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Abstract — This paper describes the bifurcation phe-
nomena of a system of parallel-connected dc/dc convert-
ers. The results provide useful irifformation for the design
of stable current sharing in a democratic (central-limit
control) configuration. Computer simulations are per-
formed to capture the effects of variation of some chosen
parameters on the qualitative behaviour of the system. It
is found that variation of the voltage feedback gains leads
to standard period-doubling bifurcation. A discrete-time
map is derived and analysis is presented to establish the
possibility of the bifurcation phenomena.

I INTRODUCTION

Paralleling power converters allows high current to be
delivered to loads without the need to employ devices of
high power rating. The main design issue in parallel con-
verters is the control of the sharing of current among the
constituent converters. In practice, mandatory control is
needed to ensure proper current sharing, and many ef-
fective control schemes have been proposed in the past
[1]-3]. One.common approach is to employ an active
control scheme to force the current in each converter to
follow an average current which is obtained by taking
the average value of all individual output currents. In
essence, the controller needs to calculate the average cur-
rent value continuously, and each converter compares its
output current with the average current value and incor-
porates the error into the voltage feedback loop. In prac-
tice, in each converter, an additional current loop is used
to incorporate the error current, which is the difference
between the output current and the average current, into
the main voltage feedback loop to provide the required
current sharing. Such a scheme is commonly known as
the democratic current-sharing scheme [1]~[3]. Nonlinear
dynamics and bifurcation behaviour are important topics
of investigation in power electronics [4]-[9]. In this paper,
we attempt to probe into some nonlinear phenomena of
a system of parallel-connected buck converters controlled
under a democratic current-sharing scheme.
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Fig. 1: Block diagram of parallel-connected dc/dc converters
under a democratic current-sharing control

II DEMOCRATIC CURRENT-SHARING CONTROLLED
PARALLEL-CONNECTED DC/DC CONVERTERS

The system under study consists of two dc/dc converters

which are connected in parallel feeding a common load.

The current drawn by the load is shared properly between

the two buck converters by the action of a democratic"
current-sharing control scheme; as mentioned briefly in

the preceding section. Figure 1 shows the block diagram

of this democratic configuration.

Denoting the two converters as Converter 1 and Con-
verter 2 as shown in Fig. 1, the operation of the sys-
tem can be described as follows. Both converters are
controlled via a simple pulse-width modulation (PWM)
scheme, in which a control voltage veon is compared with
a sawtooth signal to generate a pulse-width modulated
signal that drives the switch, as shown in Fig. 2. The
sawtooth signal of the PWM generator is

tmod T
Vramp = Vi + (W = Vi) =, M

where Vz and Vi are the lower and upper voltage limits
of the ramp, and 7' is the switching period. The PWM
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Fig. 2: Pulse-width modulation (PWM) showing relationship
between the control voltage and the PWM output

output is “high” when the control voltage is greater than
Uramp, and is “low” otherwise.

The control voltages of Converters 1 and 2 are given
by the following equations:

VUeonl — Voﬁ‘set - Kul(v - Vn‘af) - Kil(il - iave) (2)
Vcon2 = Voﬁset - sz(’l) - Vref) - Kiz(i2 - iave)‘(3)

where Vimset, is a dc offset voltage that gives the steady-
state duty cycle, Vier is the reference voltage, K,y and
K2 are the voltage feedback gains, K;; and K are the
current feedback gains, and i,.. is an average current
defined by

fave = f101 + potz, (4)

where p; and py are constants equal to % (n = number
of converters). Under this scheme, the output current of
both Converter 1 and Converter 2 will follow the average
current. As a result, we expect equal current sharing.

