30 0.715 5.42 0.620 4.62 0.572 3.77 0.495

Sys. 3

5 6.14 0.716 5.33 0.621 4.62 0.569 3.87 0.486

10 6.27 0.713 5.39 0.630 4.73 0.565 3.81 0.485

15 6.25 0.715 5.36 0.628 4.75 0.567 3.84 0.487

C

C

4

PLDA - 14.66 0.899 12.06 0.792 10.88 0.710 9.22 0.656

PLDA-UP - 13.28 0.878 11.34 0.809 10.23 0.731 8.71 0.665

Sys. 1

5 13.24 0.869 11.16 0.791 9.98 0.720 8.68 0.641

10 13.25 0.871 11.06 0.795 9.69 0.712 8.86 0.649

15 13.33 0.869 11.06 0.794 9.93 0.718 8.56 0.646

Sys. 2

5 13.14 0.878 11.63 0.813 10.44 0.734 8.82 0.662

10 13.23 0.877 11.52 0.809 10.11 0.731 8.77 0.652

15 13.22 0.876 11.31 0.809 10.12 0.727 8.68 0.655

Sys. 3

5 13.34 0.875 11.47 0.807 10.55 0.739 8.97 0.659

10 13.53 0.878 11.26 0.805 10.37 0.736 9.10 0.670

15 13.39 0.877 11.33 0.807 10.41 0.734 9.02 0.673

Table 2: The performance of PLDA, PLDA-UP and the three fast scoring systems on the

truncated speech data from NIST 2012 SRE.
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Figure 2: A bar chart showing the EERs and total scoring time of PLDA, PLDA-UP and

the three fast scoring systems with different numbers of i-vector groups. For each system, the

number inside the parenthesis indicates the number of i-vector groups for that fast scoring

system.

6.2. Running time349

The total scoring time and its breakdown for different scoring methods in350

CC2 of NIST 2012 SRE are shown in Table 3. Apparently, the conventional351

PLDA is the most economical in term of computational cost, as it only involves352

vector-matrix multiplications during scoring. By contrast, the PLDA-UP is the353

most computational expensive method, with scoring time 44 times that of the354

conventional PLDA. The most computational expensive part of PLDA-UP is the355

evaluation of Eqs. 21–24, which takes up over 60% of the scoring time. Besides356

Eqs. 21–24, the preprocessing of covariance matrices is also computationally357

expensive, taking up about 30% of the scoring time. Because our fast scoring358

systems do not involve utterance-dependent loading matrices, computations in359

Eqs. 21–24 can be done before verification, thus the scoring time is greatly360

reduced. However, for System 2 and System 3, we still need to preprocess361

the covariance matrices of test utterances, which occupies most of the scoring362

time of these two systems. Besides, System 2 also requires to perform eigen-363
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decomposition, which makes it the slowest one among the three systems. For364

System 1, because the only extra computation besides the scoring function is365

the simple scalar comparison in Eq. 33, its scoring time is very close to that of366

the conventional PLDA.367

7. Conclusion368

In this paper, we proposed a fast scoring method for PLDA with uncertainty369

propagation (UP). The utterance-dependent loading matrices in UP is replaced370

by similar ones obtained from development data. The experiments in NIST 2012371

have shown that the proposed methods have the same ability to deal with short372

utterances as UP while the computational cost can be reduced to the one very373

close to that of the conventional PLDA. The proposed method has important374

implication in the real-life speaker verification, since in most applications the375

utterance lengths are difficult to control and computation cost is one of the main376

concerns beside performance.377
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