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Abstract 
Two types of uncertainty, namely, randomness and fuzziness, exist in preference modeling. 
Fuzziness is mainly caused by human subjective judgment and incomplete knowledge, and 
randomness often originates from the variability of influences on the inputs and outputs of a 
preference model. Various techniques have been utilized to develop preference models. 
However, only few previous studies have addressed both fuzziness and randomness in 
preference modeling. Among these limited studies, none have considered the randomness 
caused by particular independent variables. To fill this research gap, this study proposes 
probabilistic fuzzy regression (PFR), a new approach for preference modeling. PFR considers 
both the fuzziness of data sets and the randomness caused by independent variables. In the 
proposed approach, probability density functions (PDFs) are adopted to model randomness. 
The parameter settings of the PDFs are determined using a chaos optimization algorithm. The 
probabilistic terms of the PFR models are generated according to the expected value functions 
of the random variables. Fuzzy regression analysis is employed to determine the fuzzy 
coefficients for all the terms of the PFR models. An industrial case study of a tea maker design 
is used to illustrate the applicability of PFR and evaluate its effectiveness. Modeling results 
obtained from PFR are compared with those obtained from statistical regression, fuzzy 
regression, and fuzzy least-squares regression. Results of the training and validation tests show 
that PFR outperforms the other approaches in terms of training and validation errors. 
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1. Introduction 
 
      Survey/experimental data is often used to develop empirical models that relate the inputs 
and outputs of a system or process. Various approaches for developing empirical models have 
been attempted. These approaches include quantification theory I (Chang, 2008), ordinal 
logistic regression (Barone et al., 2007), artificial neural networks (Lai et al., 2005), fuzzy logic 
approach (Lau et al., 2006), multiple statistical regression (Han et al., 2000), fuzzy linear 
regression (Sekkeli et al., 2010), particle swarm optimization-based fuzzy regression (Chan et 
al., 2011a), neural fuzzy systems (Kwong et al., 2009), kernel-based nonlinear fuzzy regression 
(Su et al., 2013), fuzzy polynomial regression based on fuzzy neural networks (Otadi, 2014), 
fuzzy regression models using fuzzy distances (de Hierro et al., 2016), and fuzzy regression 
models based on least absolute deviation (Li et al., 2016). Development of empirical models 
using survey/experimental data often involves both fuzziness and randomness. Fuzziness is 
mainly caused by human subjective judgment and incomplete knowledge, and randomness 
often originates from the variability of influences on the inputs and outputs of a system or 
process. Only few previous studies have examined both fuzziness and randomness in empirical 
modeling. Watada et al. (2009) proposed a confidence-interval-based fuzzy random regression 
approach to address the uncertainties caused by fuzziness and randomness in modeling. In their 
study, variables were regarded as known fuzzy numbers and probabilities. Kwong et al. (2008) 
proposed a fuzzy least-squares regression approach to capture fuzziness and randomness 
simultaneously in modeling manufacturing processes. However, the approach does not 
specifically address the randomness caused by independent variables. 
      Preference modeling is aimed at developing models to relate customer preferences and 
design parameters where customer surveys are commonly adopted to understand customers’ 
preferences and the survey results are used to generate preference models. A number of studies 
have been conducted to develop preference models via survey and experimental data. Various 
statistical techniques, such as partial least squares analysis (Nagamachi, 2008) and statistical 
linear regression (Han et al. 2000; You et al., 2006), have been adopted to model customer 
preference. However, in customer surveys, customers’ responses are always imprecise such as 
“quite good” and “not very well”. Thus, survey results unavoidably contain a high degree of 
fuzziness. Numerous fuzzy approaches for preference modeling have been employed to address 
the fuzziness in preference modeling. These approaches include fuzzy inference techniques 
(Liu et al., 2007; Fung et al., 1999), fuzzy rule-based approach (Lau et al., 2006; Park and Han, 
2004; Fung et al., 1998), fuzzy logic approach (Lin et al., 2007), fuzzy linear regression 
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(Sekkeli et al., 2010; Shimizu and Jindo, 1995; Chen et al., 2004), nonlinear programming-
based fuzzy regression (Chen and Chen, 2006), genetics-based fuzzy regression (Chan et al., 
2011b), chaos-based fuzzy regression (Jiang et al., 2013), a stepwise-based fuzzy regression 
(Chan et al., 2015), and a forward selection-based fuzzy regression (Chan and Ling, 2016). 
However, all these techniques can only be utilized to deal with either randomness or fuzziness 
in preference modeling. Kwong et al. (2010) proposed a generalized fuzzy least-squares 
regression approach to address both fuzziness and randomness in preference modeling. In their 
proposed approach, Kwong et al. assumed that the estimation error is random and the objective 
function minimizes the sum of the squares of the residual error (Chang, 2001). However, the 
approach does not consider the randomness caused by independent variables. 
      In the current study, a new approach to preference modeling, namely, probabilistic fuzzy 
regression (PFR), is proposed. PFR can address the fuzziness caused by human subjective 
judgment and the randomness caused by random variables. Probability density functions (PDFs) 
are adopted in the proposed approach to model the randomness of independent (random) 
variables. A chaos optimization algorithm (COA) is employed to determine the parameter 
settings of the PDFs, and PDFs are then generated. The expected value functions of the random 
variables based on the PDFs are then generated and incorporated into the PFR models. Fuzzy 
regression analysis is then conducted to determine the fuzzy coefficients for all the terms of the 
PFR model. 

