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Abstract Utility-based choice models are often used to determine a con-
sumer’s purchase decision among a list of available products; to provide an
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1 Introduction

In economics, marketing, and operations management literature, utility-based
choice models are often used to determine a consumer’s purchase decision
among a list of available products and to provide an estimate of product
demands. Typically in a choice model, a consumer’s purchase decision depends
on observed product characteristics (such as brand, quality, and price) and
the consumer’s preference over these observed product characteristics. Once
an appropriate choice model is specified, it can be used as a building block for
estimating product demands and for modeling and analyzing a given firm’s
price and assortment decisions.

There has been an increasing interest in studying firms’ price and assort-
ment optimization problems under various choice models in the recent oper-
ations research and operations management literature; see for example [13,
17,18,22,29] and the reference within. The choice models such as multinomi-
al logit and nested logit, used in these papers typically include an i.i.d. logit
error term, an idiosyncratic shock with a type-one extreme value (Gumbel)
distribution. The motivations for including such an logit error term are to
rationalize consumers’ purchase decisions observed in the data and to main-
tain analytical tractability. However, one undesirable feature with the use of
the logit term in a consumer’s utility function in a choice model is that every
product, regardless of its (low) quality and/or (high) price, admits a positive
market share. Aiming to address this concern, Berry and Pakes [3] propose
a pure characteristics demand model with two features: first, the logit error
term is removed from a consumer’s utility function; second, consumers have
heterogeneous preferences.

The lack of a logit error term in a consumer’s utility function in pure char-
acteristics demand models leads to several interesting and challenging issues
in formulating and analyzing the demand estimation problem as well as the
product pricing problems. As pointed out in Berry and Pakes [3], solving the
demand estimation problem based on pure characteristics demand models is
computationally difficult. Pang et al [25] formulate the optimization problem
of estimating a pure characteristics demand model as a mathematical program
with equilibrium constraints (MPEC). Chen et. al. [8] propose a regularization
method to compute a solution of the MPEC model and to prove the conver-
gence of an MPEC solution under SAA to a solution of the original problem
with equilibrium constraints.
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In this paper, we consider firm F’s multiproduct pricing problem in which
product demands are determined based on a pure characteristics model. We
propose an SAA-regularized method to approximate expected market shares
of products and study the convergence of the SAA-regularized solutions when
the regularization parameter goes to zero and sample size goes to infinity.
Specifically, our main contribution is as follows.

– In [25], the multiproduct pricing problem based on the pure charateristics
demand model has been formulated as a stochastic optimization problem
with stochastic linear complementarity problem (LCP) constraints. But
the problem is still difficult to analyze and solve. The main difficulty in
finding a solution of the problem is that the objective function is defined
by a special selection of solution functions from the solution set of the
stochastic LCP, which does not contain a continuous solution function.
Due to the discontinuity, we cannot utilize existing theory and algorithms
with convergence analysis for solving the problem.
In this paper, we propose an SAA-regularized method for the problem.
Using the special structure of the problem, we show that the optimal value
is given by a sparse solution function with a special order. Moreover, by the
closed-form expression of the solution function of the regularized LCP, we
prove the convergence of the sequence generated by the SAA-regularized
method.

The rest of the paper is organized as follows. In Section 2, we introduce
and present the formulation for firm F’s price optimization problem under pure
characteristics demand models. In Section 3, we introduce an SAA-regularized
method to approximate the original price optimization problem and examine
the convergence of solutions of the SAA-regularized problems to a solution
of the original problem when the regularized parameter goes to zero and the
sample size goes to infinity. In Section 4, we present numerical results with
several examples to show the efficiency of our SAA-regularized method. We
give conclusion remarks in Section 5.

2 The Multiproduct Pricing Problem

Assume that in a market, there areK+J products indexed by j = 1, . . . ,K+J .
The first K products (j = 1, . . . ,K) are produced by firm F and the remaining
products (j = K + 1, . . . ,K + J) are produced by other firms. Each product
j is characterized by a vector of observed characteristics xj ∈ IRℓ and price
pj ∈ IR.

There are M heterogenous consumers in the market. Each consumer is
characterized by a (random) vector ξ ∈ IRℓ+1, which represents a consumer’s
preference or tastes over the observed product characteristics xj and price pj .
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The vector of random variables ξ : Ω → Ξ ⊂ IRℓ+1 is defined in a probability
space (Ω,F ,P).

In the pure characteristics demand model, a consumer with preference ξ
and purchasing product j receives the utility uj(ξ, pj) defined by the observed
characteristics xj and price pj . In our study, x := {x1, . . . , xK+J} is given
data. If a consumer decides not to purchase any product (no-purchase outside
option), then her utility is 0. To simplify the notation, we define

u(ξ, p) = (u1(ξ, p1), . . . , uK(ξ, pK), uK+1(ξ, pK+1), . . . , uK+J(ξ, pK+J))
T ,
(1)

and p = (p1, . . . , pK) ∈ IRK for fixed pK+1, . . . , pK+J . The reason that the
vector p includes only prices of the K products produced by firm F will be
clear later when we define firm F’s profit maximization problem.

Among the K + J products, a consumer chooses one product or the no-
purchase outside option that gives her the highest utility. Given this decision
rule, the purchase decision of a consumer with a taste vector ξ is a solution to
the linear program

max
y

yTu(ξ, p)

s.t. y ≥ 0, eTy ≤ 1,
(2)

where e ∈ IRK+J is a column vector of all ones, and u : Ξ × IRK → IRK+J is
a vector of utilities received from purchasing each product.

Let cj be the marginal cost of product j. Given the price vector p of firm
F and prices of the J products produced by other firms, the total expected
profit of firm F is

M
K
∑

j=1

E[yj(ξ, p)](pj − cj), (3)

where yj(ξ, p) is the j-th element of a solution of the linear program (2), given
ξ and p (and pj , j = K + 1, . . . ,K + J). The term E[yj(ξ, p)] is the expected
market share of product j, where the expectation is taken over the distribution
of ξ.

In the profit maximization problem for firm F, one potential issue is that
problem (2) may have multiple solutions. Taking the possibility of multiple
solutions into account, we denote by S(ξ, p) the solution set mapping of the
linear program (2) for given ξ and p. Since the number of consumers in a
market, M, is a constant, we can omit it from the profit function in (3) and
the remainder of the paper. Let yK(ξ, p) = (y1(ξ, p), . . . , yK(ξ, p))T and c =
(c1, . . . , cK)T . Then the profit maximization problem for firm F is formulated
as

max
p∈P

f(p) := E[yK(ξ, p)]
T (p− c)

s.t. y(ξ, p) ∈ S(ξ, p), ξ ∈ Ξ,
(4)
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where P := {p ∈ IRK : p ≤ p ≤ p̄} is a compact set and p < c. Note that in
the real world application, the price of products will not be infinity. We can
choose a reasonable upper bound of price p̄ based on experts’ suggestions.

It is also easy to see from (2) and (4) that there always exists an optimal
solution p∗ ≥ c. Therefore, we can assume that the feasible region for p is a
compact set.

Note that the first-order necessary and sufficient optimality conditions of
the linear problem (2) can be written as the following linear complementarity
problem (LCP):

0 ≤

(

y
γ

)

⊥ M

(

y
γ

)

+

(

−u(ξ, p)
1

)

≥ 0 (5)

with

M =

(

0 e
−eT 0

)

∈ IR(n+1)×(n+1).

Thus, the solution set mapping S(ξ, p) of the linear program (2) is the y part
of the solution set mapping of the LCP (5).

To solve the price optimization problem (4), we need to first approximate
the expected market share E[yK(ξ, p)] in the profit function f(p). The SAA
approach is often used for this purpose. The SAA version of the pricing problem
(4) is

max
p≤p̄

1

N

N
∑

i=1

[yK(ξ
i, p)]T (p− c)

s.t. y(ξi, p) ∈ S(ξi, p), i = 1, . . . , N,

(6)

where {ξ1, . . . , ξN} are i.i.d. samples of random variables ξ.

A natural question that arises is whether a sequence of solutions of the SAA
problem (6) will converge to a solution of the original problem when the sample
size increases. Providing such convergence analysis in the context of price
optimization under pure characteristics demand models is challenging because
the linear program (2) or the LCP (5) can admit multiple solutions. Moreover,
we can not find a single-valued function y(ξ, p) ∈ S(ξ, p) which is continuous
with respect to p. Consider a simple example [8]: u(ξ, p) = (ξ1 + p, ξ2) ∈ IR2,
where ξ1 ∈ IR and ξ2 > 0, the solution set has the form

S(ξ, p) =







(1, 0) if p > ξ2 − ξ1,
{(α, 1− α) |α ∈ [0, 1]} if p = ξ2 − ξ1,
(0, 1) otherwise.