IIT STATE EQUATIONS FOR TwoO PARALLEL Buck
CONVERTERS

Figure 3 shows two buck converters connected in paral-
lel. The presence of four switches (Sy, Sz, Dy and Ds)
allows a total of sixteen possible switch states, and in each
switch state the circuit is a linear third-order circuit.
When the converters are operating in continuous con-
duction mode (CCM), diode D; is always in complemen-
tary state to switch S;, for ¢ = 1,2. That is, when S;
is on, D; is off, and vice versa. Hence, only four switch
states are possible during a switching cycle, namely (i)
S and S, are on; (ii) S; is on and S; is off; (iii) S is off
and S, is on; (iv) S and S, are off. The state equations
corresponding to these switch states can be written as

&= Az + B:E for 91 and S2 on

& = Az + BoE for S; on and S5 off (5)
T =Asz+ BsE  for S off and S; on

&= A4z + B4E  for S; and S, off,
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Fig. 3: Two parallel-connected buck converters

where E is the ingut voltage, z is the state vector defined
as x = [v i, %3]" and the A’s and B’s are the system
matrices. Note that the sequence of switch states, in
general, takes the order as written in (5), i.e., starting
with “S; and.S; on” and ending with “S; and S, off” in
a switching cycle. However, either “S; on Sy off” or “S;
off S; on” (not both) goes in the middle, depending upon
the duty cycles of S; and S>. In the case where S; has
a larger duty cycle, we should omit the third equation in
(5), and likewise for the case where S, has a larger duty
cycle.

IV SELECTED BIFURCATION PHENOMENA BY: .
COMPUTER SIMULATIONS

We now begin our investigation with computer simula-
tions. In particular, the gains K1, Ky2, K;; and K
present themselves as design. parameters that can be
changed at will. We will henceforth focus on variation
of these parameters. Qur simulation is based on the ex-
act state equations derived in Section III. Essentially, for
each set of parameter values, time-domain cycle-by-cycle
waveforms are generated by solving the appropriate lin-
ear equation in any sub-interval of time, according to the
states of the switches which are determined from values
of the control voltages veon1 and veonz. Steady-state tra-
jectories are obtained. Sampled data are then collected
at t = nT in the steady state. With sufficient number of
sets of steady-state. data, we can construct the bifurca-
tion -diagrams as required. The circuit parameters used
in our simulations are shown in Table 1.

A large number of trajectories and bifurcation di-
agrams have been obtained. In the following, only
representative trajectories and bifurcation diagrams are
shown, which serve to exemplify the main findings con-
cerning the bifurcation behaviour of a system of parallel
buck converters under a democratic sharing scheme.

We first keep K2 constant and vary K,;. The bifur-
cation diagram, as shown in Fig. 4 (a), manifests period-
doubling bifurcations. Next, we keep K,; constant and
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Fig. 4: (a) Bifurcation diagram with K, as bifurcation parameter (K2 = 3.5, Ki1 = 1 and Ki» = 1); (b) Bifurcation diagram
with K as bifurcation parameter (K,; = 3.5, K;1 = 1 and K2 = 1); (c) Bifurcation diagram with K,; and K,z as bifurcation

parameters varying simultaneously (K; = 1, K;» = 1)

Circuit Components Values
Switching Period T' . 400us
Input Voltage E - 48V

~ Output Voltage v 24V

Offset Voltage Vosset 5V
Inductance L1, ESR r;; | 0.02H, 0.05Q
Inductance Lq, ESR 7,5 0.04H, 0.202
Capacitance C, ESR r¢ | 47uF, 0.01Q

Load Resistance R © 109

Table 1: Component values and steady-state voltages used in
simulation

" vary K,3. The bifurcation diagram, as shown in Fig. 4
(b), again manifests a period-doubling bifurcation. Fi-
nally, we vary K,1 and K2 simultaneously, and the cor-
responding bifurcation diagram is shown in Fig. 4 (c).
Period-doubling bifurcations and chaos is observed.

We also capture the trajectories for some periodic and
chaotic orbits when we vary K,; and K2 simultaneously.
Figure 5(a) shows a period-1 orbit and Fig. 5(b) shows
a period-2 orbit. Figure 5(c) shows a period-4 orbit and
Fig. 5(d) shows a chaotic orbit.

In studying the bifurcation behaviour in respect of cur-

rent gain variation, we keep K1, Ky2 and K;; constant,
and vary Kj;;. It is found that the system remains in sta-
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- ble period-1-operation irrespective of-the choice of K.
-Same observation is obtained when we vary K, and keep
other parameters constant. Basically K;; and K;» only
determine how close each converter current follows the
average current.