The remainder of the paper is organized as follows. Section 2 presents the proposed PFR. 
Section 3 describes a case study on modeling consumer preference based on the proposed 
approach. Section 4 presents the validation of the proposed approach, and Section 5 provides 
the conclusions. 
 
2. Probabilistic Fuzzy Regression (PFR) 
 
The general form of a fuzzy linear regression model can be expressed as follows: 

0 1 1i i k ik iY A A x A x Ax                                                   (1) 
where iY  , 1,2, ,i n  , is the predicted output, which is a fuzzy number; n  is the number of 
data sets; ijx , 0,1,2, ,j k   is the jth  independent variable of the ith  data set; k  is the 
number of independent variables; and jA  is the fuzzy coefficient of the jth  independent 
variable. ( , , )L c R

j j j jA s a s , where c
ja , L

js , and R
js  are the central value, left-, and right-side 

spreads of the fuzzy coefficients, respectively. If the fuzzy coefficients are symmetric fuzzy 
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numbers, L R
j js s ; 0 1[ , , , ]i i i ikx x x x   is a vector of the independent variables and 0 1ix  , and 

0 1[ , , , ]T
kA A A A     is a vector of the fuzzy coefficients. The fuzzy regression model, Eq. (1), 

can be rewritten as follows: 
0 0 0 1 1 1 1( , , ) ( , , ) ( , , ) ( , , )sL c sR L c R L c R L c R

i i i i i k k k ikY Y Y Y s a s s a s x s a s x                    (2) 
The predicted output of Eq. (1) can be presented as ( , , )sL c sR

i i i iY Y Y Y    , where c
iY , sL

iY , and sR
iY  

are the center, left-, and right-side spread values of the output, respectively. The major 
processes of PFR are described in the following subsections. 
 
2.1. Determination of parameter settings of PDFs 
 
      The uncertainty of a random variable can be described by a PDF, ( )f x , which is a function 
defined in the interval [ , ]xmin xmax  and has the following properties. 

(a) ( ) 0f x   for all x . 
(b) ( ) 1xmax

xmin f x dx  .                                                                                                             
xmin , xmax , or both can be infinite.  
      The form of ( )f x  depends on the probability distribution of a continuous random variable. 
Several PDFs, such as uniform, triangular, Gaussian, and exponential functions, are commonly 
used. The parameter settings of PDFs are determined using COA. COA is a stochastic search 
algorithm in which chaos is introduced into the optimization strategy to accelerate the optimum 
seeking operation and determine the global optimal solution (Ren and Zhong, 2011). COA 
employs chaotic dynamics to solve optimization problems and it has been applied successfully 
in various areas such as robot optimization control, function optimization and supply chain 
optimization (Mishra et al., 2008). Compared with conventional optimization methods, COA 
has faster convergence and can search for better solutions (Nanba et al., 2002). This algorithm 
also has an improved capacity to seek for the global optimal solution of an optimization 
problem and can escape from a local minimum. Chaos has dynamic properties, including 
ergodicity, intrinsic stochastic properties, and sensitive dependence on initial conditions. The 
characteristic of randomness ensures the capability for a large-scale search. Ergodicity allows 
COA to traverse all possible states without repetition and overcome the limitations caused by 
ergodic searching in general random methods. COA uses the carrier wave method to linearly 
map the selected chaos variables onto the space of optimization variables and then searches for 
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the optimal solutions based on the ergodicity of the chaos variables. The processes of applying 
COA in this study are described as follows. 
      First, the number of iterations of COA is defined. Each chaos variable represents the 
parameter settings of PDFs, and the number of elements in a chaos variable is equal to the 
number of parameters to be determined. The chaos variable is initialized in which the values 
are selected randomly in the range [0, 1]. The ranges of parameters [ , ]a b  are initialized, in 
which a  and b are the lower and upper limits of the optimization variable, respectively. 
      Second, the iteration number is set as 1m  . Based on the initialized chaos variable, the 
logistic model used in COA is shown in Eq. (3), and logistic mapping can generate chaos 
variables through iteration. 

                                           1 1 1( ) (1 )m m m mc f c uc c     ,                                                (3) 
where u  is a control parameter;  0,1mc   is the mth  iteration value of the chaos variable c ; 
and 0c  is the initialized chaos variable. 