As a result, the convergence of the SAA scheme (6) cannot be established di-
rectly by using results in existing literatures. In the next section, we introduce
a regularized LCP method proposed by Chen et. al. [8] to study the conver-
gence of a sequence of solutions of the SAA profit maximization problem when
the sample size increases.
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3 An SAA-Regularized Method for the Pricing Problem

In this section, we consider an SAA-regularized method for solving firm F’s
multiproduct pricing problem (4) and establish convergence analysis.

3.1 An SAA-regularized method

Chen et. al. [8] consider a generalized method of moments (GMM) estimation
problem for estimating the parameters of the pure characteristics demand
model [3,25]. In such an estimation problem, the consumers’ purchased de-
cisions and the observed market share data of products are characterized by
the LCP (5) [8,25]. To overcome the difficulty that the LCP (5) can admit
multiple solutions, they propose a regularized LCP method to approximate
the LCP (5) as follows

0 ≤

(

y
γ

)

⊥ M ǫ

(

y
γ

)

+

(

−u(ξ, p)
1

)

≥ 0, (7)

where M ǫ = M + ǫI, with ǫ > 0. The benefits of using the regularized LCP
(7) are as follows

(i) the regularized LCP has a unique solution (yǫ(ξ, p), γǫ(ξ, p)) with a closed-
form;

(ii) the solution mapping yǫ(ξ, p) is globally Lipschitz continuous in price p
when the utility function u is so.

In what follows, we apply the SAA-regularized method proposed in Chen
et. al. [8] to firm F’s multiproduct pricing problem (4). For a given p and every
ξ ∈ Ξ, let yǫK(ξ, p) be the first K components of the unique solution of the
LCP (7).

We approximate the pricing problem (4) in two steps. The first step is to
consider the pricing problem with the regularized LCP (7):

max
p∈P

f ǫ(p) := E[yǫK(ξ, p)]
T (p− c). (8)

The second step is to consider the SAA of the regularized pricing problem (8):

max
p∈P

f ǫ
N (p) :=

1

N

N
∑

i=1

(yǫK(ξ
i, p))T (p− c), (9)

where N is the number of samples and {ξ1, . . . , ξN} are the i.i.d. samples of
ξ. For the three problems (4), (8) and (9), we denote the optimal solution sets
by P∗,Pǫ,Pǫ,N ⊂ IRK and the optimal values by ν∗, νǫ, and νǫ,N , respectively.
We say p∗ ∈ P∗ is an optimal solution of (4) if p∗ ∈ P and there exists
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y(ξ, p∗) ∈ S(ξ, p∗), ∀ξ ∈ Ξ such that E[yK(ξ, p
∗)](p∗ − c) = ν∗. Note that the

feasible sets of these three problems are same.

Although we apply the SAA-regularized method proposed in [8] to the
pricing problem (4), since the GMM estimation problem and problem (4) are
different, the contributions on convergence analysis of the SAA-regularized
methods are very different. We clarify the difference between GMM problem
in [8] and the pricing problem (4) in the following remark.

Remark 1 In [8], the authors focus on the GMM estimation problem

min
x∈X

xTQx+ cTx

s.t. E[S(ξ, x)] ∋ b,
(10)

whereX is a convex set, Q is a positive definite matrix, c and b are vectors, and
S(ξ, x) is the y part of the solution set of the LCP (5) when the utility function
u(ξ, p) is replaced by the consumers’ utility function with unknown parameter
x and known price p. Problem (10) is used to estimate the parameter x of the
pure characteristics demand model when the true market prices and market
shares are observed.

In this paper, we consider problem (4) which is used to find optimal prices
for maximizing firm F’s profit.

It is obvious that the purposes and the structures (include both objective
functions and constraints) of the two problems are very different.

One of key assumptions in the convergence analysis established in [8] is
that at the optimal solution x∗ of problem (10), the least norm solution of
the LCP (5), y(ξ, x∗) satisfies E[y(ξ, x∗)] = b. Without this assumption, the
convergence between original GMM estimation problem and its regularized
problem may not hold.

However, for the optimal solution p∗ of the pricing problem (4), the least
norm solution y(ξ, p∗) of the LCP (5) may not achieve the optimal value of
(4). Hence, in this paper, we introduce a new concept of sparse solutions with
some orders (Definitions 1 and 2), which can give the optimal value of (4)
(Lemmas 3 and 5).

In the following subsections, we prove the convergence of the solution set
Pǫ,N of problem (9) to the solution set P∗ of problem (4) as ǫ ↓ 0 and N → ∞.

To present the convergence analysis clearly, we first give some preliminaries,
including assumptions and previous results in other literatures in subsection
3.2. Then we start our convergence analysis for a simple case when the pricing
problem with one product (K = 1) in subsection 3.3. Using the results in
subsection 3.3, we establish the convergence analysis for the multiproduct
pricing problem (K ≥ 1) in subsection 3.4.
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In subsections 3.3 and 3.4, we first consider the convergence of the optimal
solution set Pǫ of the regularized problem (8) to that of the pricing problem
(4) when ǫ ↓ 0. Then we establish the convergence of the SAA-regularized
solution set Pǫ,N of (9) to that of problem (8) when N → ∞.

3.2 Convergence analysis of the SAA-regularized methods: preliminaries

In Assumption 1 below, we give conditions on the utility function for the
convergence analysis. Note that these conditions are very mild for the utility
function u.

Assumption 1 The utility function u : Ξ × P → IRK+J has the following
properties:

1. u(ξ, p) is continuous w.r.t. (ξ, p) ∈ Ξ × P . Moreover, for any fixed ξ ∈ Ξ,
u(ξ, ·) is Lipschitz continuous with a Lipschitz modulus κ(ξ) and there exists
an integrable function L(ξ) such that |κ(ξ)| ≤ L(ξ) for almost all ξ ∈ Ξ;

2. u(ξ, p) := (u1(ξ, p1), . . . , uK(ξ, pK), uK+1(ξ), . . . , uK+J(ξ)), where uj(ξ, pj)
is the utility for purchasing product j at price pj. The function uj(ξ, pj)
is a strictly decreasing function w.r.t. pj, for j = 1, . . . ,K and almost all
ξ ∈ Ξ.

3. ‖u(ξ, p)‖1 is integrable for every p ∈ P , that is E[‖u(ξ, p)‖] < ∞ for every
p ∈ P .

4. u(ξ, ·) is continuously differentiable w.r.t. p. For any compact subset Ξ̄ ⊆
Ξ, there exists a constant c > 0 such that ∇pu(ξ, ·) ≤ −ce for all ξ ∈ Ξ̄,

where e ∈ IRK with all components 1.

By [8, Lemma 2.2], we have a closed-form formula for yǫ(ξ, p), the first
K+J components of the unique solution of the LCP (7). We state the results
below for convenience.

Lemma 2.2 in [8]. For any fixed (ξ, p), we have uj1(ξ, p) ≥ uj2(ξ, p) ≥ . . . ≥
ujJ+K

(ξ, p), where {j1, · · · , jJ+K} is a reordering of {1, · · · , J +K}. Denote
for k = 1, . . . ,K + J ,

αjk(ξ, p, ǫ) =

k
∑

i=1

uji(ξ, p)− (k + ǫ2)ujk(ξ, p)− ǫ,

with Jξ = {k |αjk(ξ, p, ǫ) ≤ 0, k = 1, . . . , J +K}, Jξ = |Jξ|, σ = −

Jξ
∑

i=1

uji(ξ, p).

If ‖(u(ξ, p))+‖1 ≥ ǫ, we have

yǫjk(ξ, p) =

{

σ+(Jξ+ǫ2)ujk
(ξ,p)+ǫ

Jξǫ+ǫ3
if j ∈ Jξ,

0 otherwise,
(11)
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otherwise,

yǫjk(ξ, p) =

{

ujk(ξ, p)/ǫ if ujk(ξ, p) > 0,

0 otherwise.
(12)

Moreover, if Assumption 1 holds, by [8, Remark 2.5], yǫ(ξ, p) is globally Lip-
schitz continuous w.r.t. p.