V  ANALYSIS OF PERIOD-DOUBLING BIFURCATION

From the foregoing simulation study, we have seen some
bifurcation phenomena in a system of parallel buck con-
verters when the voltage feedback gains are varied. In
this section we analyze these bifurcations in terms of a
suitable discrete-time model [8]—[9].

A Derivation of the Discrete-Time Map

- We'let z be the state variables as defined previously, and
further let d; and dp be the duty cycle of Converter 1
and Converter 2 respectively. The discrete-time map in
the neighbourhood of the T-periodic state that we aim
to find takes the following form:

(6)

where subscript n denotes the value at the beginning of
the nth cycle, i.e., z, = z(nT).. For the closed-loop sys-
tem, we need also to find the feedback equations that
relate dy », and dy , to zp.

Znyt = f(Tn,d1n, d2n)
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Fig. 5: (a) Trajectory of a period-1 orbit (Ky1 = 1, Kys = 1, Ki1 = 1 and K;2 = 1); (b) Trajectory of a period-2 orbit
(K1 = 4, Ky = 4, Kiy =1 and K;z = 1); (c) Trajectory of a period-4 orbit (Ky1 = 5.7, Ky2 = 5.7, Kii = 1 and Ky = 1);
(d) Trajectory of a chaotic orbit (K,; =6, Ky2 =6, Kiy =1 and Ki3 =1)

The state equations are given in () for different switch
states. The order in which the system toggles between the
switch states depends on d; and dz. Thus, we need to
assume that dy > dy in the neighbourhood of T-periodic
state, or otherwise, in order to derive the discrete-time
model. In particular the assumption dy > d; is consistent
with our simulation study since rr, has a lower value than
r12. Note that such an assumption loses no generality.

_ Recall that if d; > d;, the state “S; on and S, off”
should be omitted. Hence, we have three switch states:

1. For 0 <t < diT, both S; and S are on.
2. For diT <t < dsT, S; is off and S, is on.
3. For dyT < t <T, both S; and S; are off.

In each switch state, the describing state equation is £ =
Ajz + B;E, where j = 1,3,4. (Note that j = 2 does not
appear here.) For each state equation we can derive the
solution, and by stacking up the solutions, z,4;1 can be
expressed in terms of z,, d1,, and dy ,, i.e.,

34((1 = da,n)T)®3({d2,n ~ d1,3)T)®1(d1,nT)En
+ Pa((1 = do,n)T)®3((d2.n, —d1,2)T)

X (®1(d1,nT) — 1)AT'BLE + ®4((1 — d2,n)T)

X (®a((d2,n — d1.2)T) — 1)A; ' BsE

+ (®4((1 = do,n)T) — 1)A; ' B4 E, (7)

Ent+r =
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where 1 is the unit matrix, and ®;(£) is the transition
matrix corresponding to A;.

For parallel-connected buck converters, we let A
A = Ay = A3 = Aq and @(€) = &1(§) = ®2()
P3(&) = P4(€). Hence, (7) can be rewritten as

&(T)z, + S(TY)A™'BLE
+&((1 ~ di,nT)A™(Bs — B1)E (8)
+&((1 — d2,n)T)A™ (Bs ~ B3)E ~ A™'B4E.

Tnt+l =

Our next step is to find the feedback relations that con- »
nect the duty cycles and the state variables. The control
voltages veon1 and Veonz, as given before by (2) and (3),
are M

Veom1 = U1 + KT:E and veon2 = Us + Kg'x (9)

where U; and U, are constants, and the gain vectors
k1 and kg are k] = [-K, Ko Kaj] and x] =
[=Ky2 %1 i,fﬂ] The ramp function can also be rewrit-
ten simply as Uramp = o + G(t mod T), where o and 8
are constants. To find the defining equations for the duty
cycles, we first note that the switches are turned off when
Vcon1 = Uramp and Veon2 = F'Uramp- Now, define s1(zn, dl,n)
and sz(zn,d1 n,d2,n) as

def

S1 (:I"n; dl,n) =  Vconl — Vramp

Uy + 6T2(dy o T) — (@ + Bdy nT)
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32(znad1,n,d2,n) = Ucon2