The linear mapping for converting chaos variables into optimization variables is formulated 
as follows: 

( )m mq a b a c    ,                                                       (4) 
where mq  is the optimization variable and the value of mq  is the parameter settings of PDFs. 
Based on the iteration, the chaos variables traverse between [0,1] , and the corresponding 
optimization variables traverse in the corresponding range [ , ]a b . In this case, the optimal 
solution can be identified in the area of feasible solutions. 
      Based on the values of mq , PDFs, ( )f x , are generated. The model can be developed based 
on ( )f x  and fuzzy coefficients by which the predicted output ( , , )sL c sR

i i i iY Y Y Y     can be 
obtained. The predicted crisp output of iY  is denoted as iy , which is equal to the center value 

c
iY if symmetric triangular member functions are used in PFR. The mean absolute percentage 

error ( MAPE ) is defined as the average of percentage errors, which is scale-independent and 
is a popular measure for evaluating prediction accuracy (Gilliland et al., 2015; Kim and Kim, 
2016). Thus, MAPE was adopted in this study as the fitness function in COA., which is defined 
as follows: 

1
1 100i in

i i

y y
MAPE n y






                                                    (5) 
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where n  is the number of data sets; iy  is the ith  predicted crisp output of iY  and iy  is the ith  
actual crisp output based on survey data. The values of MAPE  and  mq  in the first iteration 
are recorded as the best fitness value *

1fv MAPE  and the best solution *
1q q , respectively. 

      Third, the iteration continues by 1m m  . The chaos variable and optimization variable 
are updated by (3) and (4), respectively. The MAPE  in the 1m   iteration, 1mMAPE  , is 
obtained using (5). If *

1mMAPE fv  , then *
1mfv MAPE   and *

1mq q  . Otherwise, *fv  and 
*q  remain the same. Finally, after the number of iterations reaches the predefined number, the 

iteration of COA stops. *fv  is the best fitness value and the values of *q  are the determined 
parameter settings of PDFs. 
 
2.2.  Generation of PFR models 
 
      With the PDFs obtained from Section 2.1, the expected value function of a random variable 
X , [ ]E X , can be generated as shown in Eq. (6) to replace the corresponding random variables 
in the model shown in Eq. (2) and become a probabilistic term. 

[ ] ( )xmax
xminE X x f x dx                                                    (6) 

      Considering the random variables, the model in Eq. (2) can be rewritten as follows: 
' '

0 0 0 1 1 1 1( , , ) ( , , ) ( , , ) ( , , )sL c sR L c R L c R L c R
i i i i i k k k ikY Y Y Y s a s s a s x s a s x         ,            (7) 

where ' ( )ij ijx E x  if ijx  is a random variable and is defined as a probabilistic term; otherwise, 
'
ij ijx x , 1,2, ,i n   , and 0,1,2, ,j k  . For example, if five variables, 1x  to 5x , are 

involved in preference modeling and 1x  and 4x  are random variables, the PFR model to be 
generated can be expressed as follows: 

0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

4 4 4 4 5 5 5 5

( , , ) ( , , ) ( ) ( , , ) ( , , )
( , , ) ( ) ( , , )
L c R L c R L c R L c R

L c R L c R
Y s a s s a s E x s a s x s a s x

s a s E x s a s x
   
 

  .          (8) 
      Fuzzy regression analysis is employed to determine the fuzzy coefficients for each term of 
the PFR model. The predicted output of Eq. (7), ( , , )sL c sR

i i i iY Y Y Y    , are calculated as follows: 
'

0

kc c
i j ij

j
Y a x


 ,                                                              (9) 
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' '

' '
0

1 1
0 0

( )
ij ij

k ksL L L R
i j ij j ij

j j
x x

Y s s x s x
  

      ,                                    (10) 

' '

' '
0

1 1
0 0

( )
ij ij

k ksR R R L
i j ij j ij

j j
x x

Y s s x s x
  

      .                                     (11) 

      The asymmetric fuzzy coefficients with central point c
ja  and spread values L

js  and R
js  can 

be determined by solving the following linear programming (LP) problem (Ishibuchi and Nii, 
2001; Fung et al., 2005). 

'
0 1

( )k nL R
j j ij

j i
Min J s s x

 
                                                  (12) 

subject to 
                                     '

0
(1 ) 1, 2, ,k c sL

j ij i i hLj
a x h Y y i n


                                     (13) 

   '
0

(1 ) 1,2, ,k c sR
j ij i i hRj

a x h Y y i n


                                     (14) 

, 0, , 0,1, 2,L R c
j j js s a R j k                                             (15) 
'
0 1ix   for all i  and 0 1h  ,                                          (16) 

where J  is the objective function that represents the total width of the fuzzy outputs of the 
model shown in Eq. (7); 1 k  is the number of terms of the fuzzy regression model; '

ijx  is the 
jth  term of the ith  data set in the model; .  refers to the absolute value of '

ijx ;  i hLy  and 
 i hRy  are the values of the h-level of the ith output of the data sets; and h refers to the degree 
to which the fuzzy model fits the given data and is located between 0 and 1.  

The constraints in Eqs. (13) and (14) set the upper and lower boundaries of the estimated 
output, respectively, and the constraint in Eq. (15) ensures that L

js  and R
js  are non-negative. 

The basic idea of this LP problem is similar to that in Tanaka’s fuzzy regression analysis 
(Tanaka, 1987). 
 