Lemma 1 Suppose Assumption 1 holds. Then for any fixed p ∈ P and ǫ ∈
(0, 1], we have

‖yǫ(ξ, p)‖∞ ≤ (n+ 1)(‖u(ξ, p)‖1 + 1). (13)

Moreover, for any sequence {(pǫ, ǫ)} → (p, 0), ǫk0
∈ (0, 1] and ǫ ≤ ǫk0

with any
fixed p ∈ P , we have

sup
k≥k0

‖yǫk(ξ, pǫk)‖∞ ≤ (n+ 1)(‖u(ξ, p)‖1 + ‖pǫk0 − p‖κ(ξ) + 1). (14)

Proof For any fixed p ∈ P , ǫk0
> 0 and ǫ ≤ ǫk0

, we consider three cases: 1.
‖(u(ξ, p))+‖1 = 0; 2. ‖(u(ξ, p))+‖1 ≤ ǫ; 3. ‖(u(ξ, p))+‖1 ≥ ǫ. By [8, Lemma
2.2], it is easy to see yǫ(ξ, p) = 0 in case 1 and 0 ≤ yǫ(ξ, p) ≤ e in case 2. Then
we consider case 3. Since (11) and

αjJξ
(ξ, p, ǫ) =

Jξ
∑

i=1

uji(ξ, p)− (Jξ + ǫ2)ujJξ
(ξ, p)− ǫ ≤ 0,

we have

‖yǫ(ξ, p)‖∞ ≤

∥

∥

∥

∥

∥

(Jξ + ǫ2)uj1(ξ, p)−
∑Jξ

i=1 uji(ξ, p) + ǫ

Jξǫ + ǫ3

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

Jξ(uj1(ξ, p)− ujJξ
(ξ, p)) + ǫ2uj1(ξ, p) + ǫ

Jξǫ+ ǫ3

∥

∥

∥

∥

∥

and

(uj1(ξ, p)− ujJξ
(ξ, p)) ≤

Jξ
∑

i=1

uji(ξ, p)− JξujJξ
(ξ, p) ≤ ǫ2ujJξ

(ξ, p) + ǫ,

which imply

‖yǫ(ξ, p)‖∞ ≤

∥

∥

∥

∥

∥

Jξ(ǫ
2ujJξ

(ξ, p) + ǫ) + ǫ2uj1(ξ, p) + ǫ

Jξǫ+ ǫ3

∥

∥

∥

∥

∥

≤ ‖(n+ 1)(uj1(ξ, p)ǫ+ 1)‖.

Then (13) holds in all three cases.

Moreover, consider any sequence {(pǫ, ǫ)} → (p, 0), ǫk0
∈ (0, 1] and ǫ ≤ ǫk0

with any fixed p ∈ P . By Assumption 1, u(ξ, ·) is Lipschitz continuous with a
Lipschitz modulus κ(ξ) and there exists an integrable function L(ξ) such that
|κ(ξ)| ≤ L(ξ) for almost all ξ ∈ Ξ and ‖u(ξ, p)‖1 is integrable for any fixed
p ∈ P . Then by (13), for any k0 > 0 and ǫk0

< 1, (14) holds. �
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We establish the convergence of the optimal solution set Pǫ and the objec-
tive value νǫ of the regularized problem (8) to those of the pricing problem (4)
when ǫ ↓ 0.

The following lemma is based on the graphical convergence result pro-
posed in [8, Theorem 3.2]. By this lemma, we can see that, only by graphical
convergence, we may not get the deserved convergence results.

Lemma 2 Suppose Assumption 1 holds. Then

ν∗ ≥ lim sup
ǫ↓0

νǫ, (15)

where ν∗ and νǫ are the optimal values of (4) and (8), respectively.

Proof By [8, Theorem 3.2], we have

yǫ(ξ, ·)
g

−→ S(ξ, ·), (16)

which implies
lim sup
ǫ↓0,pǫ→p

yǫ(ξ, pǫ) = S(ξ, p),

where the “
g

−→” denotes graphical convergence, see [26, Definition 5.32]. Then
for any sequence {(ǫk, p

ǫk)} such that ǫk ↓ 0 and pǫk → p as k → ∞,

lim sup
k→∞

E[yǫk(ξ, pǫk)] ⊆ E[lim sup
k→∞

yǫk(ξ, pǫk)] ⊆ E[S(ξ, p)], (17)

where the integral of the stochastic set-valued mapping S(ξ, p) is defined in [2]
and {pǫk} can be thought as a sequence of feasible solutions from regularized
pricing problems. Note that the first ⊆ in (17) is from (14) in Lemma 1 and
[1, Theorem 8.6.7], and the second ⊆ is from (16). That suggests

h−lim inf
ǫk↓0

(pǫk − c)TE[yǫk(ξ, pǫk)] ≤ max
y∈E[S(ξ,p)]

(p− c)T y,

where h-lim inf denotes lower hypo-limits; see [26, Chapter 7]. Since the two
problems (4) and (8) have the same feasible sets for p, we have

lim sup
ǫk↓0,p∈P

E[yǫkK (ξ, p)]T (p− c) ≤ sup
p∈P

{sTK(p− c)|s ∈ E[S(ξ, p)]},

where sK = (s1, . . . , sK)T , and consequently, (15) holds. �

In general, since E[yǫk(ξ, pǫk)] may not converge to E[S(ξ, p)] in a graphical
sense, it is difficult to prove the convergence of the solution set Pǫ of problem
(8) to that of problem (4) when ǫ ↓ 0 through the way above.

However, special structures of these two problems allow us to construct a
specific sequence {pǫk} such that {E[yǫk(ξ, pǫk)} converges to a specific solution
in the set E[S(ξ, p)]. In what follows, we will show how to use the special
structure to construct such specific convergence sequence.
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3.3 Convergence analysis of the SAA-regularized methods: single product
pricing problem

In this subsection, we consider the pricing problem (4), regularized problem (8)
and SAA-regularized problem (9) for firm F with one product case (K = 1).

We first show the special structure of the problem through a simple exam-
ple.

Example 1 Consider problem (4), for each p ∈ P such that p > c, we find a
y(ξ, p) ∈ S(ξ, p) such that

E[y1(ξ, p)](p− c) = max
y(ξ)

f(p) := E[y1(ξ)](p− c)

s.t. y(ξ) ∈ S(ξ, p), ∀ξ ∈ Ξ.
(18)

Let Ξ = {ξ̄}, J = 2. For a fixed p ∈ P , suppose that u1(p, ξ̄) = u2(ξ̄) =
u3(ξ̄) > 0. Then by simple calculation,

S(ξ̄, p) := {(y1, y2, y3) : y1 + y2 + y3 = 1, yi ≥ 0, i = 1, 2, 3}.

Since p− c > 0 only affects the first component of y(ξ̄, p), the sparse solution1

(1, 0, 0) ∈ S(ξ̄, p) gives the optimal value, but other sparse solutions do not.

If 0 ≤ u1(p, ξ̄) < u2(ξ̄) = u3(ξ̄), then

S(ξ̄, p) := {(0, y2, y3) : y2 + y3 = 1, y2, y3 ≥ 0}.

Thus every y ∈ S(ξ̄, p) gives the optimal value.

Moreover, if 0 = u1(p, ξ̄) > u2(ξ̄) = u3(ξ̄), then

S(ξ̄, p) := {(y1, 0, 0) : y1 ∈ [0, 1]}.

Note that only y = (1, 0, 0) gives the optimal value and it is not a sparse
solution over the solution set S(ξ̄, p).

From Example 1, the selection of y(ξ, p) ∈ S(ξ, p) depends on the u1(ξ, p).

Definition 1 For any fixed (ξ, p), we call y(ξ, p) a sparse solution with respect
to the order 1 (w.r.t. 1) in S(ξ, p) if when u1(ξ, p) = ‖(u(ξ, p))+‖∞, y1(ξ, p) =
1, otherwise, y1(ξ, p) = 0.

As we explained in Example 1, a sparse solution w.r.t. 1 in S(ξ, p) may not
be a sparse solution in S(ξ, p).

1 y∗ is called a sparse solution in S(ξ, p) if ‖y∗‖0 = miny∈S(ξ,p) ‖y‖0.
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Lemma 3 For any optimal solution p∗ ∈ P∗ of problem (4), let y(ξ, p∗) be
any sparse solution w.r.t. 1 in S(ξ, p∗) for almost all ξ ∈ Ξ. Then

v∗ = E[y1(ξ, p
∗)](p∗ − c).

Proof Let v∗ be the optimal value of (4). Since p∗ is the optimal solution of
(4), then there exists y(ξ, p∗) ∈ S(ξ, p∗) such that

v∗ = E[y1(ξ, p
∗)](p∗ − c).

Assume for a contradiction that y(ξ, p∗) is not a sparse solution w.r.t. 1 in
S(ξ, p∗) for some ξ, then there exists a set Ξ̄ ⊂ Ξ and a sparse solution
w.r.t. 1, ȳ(ξ, p∗) ∈ S(ξ, p∗) such that

y1(ξ, p
∗) < ȳ1(ξ, p

∗), ∀ξ ∈ Ξ̄,

y1(ξ, p
∗) ≤ ȳ1(ξ, p

∗), ∀ξ /∈ Ξ̄

and µ(Ξ̄) > 0. That means v∗ < E[ȳ1(ξ, p
∗)](p∗ − c), a contradiction. Then

y(ξ, p∗) is a sparse solution w.r.t. 1 in S(ξ, p∗) for almost all ξ ∈ Ξ. Moreover,
for any other sparse solution w.r.t. 1 in S(ξ, p∗) for almost all ξ ∈ Ξ, y′(ξ, p∗),
it is easy to observe that if y1(ξ, p

∗) = y′1(ξ, p
∗), then

v∗ = E[y1(ξ, p
∗)](p∗ − c) = E[y′1(ξ, p

∗)](p∗ − c).

�

Lemma 3 shows that for an optimal solution p∗ ∈ P∗, any sparse solution
w.r.t. 1 in S(ξ, p∗), y(ξ, p∗) has the property that E[y1(ξ, p

∗)](p∗ − c) = v∗.
The following lemma shows that, for any p, there exists a special sequence
{(ǫk, pǫk)} → (0, p) such that yǫk(ξ, pǫk) → ȳ(ξ, p) for almost all ξ ∈ Ξ, where
ȳ(ξ, p) is a sparse solution w.r.t. 1 in S(ξ, p).

Lemma 4 Suppose Assumption 1 holds, then for any p0 and sequence {ǫk} ↓ 0,
there exists a sequence {pǫk} ↑ p0 such that E[y(ξ, p0)] = lim

k→∞
E[yǫk(ξ, pǫk)] and

y(ξ, p0) is the sparse solution w.r.t. 1 in S(ξ, p0) for almost every ξ ∈ Ξ.

Proof Since the random variable ξ is finitely dimensional, by [4, Theorem 1.4],
for any τ ∈ (0, 1], we can find a compact set Ξτ such that µ(Ξτ ) ≥ 1 − τ ,
where µ(Ξτ ) := Prob{ξ ∈ Ξτ}. Now, we consider the case when ξ ∈ Ξτ for a
fixed τ ∈ (0, 1]. Let

Ξ1 := {ξ ∈ Ξτ , u1(ξ, p
0) = ‖(u(ξ, p0))+‖∞}.

The proof is given by considering two cases: Case A1 is for ξ ∈ Ξ1; Case
A2 is for ξ /∈ Ξ1.
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Case A1. In this case S1(ξ, p
0) = [0, 1]. We prove that there is a sequence

{(ǫk, pǫk)} such that yǫk1 (ξ, pǫk) → 1 as {(ǫk, pǫk)} → (0, p0) for ξ ∈ Ξ1. Let

αj2(ξ, p, ǫ) := u1(ξ, p)− (1 + ǫ2)uj2(ξ)− ǫ, (19)

where uj2(ξ, p
ǫ) = maxi≥2{ui(ξ)}.

By the compactness of Ξ1, we can find a sufficiently small ǫ0 such that
maxξ∈Ξ1

‖u(ξ, p0)‖ ≤ 1
ǫ0
. Moreover, by the continuity of u(·, ·) and Assump-

tion 1, we can find the maximal pǫ0 ≤ p0 such that

v1(p
ǫ0) = min

ξ∈Ξ1

u1(ξ, p
ǫ0) ≥ ǫ0

and
φ(ǫ0, p

ǫ0) = min
ξ∈Ξ1

αj2(ξ, p
ǫ0 , ǫ0) ≥ 0.

Note that by [6, Proposition 4.4], Assumption 1 and the definition of αj2 , v1
is a continuous and strictly monotonically descending function w.r.t. p and φ
is a continuous and monotonically descending function w.r.t. (ǫ, p).

Note that ‖(u(ξ, pǫ0))+‖1 ≥ ǫ0, by (11), we have

yǫ0(ξ, pǫ0) =

{

1+ǫ0uj1
(ξ,pǫ0 )

1+ǫ2
0

if j = 1,

0 otherwise.
(20)

Moreover yǫ0(ξ, p) has the same formulation as (20) for all p ≤ pǫ0 .

Similarly, for any 0 < ǫ′′ < ǫ′ < ǫ0, we can find maximal p′′ and p′ such
that

v1(p
′′) ≥ ǫ′′ and φ(ǫ′′, p′′) ≥ 0,

v1(p
′) ≥ ǫ′ and φ(ǫ′, p′) ≥ 0,

and p0 ≥ p′′ ≥ p′ ≥ pǫ0 . Moreover, we have φ(ǫ′′, p0) ≤ φ(ǫ′′, p′′).

Hence for any sequence {ǫk} ↓ 0, we can find a corresponding monotonically
increasing sequence {pǫk} ↑ p0 such that for ξ ∈ Ξ1,

yǫkj (ξ, pǫk) =

{

1+ǫkuj(ξ,p
ǫk )

1+ǫ2
k

if j = 1,

0 otherwise.
(21)

Note that uj1(ξ, p
ǫk) decreases to uj1(ξ, p

0) and ǫk ↓ 0 with k → ∞,

yǫk1 (ξ, pǫk) → y1(ξ, p
0) = 1

and
yǫkj (ξ, pǫk) → 0, j = 2, . . . , J + 1.

Case A2. We consider Ξτ/Ξ1. By [8, Theorem 3.2], yǫ1(ξ, ·)
g

−→ S1(ξ, ·)
as ǫ → 0, where S1(ξ, ·) is the solution set mapping of the first component
of the solutions of the LCP (5). Moreover, for ξ ∈ Ξτ/Ξ1, S1(ξ, p

0) = {0},
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which means yǫ1(ξ, p
ǫ) → y1(ξ, p

0) = 0 for any sequence {(ǫ, pǫ)} → (0, p0) and
all ξ ∈ Ξτ/Ξ1. Then for the sequence {(ǫk, pǫk)} defined in Case A1 and all
ξ ∈ Ξτ/Ξ1, with k → ∞,

yǫk1 (ξ, pǫk) → y1(ξ, p
0) = 0.

Moreover, since τ can be arbitrarily small, for almost all ξ ∈ Ξ, yǫk1 (ξ, pǫk) →
y1(ξ, p

0) as ǫk → 0. �

Now we are ready to prove the convergence of the SAA-regularized prob-
lem (9). In the rest of the paper, for two sets A,B ⊆ IRK , the deviation from
A to B is denoted as

D(A,B) := sup
a∈A

inf
b∈B

‖a− b‖2. (22)

Theorem 2 Suppose the conditions of Lemma 4 hold, then D(Pǫ,P∗) → 0 as
ǫ ↓ 0.

Proof We consider problems (4) and (8). Let {ǫk} → 0 be any sequence,
pǫk ∈ Pǫk and {(ǫk, pǫk ,E[yǫk(ξ, pǫk)])} → (0, p∗,E[y∗(ξ, p∗)]) such that

f ǫk(pǫk) → E[y∗1(ξ, p
∗)](p∗ − c).

It is sufficient to prove that p∗ ∈ P∗.

Assume for a contradiction that p∗ is not an optimal solution of prob-
lem (4). By Lemma 3, there exist an optimal solution p̂ of problem (4) with a
corresponding sparse solution w.r.t. 1, ŷ(ξ, p̂) and δ > 0 such that p̂ ≥ c and

E[ŷ1(ξ, p̂)](p̂− c)− E[y∗1(ξ, p
∗)](p∗ − c) > δ. (23)

Then by Lemma 4, there exists {(ǫk, p̂ǫk ,E[y
ǫk(ξ, p̂ǫk)])} → (0, p̂,E[ŷ(ξ, p̂)])

such that p̂ǫk ∈ P and

f ǫk(p̂ǫk) → E[ŷ1(ξ, p̂)](p̂− c). (24)

Then we have

E[ŷ1(ξ, p̂)](p̂− c)− E[y∗1(ξ, p
∗)](p∗ − c)

= E[ŷ1(ξ, p̂)](p̂− c)− f ǫk(p̂ǫk) + f ǫk(p̂ǫk)− f ǫk(pǫk)
+ f ǫk(pǫk)− E[y∗1(ξ, p

∗)](p∗ − c).
(25)

Moreover, it is obvious that

f ǫk(p̂ǫk)− f ǫk(p̂ǫk) ≤ 0

and
f ǫk(pǫk)− E[y∗1(ξ, p

∗)](p∗ − c) → 0.