2.3. Algorithm of PFR 

 
     The algorithm of the proposed PFR is summarized below. 
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      Step 1: The parameters are initialized, including the number of iterations, number of PDFs 
for each random variable, number of PDF parameters, initialized chaos variables, and ranges 
of parameters. 
      Step 2: The structure of the PFR model is generated using Eq. (7). The number of terms in 
the PFR model is 1 k , where k is the number of independent variables. 
      Step 3: The iteration begins from 1m  . The chaos variables mc  are generated based on the 
logistic model in Eq. (3) and transformed into optimization variables mq  using Eq. (4). 
      Step 4: The interval that a random variable belongs to is defined based on the experimental 
data, and the corresponding PDF is selected. The expected value functions of the random 
variables are then generated based on Eq. (6) and the values of mq . The random variables are 
substituted by their corresponding expected value functions, and the probabilistic terms of the 
PFR models are generated. 
      Step 5: The fuzzy coefficient of each term of the PFR model is determined by solving the 
LP problem shown in Eqs. (9) to (16). The fuzzy coefficients ( , , )L c R

j j j jA s a s  are assigned to 
all the terms of the PFR model according to the generated structure. 

      Step 6: Predicted output iy  is calculated with the developed PFR model. MAPE  between 

iy  and actual value iy  for all data sets can then be obtained using Eq. (5) as the fitness value 
of the iteration m .  
      Step 7: The iteration is continued by 1m m   and stops after the number of iterations 
reaches the predefined value. The values of MAPE  are obtained for each iteration and 
compared. The solution with the smallest fitness value is selected based on step 3 in Section 
2.1. A PFR model with the smallest error is then generated. 
 
3.  Preference modeling through PFR 
 

An industrial case study on a tea maker design was conducted to evaluate the effectiveness 
of the proposed approach in preference modeling. A new tea maker prototype was built by the 
case company. In the case study, experiments were conducted using the prototype to investigate 
the relationships between the product variables and consumer preference. PFR was then 
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introduced to generate preference models for the tea maker based on the experimental and 
survey data. Two dimensions of consumer preference, namely, aroma and texture, denoted as 

Ay  and Ty , respectively, were studied. The processes of brewing tea using the prototype are 
as follows. 

First, 3.5 L of fresh water is poured into container II of the tea maker and heated to 93 °C 
or above. Second, a certain amount of tea leaves is poured into the tea infuser, which is then 
placed in container I of the tea maker. The original temperature of the water decreases because 
of the heat loss brought about by the immersion of the cold tea infuser. Hence, the water needs 
to be reheated to maintain the temperature at a certain level, which is called the reheating 
temperature ( 1x ). Third, the tea is brewed in the first brewing cycle after the water is reheated. 
The tea infuser is dropped into the water for a certain number of times to release the chemical 
contents from the tea. The tea infuser is immersed in water for a number of seconds each time, 
and another few seconds elapse before the next drop. The number of drops and the immersion 
time are denoted as 2x  and 3x , respectively. Finally, the second brewing cycle is initialized to 
release additional chemical contents from the tea into the water. Similar to the first brewing 
cycle, this cycle involves the immersion of the tea infuser into the water for a certain number 
of times. For each drop, the tea infuser is immersed in water for a certain amount of time, and 
a few seconds elapse before the next drop. The number of times the tea infuser is immersed 
into the water and the immersion time in the second brewing cycle are denoted as 4x  and 5x , 
respectively. 

To design an experimental plan, the case company defined the level settings of the five 
product variables (i.e., 1x  to 5x ). These settings are shown in Table 1. 
 
Table 1. Level settings of the product variables 

Product 
variables 

Reheating 
temperature 

(°C) 

Number of 
drops in the 
first brewing 

cycle 

Immersion 
time in the 

first brewing 
cycle (min) 

Number of 
drops in the 

second 
brewing cycle 

Immersion 
time in the 

second 
brewing cycle 

(s) 
1x  2x  3x  4x  5x  

Level 1 93 1 8.5 2 10 
Level 2 95 2 9 3 20 
Level 3 97 3 9.5 4 30 
Level 4 99 4 10 5 40 

 
Given that five product variables had to be examined and each of them has four levels, 1024 
(45) experiments need to be conducted under a full factorial design; this large number of 
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experiments involves a large amount of resources in terms of time and manpower. An 
orthogonal array, L16 (45), was selected for the experimental design to reduce the experimental 
resources while enabling a balanced study of the significance of each product variable. Table 
2 shows the settings of the 16 experiments. 
 