Combining this with (24), we have

E[ŷ1(ξ, p̂)](p̂− c)− E[y∗1(ξ, p
∗)](p∗ − c) ≤ 0,

which contradicts (23). �
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Now we consider problems (8) and (9).

Theorem 3 Suppose the random sample {ξ1, . . . , ξN} of ξ is i.i.d. and As-
sumption 1 holds. Then for any ǫ > 0, νǫ,N → νǫ and D(Pǫ,N ,Pǫ) → 0 w.p.1
as N → ∞.

Proof Note that the feasible set of problems (8) and (9) are same. Moreover, by
the compactness of P , Assumption 1, Lemma 1 and the closed-form expression
of yǫ(ξ, p), we have

1. the function yǫ(ξ, p) is Lipschitz continuous with a finite Lipschitz modulus
κǫ(ξ) and there exists an integrable function L(ξ) such that κǫ(ξ) ≤ L(ξ)
for almost ξ ∈ Ξ;

2. for all p ∈ P , there exists an integrable function Lp(ξ) such that ‖yǫ(ξ, p)‖ ≤
Lp(ξ) for almost ξ ∈ Ξ and E[Lp(ξ)] < ∞.

Then by [30, Chapter 6, Proposition 7], f ǫ
N → f ǫ w.p.1 uniformly on P .

Moreover, since P is compact and f ǫ
N and f ǫ are Lipschitz continuous with

finite Lipschitz moduli, f ǫ
N and f ǫ are finite on feasible set P , and solution

sets Pǫ,Pǫ,N are nonempty. Then by [30, Chapter 6, Proposition 6], we have

νǫ,N → νǫ and D(Pǫ,N ,Pǫ) → 0 w.p.1 as N → ∞.

�

Now we are ready to prove the convergence of the solution set Pǫ,N of
problem (9) as N → ∞ and ǫ ↓ 0.

Theorem 4 Suppose the conditions of Theorem 2 and Theorem 3 hold. Then

lim
ǫ↓0

lim
N→∞

D(Pǫ,N ,P∗) = 0 w.p.1. (26)

Proof The assertion follows directly from Theorem 2 and Theorem 3. �

3.4 Convergence analysis of the SAA-regularized methods: multiproduct
pricing problem

Now we consider the general case when K ≥ 1.

Definition 2 For any fixed ξ ∈ Ξ and p ∈ P , y(ξ, p) is called a sparse
solution with respect to the order {l1, . . . , lt} (w.r.t. {l1, . . . , lt}) in S(ξ, p),
t ≤ J +K, if yli(ξ, p) = 1, with i being the smallest number in {s|uls(ξ, p) =
‖(u(ξ, p))+‖∞, ls ∈ {l1, · · · , lt}}.



16 Hailin Sun et al.

Remark 2 By simple calculation, it is easy to observe that, for any fixed (ξ, p),
the solution set of y part of the LCP (5) is

S(ξ, p) =















y = (y1, · · · , yJ+K) :

yj ≥ 0, j = 1, · · · , J +K
∑

j∈J yj = 1, if ‖u(ξ, p)‖∞ > 0
∑

j∈J yj ≤ 1, if ‖u(ξ, p)‖∞ = 0

yj = 0, ∀j /∈ J















, (27)

where
J := {j : uj(ξ, p) = ‖u(ξ, p)‖∞, j ∈ {1, · · · , J +K}} .

For fixed (ξ, p), consider a simple example of the LCP (5) that K + J = 5,
u(ξ, p) = (5, 4, 3, 2, 5). By (27), S(ξ, p) := {(y1, 0, 0, 0, y5) : y1+y5 = 1, y1, y5 ≥
0}. Then we consider sparse solutions with some orders in (27).

S(ξ, p) has two sparse solutions: (1, 0, 0, 0, 0) and (0, 0, 0, 0, 1). Note that
(1, 0, 0, 0, 0) is the sparse solution with the order such that 1 is higher than
5 and (0, 0, 0, 0, 1) is the sparse solution with the order such that 5 is higher
than 1.

Moreover, if the order doesn’t include 1 and 5, then every solution is a
sparse solution w.r.t. the order.

Lemma 5 For any optimal solution p∗ ∈ P∗ of problem (4), let y∗(ξ, p∗) be
any sparse solution w.r.t. {l1, . . . , lK} in S(ξ, p∗) for almost all ξ ∈ Ξ, where
{l1, . . . , lK} is the order such that (p∗ − c)l1 ≥ . . . ≥ (p∗ − c)lK . Then

v∗ = E[y∗K(ξ, p
∗)]T (p∗ − c).

Proof Let v∗ be the optimal value of problem (4). Then there exists y∗(ξ, p∗)
such that

v∗ = E[y∗K(ξ, p
∗)]T (p∗ − c).

Assume that y∗(ξ, p∗) is not a sparse solution w.r.t. {l1, . . . , lK} in S(ξ, p∗)
for almost all ξ ∈ Ξ. Let y(ξ, p∗) be any sparse solution w.r.t. {l1, . . . , lK} in
S(ξ, p∗) for almost all ξ ∈ Ξ. Since (p∗ − c)l1 ≥ . . . ≥ (p∗ − c)lK ≥ 0,

K
∑

i=1

yli(ξ, p
∗)T (p∗ − c)li ≥

K
∑

i=1

y∗li(ξ, p
∗)T (p∗ − c)li ,

and equation holds only in the case when there are some ties in the chain
(p∗ − c)l1 ≥ . . . ≥ (p∗ − c)lK . Thus, we have

v∗ = E[y∗K(ξ, p
∗)]T (p∗ − c) ≤ E[yK(ξ, p

∗)]T (p∗ − c),

which implies E[yK(ξ, p
∗)]T (p∗ − c) = v∗. Moreover, for any other sparse solu-

tion w.r.t. {l1, . . . , lK} in S(ξ, p∗) for almost all ξ ∈ Ξ, y(ξ, p∗), it is clear that
y∗K(ξ, p

∗) = yK(ξ, p
∗), then

v∗ = E[y∗K(ξ, p
∗)]T (p∗ − c) = E[yK(ξ, p

∗)]T (p∗ − c).

�
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Lemma 6 Suppose Assumption 1 holds. Then for any order {l1, . . . , lK},
p0 ∈ IRK

+ and sequence {ǫk} ↓ 0, there exists a sequence {pǫk} → p0 such
that E[y(ξ, p0)] = limk→∞ E[yǫk(ξ, pǫk)] and y(ξ, p0) is a sparse solution w.r.t.
{l1, . . . , lK} in S(ξ, p0) for almost every ξ ∈ Ξ.

Proof Since the vector of random variables ξ is finitely dimensional, similar to
the proof for Lemma 4 and by [4, Theorem 1.4], we can find a compact set Ξτ

such that µ(Ξτ ) ≥ 1 − τ for any τ ∈ (0, 1]. Thus, it suffices to consider the
case when ξ ∈ Ξτ .

Without loss of generality, we consider {l1, . . . , lK} = {1, . . . ,K}. Note
that if y(ξ, p0) is a sparse solution w.r.t. {1, . . . ,K}, then y(ξ, p0) is a sparse
solution w.r.t. {1, . . . , t} for all integer t ∈ [1,K].

For every integer t ∈ [1,K], we define

Ξ1
t :=

{

ξ ∈ Ξτ , ut(ξ, p
0) = ‖(u(ξ, p0))+‖∞

}

,

and

Ξ̄1
t :=

{

ξ ∈ Ξτ , ut(ξ, p
0) = ‖(u(ξ, p0))+‖∞ = max

1≤s≤t−1
{us(ξ, p

0)}

}

.

We will show that we can find {pǫk} such that for ξ ∈ Ξ1
s/Ξ̄

1
s ,

lim
k→∞

yǫks (ξ, pǫk) = 1, s = 1, . . . ,K, (28)

and for ξ ∈ Ξτ/Ξ
1
s ,

lim
k→∞

yǫks (ξ, pǫk) = 0, s = 1, . . . ,K. (29)

In the following proof, we will construct K sequences {pǫk,K}, . . . , {pǫk,1} with
{pǫk,1} = {pǫk} that satisfy

pǫk,ti = pǫk,ii , i = t+ 1, . . . ,K,

pǫk,ti = p0i , i = 1, . . . , t− 1,

and {pǫk,tt } ↑ p0t as ǫ → 0 for all t = 1, . . . ,K. Then similar to the proof of
Lemma 4, there exists a monotonically increasing sequence {pǫk,K} such that
for all ξ ∈ Ξ1

K ,
lim
k→∞

yǫkK (ξ, pǫk,K) = 1; (30)

for all ξ ∈ Ξτ/Ξ1
K ,

lim
k→∞

yǫkK (ξ, pǫk,K) = 0, (31)

and {pǫk,KK } ↑ p0K and pǫk,Kj = p0j for j = 1, . . . ,K − 1.

The rest of the proof is given by backward induction.

Assume that for s = t+1, . . . ,K and {ǫk} → 0, we can find {pǫk,t+1} such
that for ξ ∈ Ξ1

s/Ξ̄
1
s , (28) holds; for ξ ∈ Ξτ/Ξ

1
s , (29) holds, where {p

ǫk,t+1} is a
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monotonically increasing sequence such that {pǫk,t+1} ↑ p0; and for ξ ∈ Ξ1
s∩Ξ̄

1
i

and i = s+ 1, . . . ,K

yǫki (ξ, pǫk,t+1) → 0 as k → ∞.

We will prove there exists a sequence {pǫk,t} satisfying (28) and (29) for s =
t, · · · ,K.

We consider three cases: ξ ∈ Ξ1
t in Case 1, ξ ∈ Ξτ/Ξ1

t in Case 2, and
ξ ∈ Ξ1

t ∩ Ξ̄1
s for s = t+ 1, . . . ,K in Case 3.

Case 1: ξ ∈ Ξ1
t . By the compactness of Ξτ , Ξ1

t is a compact set. Similar with
the proof of Case A1 of Lemma 4, for a sequence {ǫk} defined in Case A1, we
can find the maximal sequence {pǫk} such that

vt(p
ǫk) = min

ξ∈Ξ1
t

ut(ξ, p
ǫk) ≥ ǫk, φ(ǫk, p

ǫk) = min
ξ∈Ξ1

t

α2(ξ, p
ǫk , ǫk) ≥ 0,

(p0)t ≥ (pǫk+1)t ≥ (pǫk)t, pǫkj = pǫk,t+1
j , j = t+ 1, . . . ,K,

and
pǫkj = p0j , j 6= t, . . . ,K.

Let pǫk,t = pǫk . We have the monotonically increasing sequence {pǫk,t} ↑ p0

such that for ξ ∈ Ξt
1,

yǫk(ξ, pǫk,t) =

{

1+ǫkuj(ξ,p
ǫk,t)

1+ǫ2
k

if j = t,

0 otherwise,
(32)

which means
lim
k→∞

yǫkt (ξ, pǫk,t) = 1. (33)

Note that ut(ξ, p
ǫk) decreases and ǫk → 0 with k → ∞, yǫkt (ξ, pǫk) → 1 and

yǫkj (ξ, pǫk) → 0 for j 6= t. Note also that for i = t+ 1, . . . ,K and ξ ∈ Ξ1
t ∩ Ξ̄1

i ,

yǫki (ξ, pǫk,t) → 0 as k → ∞.

Case 2: ξ ∈ Ξτ/Ξ1
t . Similar to the proof of Case A2 in Lemma 4, we can

show that for the sequence {(ǫk, pǫk,t)} defined in Case 1 and all ξ ∈ Ξτ/Ξ1
t ,

with k → ∞,
yǫkt (ξ, pǫk,t) → yt(ξ, p

0) = 0. (34)

Case 3: In this case, we consider all ξ ∈ Ξ1
s/Ξ̄

1
s in the sequence {pǫk,t} defined

above for s = t + 1, . . . ,K. Note that Si(ξ, p
0) = {0} for all ξ ∈ Ξ1

s /Ξ̄
1
s and

i = 1, . . . , s− 1. We have yǫki (ξ, pǫk,t) → 0 as k → ∞ for i = 1, . . . , s− 1.

Since pǫk,tl = pǫk,sl , l = 1, . . . , t − 1, s, . . . ,K, for i = s + 1, . . . ,K,K +
1, . . . ,K + J and ξ ∈ Ξ1

s/Ξ̄
1
s , it is clear that

αi(ξ, p
ǫk,t, ǫk) ≥ αi(ξ, p

ǫk,s, ǫk) ≥ 0,



SAA-Regularized Methods for Multiproduct Price Optimization 19

‖u(ξ, pǫk,t)‖ ≥ ǫk and
∑K+J

1 yǫki (ξ, pǫk,t) → 1 as k → ∞. Then yǫki (ξ, pǫk,t) →
0 as k → ∞ for i = s + 1, . . . ,K,K + 1, . . . ,K + J and yǫks (ξ, pǫk,t) → 1 as
k → ∞.

Thus, for all integers t ∈ [1,K], we have proved that there exists a sequence
{pǫk,1} → p0 with k → ∞ such that for ξ ∈ Ξ1

t /Ξ̄
1
t ,

lim
k→∞

yǫkt (ξ, pǫk,1) = 1, (35)

and for ξ ∈ Ξτ/Ξ
1
t ,

yǫkt (ξ, pǫk,1) = 0. (36)

Moreover, since Ξ̄1
t ⊂

⋃t−1
s=1(Ξ

1
s/Ξ̄

1
s ) and Ξ̄1

1 = ∅, for ξ ∈ Ξ̄1
t ,

lim
k→∞

yǫkt (ξ, pǫk,1) = 0. (37)

From (35)–(37), there exists a y(ξ, p0) such that

lim
k→∞

E[yǫk(ξ, pǫk)] = E[y(ξ, p0)],

where {pǫk} = {pǫk,1} and y(ξ, p0) is a sparse solution w.r.t. {l1, . . . , lK} in
S(ξ, p0) for almost every ξ ∈ Ξ. �

Now we are ready to prove the convergence of the SAA-regularized problem
(9) to the original pricing problem (4).

Theorem 5 Suppose the conditions of Lemma 6 hold, then D(Pǫ,P∗) → 0 as
ǫ ↓ 0.

By Lemma 6, the proof of Theorem 5 is similar to the proof of Theorem 2,
we omit the details.

Next, we consider problems (8) and (9).

Theorem 6 Suppose Ξ is a compact set, the random sample {ξ1, . . . , ξN}
of ξ is i.i.d. and Assumption 1 holds. Then for any ǫ > 0, νǫ,N → νǫ and
D(Pǫ,N ,Pǫ) → 0 w.p.1 as N → ∞.

The proof of Theorem 6 is similar to the proof of Theorem 3, and hence, we
omit the details.

Now we are ready to state the convergence of the solution set Pǫ,N of the
SAA-regularized problem (9) to that of the multiproduct pricing problem (4)
when N → ∞ and ǫ ↓ 0.

Theorem 7 Suppose the conditions of Theorem 5 and Theorem 6 hold. Then

lim
ǫ↓0

lim
N→∞

D(Pǫ,N ,P∗) = 0 w.p.1. (38)
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The assertion follows directly from Theorem 5 and Theorem 6.

Up to now, convergence of the SAA methods for the multiproduct pricing
problem (4) has not been established due to the difficulties in dealing with
the expected values of the set-valued solution mapping in the problem. In this
paper, for the first time in literatures, we establish the convergence of the SAA
methods for the multiproduct pricing problem (4) via the regularization ap-
proach regarding global solutions. It is worth noting that problem (4) and the
SAA-regularized problem (9) are nonconvex and nonsmooth. We believe that
the convergence regarding stationary points via the regularization approach is
promising and interesting, and list it as our further research work.