Table 2. L16 (45) orthogonal array for the tea maker design 

Experiments 
Reheating 

temperature 
(°C) 

Number of 
drops in the 

first 
brewing 

cycle 

Immersion 
time in the 

first 
brewing 

cycle (min) 

Number of 
drops in the 

second 
brewing 

cycle 

Immersion 
time in the 

second 
brewing 
cycle (s) 

1x  2x  3x  4x  5x  
1 1 1 1 1 1 
2 1 2 2 2 2 
3 1 3 3 3 3 
4 1 4 4 4 4 
5 2 1 2 3 4 
6 2 2 1 4 3 
7 2 3 4 1 2 
8 2 4 3 2 1 
9 3 1 3 4 2 
10 3 2 4 3 1 
11 3 3 1 2 4 
12 3 4 2 1 3 
13 4 1 4 2 3 
14 4 2 3 1 4 
15 4 3 2 4 1 
16 4 4 1 3 2 

 
      The same amount of tea was brewed in each experiment according to the processes 
described in the preceding paragraph. The same volume of milk was added to produce milk tea. 
The milk tea samples were given to a tasting panel composed of five milk tea experts. These 
experts were asked to assess the samples in terms of aroma (A) and texture (T) by using five 
linguistic descriptions, which are “very bad”, “bad”, “moderate”, “good”, and “very good”, 
respectively. Table 3 shows the assessment results obtained from the tasting panel. In the table, 
“/” means no result was provided by the corresponding milk tea expert. 
 
Table 3. Assessment results from the tasting panel 

Experi
ments 

First 
expert Second expert Third 

expert 
Forth 
expert 

Fifth 
expert 

A T A T A T A T A T 
1 very 

bad bad bad mod-
erate bad good very 

bad 
very 
good / / 
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2 bad bad very 
bad 

mod-
erate bad bad very 

bad 
very 
good 

mod-
erate 

mod-
erate 

3 bad very 
bad good good / / mod-

erate 
mode
rate 

mod-
erate good 

4 bad very 
bad good mod-

erate 
mod-
erate bad mod-

erate good good good 
5 very 

bad 
very 
bad good good bad very 

bad bad good / / 
6 very 

bad 
mode
rate good very 

bad / / very 
bad good mod-

erate 
very 
bad 

7 very 
bad bad mod-

erate 
mode
rate / / very 

bad good good good 
8 very 

bad bad mod-
erate good / / bad good good good 

9 very 
bad 

mode
rate good good mod-

erate 
mod-
erate bad very 

good / / 
10 bad mode

rate / / bad mod-
erate 

mode
rate good / / 

11 bad bad mod-
erate good bad mod-

erate bad good / / 
12 very 

bad bad mod-
erate good mode

rate 
mod-
erate 

mode
rate 

mode
rate / / 

13 very 
bad 

mode
rate 

mod-
erate good bad mod-

erate 
very 
bad good good good 

14 very 
bad 

very 
bad / / bad mod-

erate bad good bad mod-
erate 

15 bad bad good good / / mode
rate 

mod-
erate 

mod-
erate good 

16 very 
bad bad good good mod-

erate bad / / mode
rate good 

Note: A and T means aroma and taste respectively. 
       

The experts assessed the milk tea based on their subjective judgment, thus leading to a high 
degree of fuzziness in the survey data. As a result, the linguistic variables were denoted as 
fuzzy numbers. Different types of membership functions such as triangular, trapezoidal, 
Gaussian, bell-shaped, sigmoidal and polynomial-based membership functions with 
symmetrical shapes and equal spreads were compared in previous research and the results 
indicated that triangular membership functions exhibit the best performance (Zhao and Bose, 
2002). In addition, triangular membership functions possess a consistency property, and it has 
been shown that a specific class of fuzzy systems with triangular membership functions 
presents the universal approximation property (Sciascio and Carelli, 1995). Therefore, in this 
research, triangular membership functions are adopted. Fig. 1 shows the membership functions 
of the linguistic variables used in this case study. The linguistic variables are represented by 
the following fuzzy numbers: 

“very bad” = (0, 1, 2); “bad” = (1, 2, 3); “moderate” = (2, 3, 4); 
“good” = (3, 4, 5); and “very good” = (4, 5, 6). 
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Fig. 1. Membership function for the linguistic variables. 

 
      Based on Table 3 and the above fuzzy numbers for the linguistic variables, the means of 
the assessment results were calculated for aroma and texture, respectively. The experimental 
plan and the means of the assessment results are shown in Table 4. 
 
Table 4. Experimental settings and the means of assessment results 

Experi
ments 1x  2x  3x  4x  5x  Means of assessment results 

A T 
1 93 1 8.5 2 10 (0.5, 1.5, 2.5) (2.5, 3.5, 4.5) 
2 93 2 9 3 20 (0.8, 1.8, 2.8) (2, 3, 4) 
3 93 3 9.5 4 30 (2, 3, 4) (2, 3, 4) 
4 93 4 10 5 40 (2.2, 3.2, 4.2) (1.8, 2.8, 3.8) 
5 95 2 8.5 4 40 (1.25, 2.25, 3.25) (1.5, 2.5, 3.5) 
6 95 1 9 5 30 (1.25, 2.25, 3.25) (1.25, 2.25, 3.25) 
7 95 4 9.5 2 20 (1.25, 2.25, 3.25) (2.25, 3.25, 4.25) 
8 95 3 10 3 10 (1.5, 2.5, 3.5) (2.5, 3.5, 4.5) 
9 97 3 8.5 5 20 (1.5, 2.5, 3.5) (2.75, 3.75, 4.75) 
10 97 4 9 4 10 (1.3333, 2.3333, 3.3333) (2.3333, 3.3333, 4.3333) 
11 97 1 9.5 3 40 (1.25, 2.25, 3.25) (2.25, 3.25, 4.25) 
12 97 2 10 2 30 (1.5, 2.5, 3.5) (2, 3, 4) 
13 99 4 8.5 3 30 (1.2, 2.2, 3.2) (2.6, 3.6, 4.6) 
14 99 3 9 2 40 (0.75, 1.75, 2.75) (1.75, 2.75, 3.75) 
15 99 2 9.5 5 10 (2, 3, 4) (2.25, 3.25, 4.25) 
16 99 1 10 4 20 (1.75, 2.75, 3.75) (2, 3, 4) 

 
      With the assistance of the case company, 1x , 3x  and 5x  were identified as random 
variables. Their PDFs were then generated. With reheating temperature 1x  as an example, the 
randomness of 1x  is mainly caused by the variations in performance of the thermostats and 
heaters related to the reheating temperature. In a real-world environment, the measured 
reheating temperatures of different tea makers (with the same brand and model) exhibit several 
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differences even under the same temperature setting. A number of thermostat and heater 
samples, which were of the same brand and model but sampled from different batches, were 
collected and randomly combined to conduct experiments and investigate the randomness of 
the reheating temperature. The experimental results were then utilized to generate the PDFs for 
the reheating temperature. Given that the experimental results generally followed a normal 
distribution to a certain extent, Gaussian functions were used to generate the PDFs for the 
random product variables, as shown below, 

2
2

1 ( )( ) exp( )22
xf x 

  ,                                              (17) 

where   and   are the mean and standard deviations of the distribution, respectively.  
      Each level of a random product variable has its own PDF that involves two parameters, 
namely,   and  . Considering that this case study involved three random product variables, 
with each variable having four levels, a total of 24 (3×4×2) parameters needed to be determined 
using COA. The number of iterations for a chaotic search in COA was set to 1000. The ranges 
of 1x  were set to [92.1, 93.9], [94.4, 95.9], [96.1, 97.9], and [98.2, 100] for 93 °C, 95 °C, 97 °C, 
and 99 °C, respectively. The ranges of 3x  were set to [8.3, 8.7], [8.8, 9.2], [9.3, 9.7], and [9.8, 
10.2] for 8.5, 9, 9.5, and 10 min, respectively. The ranges of 5x  were set to [6, 14], [15, 25], 
[26, 34], and [35, 45] for 10, 20, 30, and 40 s, respectively. The ranges of   for 1x , 3x , and 5x  
were [0.1, 0.5], [0.02, 0.12], and [1, 2] for all four levels, respectively. The value setting of h  
in PFR was determined by using different values within the range  0,1 . After a number of 
trials, the h  value was set to 0.1 because it yielded the smallest training error of the PFR model. 
Development of the preference models for the tea maker based on the proposed approach was 
implemented using Matlab using the data sets shown in Table 4. With the “aroma” dimension, 

Ay , as an example, the PDFs of 1x  generated based on COA are shown in Fig. 2. The optimal 
parameter settings of the PDFs for 1x , , and  were obtained and are shown in Table 5. In 
the table, 1x , 3x , and 5x as well as 1 3,x x  , and 5x  denote the settings of   and   for 1x , 

, and , respectively. 
 
 

3x 5x

3x 5x
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Fig. 2. PDFs of reheating temperature 1x . 

 
Table 5. Parameter settings of PDFs obtained using COA 

Product 
random 

variables 
Levels     

Reheating 
temperature 1x  

1 
1x  

92.9565 
1x  

0.4335 
2 94.9002 0.4732 
3 97.0906 0.4096 
4 98.9407 0.4522 

Immersion time 
in the first 

brewing cycle 
3x  

1 
3x  

8.5199 
3x  

0.0212 
2 9.0092 0.1100 
3 9.4940 0.0219 
4 9.9856 0.0908 

Immersion time 
in the second 
brewing cycle 

5x  

1 
5x  

9.9567 
5x  

1.9921 
2 20.3760 1.0568 
3 29.7483 1.5189 
4 40.2206 1.8188 

 
      Since 1x , , and  are continuous random variables that can take on any value over the 
corresponding interval and the PDFs of individual level settings of the random variables were 
determined based on Eq. (17) and COA, their expected value functions were generated based 
on the integral using Eqs. (6) and (17) and are considered as the probabilistic terms of the PFR 
model. For illustrative purpose, Tanaka’s fuzzy regression analysis (Tanaka, 1987) was 
employed to determine the fuzzy coefficients of a PFR model for Ay . The fuzzy coefficients 

3x 5x
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were determined based on Eqs. (9) to (16), and the PFR model for aroma was generated as 
follows: 

       
         

    1 1
1

11

2

3 4

9
1

2
19 1 12

5

4.2890 2.2392 10 0.0041 0.1110 0.0114
0.5579 0.0901 0.2640 0.0033 0.0028 0.0026

( )4.2890 2.2392 10 0.0041

? ,0.0021  ,  
,? ,  ,  

? ,0.0021 exp( )22
0.1110 0 0

 

.,

x max x
x min xx

Ay E x

xx d

x
E x x

x
x E










  

   
  
 




   
   

3 3
3

33

5 5
5

55

2
33 32

2
5

52

2

4 5

( )114 0.5579 0.0901 exp( )22
( )0.264

 ,?