4 Numerical Examples

In this section, we consider several examples of the price optimization problem
(4) and their corresponding SAA-regularized problem (9). We use the Matlab
package HANSO [7,21] to solve the SAA-regularized problem

max
p

f ǫ
N (p) :=

1

N

N
∑

i=1

(yǫK(ξ
i, p))T (p− c), (39)

where the closed-form formula of yǫ(ξi, p) is derived in (11) and (12) and
yǫK(ξ, p) denotes the components of yǫ(ξ, p) associated with firm F. The nu-
merical analysis with HANSO was executed in MATLAB 8.0 on a IBM Notebook
PC with Windows 7 operating system, and Intel Core i5 processor. For Ex-
ample 2, we also compare the performance of HANSO for solving problem (39)
and SNOPT [19] coded in AMPL [16] for solving SAA problem with stochastic
regularized LCP constraints:

max
p,y(ξi),γ(ξi)

1

N

N
∑

i=1

(yK(ξ
i))T (p− c)

s.t. for i = 1, . . . , N :

0 ≤

(

y(ξi)
γ(ξi)

)

⊥ M ǫ

(

y(ξi)
γ(ξi)

)

+

(

−u(ξi, p)
1

)

≥ 0.

(40)

Example 2 (with discrete distribution for ξ). In this example, there are total
three products with K = 1 and J = 2. Hence, firm F decides the price for
one product (the first product). The utility of a consumer with preference
ξ = (ξ1, ξ2, ξ3) for purchasing product j (= 1, 2, 3) is

uj(ξ, pj) = ξ1 + ξ2xj − ξ3pj , (41)

where xj and pj are product characteristic and price for product j. We assume
that the random vector for consumers’ preference ξ = (ξ1, ξ2, ξ3) has a discrete
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distribution of three preference types specified below

ξ =











(ξ11 , ξ
1
2 , ξ

1
3) = (3, 3, 1), with probability 1

4 ;

(ξ21 , ξ
2
2 , ξ

2
3) = (2, 2, 1), with probability 1

2 ;

(ξ31 , ξ
3
2 , ξ

3
3) = (1, 1, 2), with probability 1

4 .

Let x1 = 5 and c1 = 5 be the observed product characteristic and marginal
cost, respectively, for firm F’s product; firm F needs to decide the price p1.
The observed characteristic and observed price for the other two products are
(x2, p2) = (3, 3) and (x3, p3) = (1, 0.5).

Analysis of Example 2. With a slight abuse of the notation, we denote
by U(p1) a matrix with the component Uij(p1) being the utility of a type-i
consumer purchasing product j when firm F’s product is priced at p1; that is,

Uij(p1) = uj(ξ
i, pj), for i, j = 1, . . . , 3,

where uj(ξ
i, pj) is specified in (40). With x = (x1, x2, x3) = (5, 3, 1) and

(p2, p3) = (3, 0.5), we have

U(p1) =





u1(ξ
1, p1) 9 5.5

u1(ξ
2, p1) 5 3.5

u1(ξ
3, p1) −2 1





and




y1(p1)
y2(p1)
y3(p1)



 =





1[u1(ξ
1, p1) ≥ max{9, 5.5}]

1[u1(ξ
2, p1) ≥ max{5, 3.5}]

1[u1(ξ
3, p1) ≥ max{−2, 1}]



 .

Then firm F’s profit maximization problem becomes

max
p1

[

1

4
y1(p1) +

1

2
y2(p1) +

1

4
y3(p1)

]

(p1 − c1). (42)

Moreover, u1(ξ
i, p1) is strictly monotonically decreasing w.r.t. p1, and hence,

yi(p1) is monotonically decreasing w.r.t. p1. It is easy to derive that

y1(p1) =

{

1, p1 ≤ 9;
0, p1 > 9;

y2(p1) =

{

1, p1 ≤ 7;
0, p1 > 7;

and y3(p1) =

{

1, p1 ≤ 5;
0, p1 > 5.

By the analysis above, one can show that for the profit maximization problem
(42), p∗1 = 7 is the global optimal solution with optimal profit 1.5 and p̂1 = 9
is a local optimal solution with profit 1.
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Since p2 and p3 are fixed in this example, the formulation of regularized
problem (40) for Example 2 is:

max
p1,yij ,γi

(14y11 +
1
2y21 +

1
4y31)(p1 − c1)

s.t. for i = 1, . . . , 3, j = 1, . . . , 3 :

γi + ǫyi1 − (ξi1 + ξi2x1 − ξi3p1) ≥ 0

1−
∑3

j=1 yij + ǫγi ≥ 0

γi −max{(ξi1 + ξi2x2 − ξi3p2)− ǫyi2, (ξ
i
1 + ξi2x3 − ξi3p3)− ǫyi3, 0} ≥ 0

yij(γi + ǫyij − (ξi1 + ξi2xj − ξi3pj)) = 0

γi(1−
∑3

j=1 yij + ǫγi) = 0

yij ≥ 0,
(43)

where its original problem is:

max
p1,yij,γi

(14y11 +
1
2y21 +

1
4y31)(p1 − c1)

s.t. for i = 1, . . . , 3, j = 1, . . . , 3 :

γi − (ξi1 + ξi2x1 − ξi3p1) ≥ 0

1−
∑3

j=1 yij ≥ 0

γi −max{(ξi1 + ξi2x2 − ξi3p2), (ξ
i
1 + ξi2x3 − ξi3p3), 0} ≥ 0

yij(γi − (ξi1 + ξi2xj − ξi3pj)) = 0

γi(1−
∑3

j=1 yij) = 0

yij ≥ 0.

(44)

Numerical results of Example 2 Table 1 shows the numerical result-
s. We solve the SAA-regularized problems (39) and (40) using HANSO and
AMPL/SNOPT, respectively, for Example 2 with different ǫ ranging from 0.1 to
0.0001. We set p1 = 6 as the starting point. Figure 1 shows the convergence
of the objective function when ǫ → 0.

The results show that the two methods solve the problem effectively and
converge to their true counterpart. Specifically,

{(pǫ1, {y
ǫ(ξi, pǫ1)}

3
i=1, {γ

ǫ(ξi)}3i=1)} → (p∗1, {y(ξ
i, p∗1)}

3
i=1, {γ(ξ

i)}3i=1),

where (pǫ1, {y
ǫ(ξi, pǫ1)}

3
i=1, {γ

ǫ(ξi)}3i=1) is the solution of the regularized prob-
lem (43) and (p∗1, {y(ξ

i, p∗1)}
3
i=1, {γ(ξ

i)}3i=1) is the solution of the original
problem (44) and y(ξi, p∗1) is a sparse solution of w.r.t. 1 in S(ξi, p∗1) for
i = 1, 2, 3. This is the type of convergence stated in Theorem 5. It is im-
portant to note that there exist other sequences {(ǫ, p̂ǫ1)} → (0, p∗1) such that
{E[yǫ(ξ, p̂ǫ1)]} 9 E[y(ξ, p∗1)]; for example, when p̂ǫ = p∗1, {E[y

ǫ
1(ξ, p̂

ǫ
1)]} point-

wise converges to 0.5 while E[y1(ξ, p
∗
1)] = 0.75.
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Fig. 1 The graph of original objective function and its approximations with ǫ = 0.01 and
0.001.

When we use p1 = 8 as the starting value, the results by HANSO and
AMPL/SNOPT may converge to p1 = 9, which is a local optimal solution.

Table 1 Numerical results of Example 2 with different ǫ

P
P
P
P
P
P

Solver
ǫ

0.1 0.01 0.001 0.0001 True Value

HANSO

Opt. Solution pǫ1 6.85 6.9895 6.9990 6.9998 7
Opt. Value 2.356 1.5965 1.5097 1.5009 1.5

E[(yǫ(pǫ1, ξ))1] 1.2735 0.8025 0.7540 0.7505 0.75

AMPL/SNOPT

Opt. Solution pǫ1 6.85 6.9895 6.999 6.9999 7
Opt. Value 2.356 1.5966 1.5097 1.5009 1.5

E[(yǫ(pǫ1, ξ))1] 1.2735 0.8025 0.75525 0.7505 0.75
Pointwise True Solution p∗1 7 7 7 7 7
Convergence E[(yǫ(p∗1, ξ))1] 0.8929 0.5400 0.5040 0.5004 0.5

Example 3 (Continuous Distribution Case) The set up in this example is sim-
ilar to that of Example 2, except that consumers’ preference ξ has continuous
distribution. There are three products with K = 1 and J = 2. The utility
function of a consumer with preference ξ = (ξ1, ξ2) for purchasing product j
is

uj(ξ, p) = 1 + ξ1xj − ξ2pj , (45)

where x = (x1, x2, x3) = (5, 3, 1) denotes the characteristics of three products;
c = (c1, c2, c3) = (5, 2, 0.3), p = (p1, p2, p3) = (p1, 3, 0.5) denote the marginal
cost and price of three products. Firm F sells product 1 and needs to decide
its price p1. A consumer’s preference ξ = (ξ1, ξ2) : Ω → Ξ ⊆ IR2 is a random
vector with ξ1 ∼ U [1, 5], ξ2 ∼ U [1, 3]; that is, ξ1 and ξ2 are independent
and uniformly distributed random variables in the interval [1, 5] and [1, 3]
respectively.
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Analysis of Example 3. By Lemma 5, a consumer with ξ = (ξ1, ξ2) will
choose product 1 if

1 + 5ξ1 − p1ξ2 ≥ max{1 + 3ξ1 − 3ξ2, 1 + ξ1 −
1

2
ξ2, 0},

or equivalently,

ξ2 ≤
2

p1 − 3
ξ1, ξ2 ≤

4

p1 −
1
2

ξ1 and ξ2 ≤
1 + 5ξ1

p1
.