,  ,  0 0.0033 0.0028 0.0026 exp( )22

x max x
x min xx
x max x

x min xx

xx dx
xx d

x

xx









 







 ,    (18) 

where jx min  and jx max , [1,3,5]j , are ranges of jx .  
For each data set, with the actual values of jx , [1,3,5]j , the corresponding jx min  and 

jx max  were defined. Based on (18) and the parameter settings shown in Table 5, the expected 
values of jx , [1,3,5]j , were obtained by computing the corresponding integral over jx , 

[1,3,5]j  in the probabilistic terms. The values of  jx , [1,3,5]j , were then substituted by 
their corresponding expected values. For example, if the intended settings of 1x , 3x , and 5x  
are close to the level 1 setting of 1x , level 2 setting of 3x , and level 4 setting of 5x , respectively, 
the PFR model can be generated as follows: 

   
   
   

293.99 1 1 1292.1
29.2 3 32

4

328.8

5

( )4.2890 2.2392 10 0.0041 exp( )22
( )0.1110 0.0114 0.5579 0.0901 exp(

92.9565? ,0.0021  0.43350.4335
9.0092,  ,? 0.11 )22

0.2640 0.0033
0.11

,  ,0.0028 0.0026  

A
x x dxy

x x

x
x dx

x




   


  
  

 




245 5 5235
40.2206
1.81881.

( )exp( )2818 28
x dx

 

(19) 
      Similarly, the PFR model for the dimension “texture,” Ty , was generated, as shown in the 
last row of Table 6. 
      The modeling results of the proposed PFR were compared with those of statistical 
regressions (SR), fuzzy regression (FR), and fuzzy least-squares regression (FLSR) to evaluate 
the proposed method’s effectiveness. MAPE  and the variance of errors (VoE ) defined in Eqs. 
(5) and (20), respectively, were adopted to compare the modeling results of the four approaches. 
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2

1
1

1
i in

i i

y y
VoE MAPEn y





        
 ,                                       (20) 

      The same survey data was utilized to develop preference models based on SR, FR, and 
FLSR. For SR, the center values of the means of assessment results in shown Table 4 were 
used as crisp outputs. The confidence interval for SR was set to 95%, which is a common 
setting for statistical regression analysis (Zar, 1984). To determine the h  value for FR, 
different h  values within the range of [0,1] were used to generate FR models. The modeling 
errors of the models were then derived and compared, and the h value corresponding to the 
smallest error was selected. The h  value of FR was set to 0.7. For FLSR, the prediction 
capability of models generally increases when a large value of h  ( 0 <1h ) is selected (Kwong 
et al., 2010). In this study, the h  value of FLSR was set to 0.9. The four approaches for 
modeling consumer preference were implemented using Matlab. Table 6 shows the developed 
models, training errors, and the variance of training errors for the “aroma” and “texture” 
dimensions based on the four approaches. From this table, it can be found that the coefficients 
of the models generated based on the SR are crisp and the predicted outputs of the SR models 
are all crisp values. The fuzzy relationships between the product variables and consumer 
preference cannot be addressed by SR. The models generated based on the FR, FLSR and PFR 
are all fuzzy models with fuzzy coefficients and only the PFR models can model the 
randomness of independent random variables. The table also shows that the values of MAPE  
and VoE  based on PFR are the smallest among all the values of the other approaches. 
 
Table 6. Developed models based on the four approaches and their training results 

Consumer 
preference 

Approa-
ches Developed models MAPE(%) VoE  

Aroma SR 1 2 3 4
5

4.5254 0.0117 0.0975 0.4933 0.2608
0.0025

Ay x x x x
x

     
  6.1366 17.9919 

FR 1
2 3 4

5

( 4.0139,1.5427) ( 0.0019,0) (0.1360,
0.0274) (0.5622,0.0003) (0.2727,0.0385)

(0.0035,0.0017)
Ay x

x x x
x

    
 


 

7.1588 13.8830 

FLSR 1
2 3 4

5

(0.8183,1.5560) (0.0097,0.0172) (0.1677,
0.0386) (0.0049,0.1577) (0.0536,0.2073)

( 0.0027,0.0128)
Ay x

x x x
x

  
 

 
 

15.3219 100.8771 
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PFR  
 
 
 
 
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1 1
1

11

3 3
3

33
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2
33 32
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


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5
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2
52

) )2
x max x
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dx

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2.8978 5.1376 

Texture SR 1 2 3 4
5

1.1184 0.0342 0.1050 0.0867 0.0717
0.0200

Ty x x x x
x

    
  7.3394 34.9107 

FR 12
1

2 3
4 5

( 2.0435,3.1832 10 ) (0.0752,0.0015)
( 0.0046,0) ( 0.1201,0)
( 0.0790,0.2915) ( 0.0267,0.0274)

Ty x
x x

x x

   
   
   

 
9.1569 46.4488 

FLSR 1
16

2 3
4 5

(1.5404,1.6270) (0.0141,0.0160)
(0.2093,3.0298 10 ) (0.0044,0.1338)
( 0.0179,0.2035) ( 0.0055,0.0287)

Ty x
x x

x x


 
  
   

 
10.7285 76.9902 

PFR  
 
 
 
 
 

1 1
1

11

3 3
3

33
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2
11 12

12

2
33 32
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2

4

3.2019 7.0372 10
( )0.0224 0.0096 exp( )22

0.0791 7.0486 10
( )0.1485 0.0305 exp( )22
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0.0221 0.
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0019 2
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,  
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,  

T
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x min xx

x max x
x min xx

x

x

y
xx dx

xx x

x
x

d













 





 
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55

2
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52
( )exp( )2

x max x
x min x

x dx



 

6.1845 12.5463 

 
 
4. Validation 

 
      A total of 30 validation tests were conducted for the two dimensions of consumer 
preference, “aroma” and “texture”, to further validate the effectiveness of the proposed PFR. 
For each validation test, 11 data sets were randomly selected as training data sets from the 16 
data sets to develop the preference models. The remaining five data sets were used as testing 
data sets. No data set was repeated in the validation tests. The parameter settings of the four 
approaches were same as those described in Section 3. MAPE  and VoE , which were obtained 
with the four approaches, were adopted to compare the validation results. Figures 3 and 4 show 



18 
 

the MAPE  values of the 30 validation tests based on the four approaches for the dimensions 
“aroma” and “texture,” respectively. The lines with “+”, “*”, “O”, and the solid line “-” denote 
the validation results of SR, FR, FLSR, and PFR, respectively. Table 7 shows the mean MAPE  
and VoE  of the validation tests for the two dimensions based on the four approaches. 
 

 
Fig. 3. MAPE of 30 validation tests based on the four approaches for the dimension “aroma.” 

 

 
Fig. 4. MAPE of 30 validation tests based on the four approaches for the dimension “texture.” 
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Table 7. Means and variances of the validation errors for the two dimensions based on the 
four approaches 

Consumer 
preference 

Validation 
error SR FR FLSR PFR 

Aroma MAPE  (%) 11.4296 11.9090 15.3128 5.4482 
VoE  100.2044 98.9313 157.1381 13.4715 

Texture MAPE  (%) 14.8327 14.9196 13.1174 9.5723 
VoE  118.9678 111.4238 112.7727 42.9447 

 
      Figures 3 and 4 show that the validation errors for all the 30 validation tests based on PFR 
are the smallest. Table 7 shows that PFR outperforms the other approaches in modeling 
preference in terms of the mean MAPE  and VoE  for the two dimensions. 
 
5. Conclusions 

 
      Empirical modeling is a popular approach to develop preference models for relating 
customer preference and design parameters based on survey/experimental data. The modeling 
which quite often involves both fuzziness and randomness. Only few previous studies have 
addressed the issues of both fuzziness and randomness in preference modeling. Among these 
studies, none have specifically considered the randomness caused by independent variables in 
the modeling. To fill this research gap, a novel PFR for preference modeling is proposed in this 
study. In the proposed approach, PDFs are adopted to model the randomness of independent 
random variables, and COA is employed to determine the parameter settings of the PDFs. The 
expected value functions are generated based on the PDFs and transformed into probabilistic 
terms of a PFR model. Fuzzy regression analysis is then conducted to determine the fuzzy 
coefficients for all the terms of the PFR model. The generated PFR model can address the 
fuzziness caused by human subjective judgment and the randomness caused by independent 
variables. 
      An industrial case study on a tea maker design was conducted to illustrate and validate the 
proposed approach. A total of 30 validation tests were performed. The test results indicate that 
PFR performs better than statistical regression, fuzzy regression, and fuzzy least-squares 
regression in modeling consumer preference in terms of training and validation errors. In this 
paper, only preference modeling is described, but the PFR approach can be applied in all other 
modeling problems with the following two characteristics; the relationships between dependent 
and independent variables are highly fuzzy as well as independent variables contain random 
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variables. Future research would involve a study on generating PFR models that contain 
interaction and second-order or even higher-order terms. On the other hand, preference 
modeling quite often involves various dimensions of preference. For example, the tea maker 
design case described in Section 3 could involve several dimensions of consumer preference 
such as texture, aroma, smoothness and tea concentration. Preference weights of them need to 
be determined in order to derive proper settings of product variables for users.  Future work 
could incorporate intuitionistic fuzzy relations (Xu and Liao, 2015; Liu and Liao, 2016) into 
preference modeling for determining the preference weights of individual dimensions. 
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