This implies that 4
p1−

1
2

ξ1 ≥ 2
p1−3ξ1,

1+5ξ1
p1

≥ 2
p1−3ξ1 for p1 ≥ 5.5 and 2

p1−3ξ1 ≤ 3

for all ξ1 ∈ [1, 5] and p1 ≥ 19
3 .

Based on the analysis above, we can derive the market share for product 1:

E[1(1 + 5ξ1 − p1ξ2 ≥ max{1 + 3ξ1 − 3ξ2, 1 + ξ1 −
1
2ξ2, 0})]

=

∫ 5

p1−3

2

1

4

∫ 2
p1−3

ξ1

1

1

2
dξ2dξ1 =

(p1 − 13)2

32(p1 − 3)
,

(46)

when p1 ≥ 19
3 . Then firm F’s pricing problem is equivalent to

max
p1

f(p1) :=
(p1 − 13)2

32(p1 − 3)
(p1 − c1), (47)

when p∗1 ≥ 19
3 . We use the Matlab solver fminunc to solve problem (47) and

obtain a local optimal solution p∗1 = 6.7016 > 19
3 with the objective value

f∗ = 0.5699. Moreover, since ∇2
p1
f ≤ 0 for all p1 ≤ 8.848, f is a concave

function when p1 ≤ 8.848. Moreover, from Figure 2, it is obvious that p∗1 is a
global optimal solution of the original problem over [5, 10]. Figure 2 also shows
the convergence between the original problem and the regularized problem
when ǫ → 0. The regularized problem here is the SAA-regularized problem
with sample size 10000.

Numerical results of Example 3. In the numerical experiment, we generate
and solve 20 sample problems for each ǫ and sample size N . Tables 2 and 3
report the mean of optimal solutions, optimal values computed by HANSO and
CPU time needed for different sample size with ǫ = 0.01 and ǫ = 0.001,
respectively.

Figures 3 – 6 show the convergence of optimal solutions and optimal values
with increasing sample size when ǫ = 0.01 and ǫ = 0.001 respectively.

Example 4 In this example, there are 18 products with K = 3 and J = 15.
The utility of a consumer with preference ξ = (ξ1, ξ2) for product j is:

uj(ξ, pj) = β0 + (β1 + θ1ξ1)xj − exp(θ2ξ2)pj ,

where xj and pj denote the observed characteristic and price of product j.
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Fig. 2 The graph of original objective function and its approximations with ǫ = 0.01 and
0.001

Table 2 Mean of optimal solutions, optimal values and CPU time with ǫ = 0.01

Sample Size Optimal Solution Optimal Value CPU time (s)
100 6.9874 0.6546 26.4330
500 6.7502 0.6350 106.1024
1000 6.7386 0.6426 159.5934
5000 6.7295 0.6298 1384.2
10000 6.6929 0.6305 2832.2

Table 3 Mean of optimal solutions, optimal values and CPU time with ǫ = 0.001

Sample Size Optimal Solution Optimal Value CPU time (s)
100 7.2380 0.6108 29.2109
500 6.9454 0.5782 69.1229
1000 6.7408 0.5817 120.8095
5000 6.7260 0.5777 534.4333
10000 6.6713 0.5796 1706.4

We choose β0 = 2, β1 = 1, θ1 = θ2 = 1 and generate three groups of i.i.d.
samples of ξ = (ξ1, ξ2) from the standard normal distribution with different
sample size from 500-5000. For each groups, we test our model with different
ǫ ranging from 0.1 to 0.0001. The characteristics and costs of all products and
the price of products j ∈ {1, . . . , 15} are given.

Numerical results of Example 4

Tables 4-6 report the numerical results of Example 4, which show the
efficiency of our algorithm for solving larger scale problems.
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Fig. 3 Convergence of optimal solutions with increasing sample size, ǫ = 0.01.
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Fig. 4 Convergence of optimal values with increasing sample size, ǫ = 0.01.

5 Conclusion

In this paper, we consider a firm’s multiproduct pricing problem which is
based on the pure characteristics demand model. Existing optimization meth-
ods with the SAA become challenging for solving such problems. Recently,
Pang et. al. [25] proposed an MPLCC approach for the pure characteristics
demand model with a finite number of observations; Chen et. al. [8] present
an SAA-regularized method for the generalized method of moments estimate
problem of the model when the MPLCC approach is applied. It is interesting
to investigate whether the similar method can be applied to the pure charac-



SAA-Regularized Methods for Multiproduct Price Optimization 27

100 500 1000 5000 10000

6.5

7

7.5

8

8.5

Sample Size

P
ri
c
e

Fig. 5 Convergence of optimal solutions with increasing sample size, ǫ = 0.001.
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Fig. 6 Convergence of optimal objective values with increasing sample size, ǫ = 0.001.

Table 4 Numerical results of Example 4 with sample size 500

ǫ Calculated Price Profit Market Share CPU time (s)
ǫ = 0.1 (1.0946, 1.9049, 0.78841) 0.1581 (0.2160, 0, 0.1960) 211.9261
ǫ = 0.01 (1.1128, 1.4726, 0.8211) 0.1586 (0.2440, 0, 0.1340) 145.7416
ǫ = 0.001 (1.1271, 1.6657, 0.7990) 0.1594 (0.1940, 0, 0.2000) 71.9952

teristics demand model based multiproduct pricing problem. However, since
S(ξ, p) is a set-valued mapping which may not be continuous and one of key
conditions in the convergence analysis established in [8] may not hold (see
comments at the end of subsection 3.1), the results in the existing literature
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Table 5 Numerical results of Example 4 with sample size 1000

ǫ Calculated Price Profit Market Share CPU time (s)
ǫ = 0.1 (1.0957, 2.1942, 0.7727) 0.1555 (0.2160, 0, 0.1940) 236.3183
ǫ = 0.01 (1.1076, 1.0667, 0.8073) 0.1557 (0.2340, 0, 0.1470) 315.2014
ǫ = 0.001 (1.0840, 1.3514, 0.7893) 0.1565 (0.2490, 0, 0.1550) 291.2174

Table 6 Numerical results of Example 4 with sample size 5000

ǫ Calculated Price Profit Market Share CPU time (s)
ǫ = 0.1 (1.0939, 1.0177, 0.7778) 0.1524 (0.2070, 0, 0.1740) 592.0729
ǫ = 0.01 (1.1137, 1.0493, 0.7949) 0.1537 (0.2074, 0, 0.1764) 2531.8
ǫ = 0.001 (1.1168, 1.5442, 0.7984) 0.1540 (0.2072, 0, 0.1740) 2887.1

can not guarantee the convergence between the multiproduct pricing problem
and its SAA-regularized problem.

Our main contribution is to develop the SAA-regularized method for mul-
tiproduct pricing problems based on the pure characteristics demand model.
We show that (i) there exists a sequence {(ǫk, p

ǫk)} → (0, p0) such that the
y part of the solution of the regularized LCP (7) converges to a sparse solu-
tion with a specified order in S(ξ, p0) (see Definition 2) for any fixed p0 and
almost all ξ ∈ Ξ; (ii) if p∗ is an optimal solution of the multiproduct pric-
ing problem (4) and y∗(ξ, p∗) is any sparse solution with a specified order in
S(ξ, p∗), E[y∗(ξ, p∗)]T (p∗ − c) will achieve the optimal value. We have proved
the convergence of the SAA-regularized problem of the multiproduct pricing
problem. Moreover, by using the solution’s closed-form of the regularized L-
CP (7) and Matlab solver “Hanso”, we have solved the multiproduct pricing
problem based on the pure characteristics demand model effectively.
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