= U+ k3x(denT)

= Uramp

- (a + ﬂdzynT)
Thus, S; and S; are turned off, respectively, when

$1(ZTn,din) =0 and s3(Zn,d1n,d2n) =0 (10)
Solving (10), dy,» and dz, can be obtained. Combining
with (9), we have the discrete-time 1terat1ve map for the
closed loop syst.em

B Derivation of the Jacobian

The Jacobian plays an important role in the study of dy-
namical systems [10]. The essence of using a Jacobian in
the analysis of dynamical systems lies in the capture of
the dynamics in the small neighbourhood of an equilib-
rium point or orbit (stable or unstable). We will make use
of this conventional method to examine the bxfurcatxon
phenomena in-Séction C.

Suppose the equilibrium pomt isgiven by z(nT) = Xg.
The Jacobiar of the discrete time, map evaluated at the
equilibrium pomt can be written as follows:

- _ Of _ of [ 9s. 931
TXa) = 5. " Far (ad,,n) (52)

X -1
o (o) (G2

dsy ( 8s1 \ [ 0s1
*odin (6d1,n> (Brcn)] (1)
: zn=Xg
where
3fi 0fi  Bh
an az'!,n aiz‘n_
;’_f = | 82 Ofr Of 12)
Zn v, Birn. Bisn
ofs 0fs 0fs
L an 61’1," 6'i2.n -
of _ [o8f of of]"
ddin [adl,n ddin  Odign (13)
631 _ .6.91 381 681
Bzn = |Bvn B a“"iz,n] a
of _ [oh of on]” 1s)
Odan _adz,n Oda,n  0dan
832 Osy 0382 082
Z)x,. - [an 61'1,71 6i2,n] (16)

Using (10) and (9), we can find all the derivatives in (11),
ie.,

681

S = K1 @(d1,,T) (20)

051 _  puTa(dyT)(Azn + BoE) — (1)
6d1,ﬂ

)

a:i = Kk1®(d2nT) (22)
952 _ 1Ty T)(Asn + BLE) (23)
3dsn

+TxT®((do,n — dy.n)T)(Bs — B1)E — BT
22 o TR (dan )TV (B~ BB (24)
1,n

Now, putting all the derivatives into (11) gi{res
—&((1 — d1,n)T)(Bs — B1)Ex] ®(d1,nT)
&7 ®(d1,nT)(Azn + B1E) =
~®((1 ~ d2,)T)(Ba — B3)E [+ ®(d,n T) +£()]
63 ®(dz,n T)(Azn + B1E) + £ ®((d2,n — d1,n)T)(Bs — B1)E — B’

J(Xq) = ®(T) -

where
6() - —K3 @((dz n d] n)T)(B(; - B,)En ‘D(dx nT)

IiTq)(dlvnT)(Ain + B; E)
Numerical algorithms can now be developed for comput-

ing J(Xq) and hence the characteristic multipliers, as
will be shown in the next subsection.

(26)

C Characteristic Multipliers and Period-Doubling

The Jacobian derived in the foregoing subsection pro-
vides a means to evaluate the dynamics of the system.
We wil], in particular, study the loci of the characteristic
multipliers, the aim being to find out possible bifurcation
scenarios as the voltage feedback gains are varied. To

“find the characteristic multipliers, we solve the following

polynomial equation in A, whose roots actually give the
characteristic multipliers.

det{A1 - J(Xo)] = @7

We will take note of any crossing from the interior of
the unit circle to the exterior. In particular, if a real
characteristic multiplier goes through —1 as it moves out
of the unit circle, a period-doubling occurs [11].

Using (25), we can generate the loci of characteristic
multipliers numerically. To maintain conciseness, we ex-
emplify here the typical loci in Tables 2 and 3, which are
graphically illustrated in Figs. 6 and 7. Both loci indicate
a period-doubling bifurcation as K,; and K,2 vary. This
agrees with our simulation results in Section IV.

VI CONCLUSION

In this paper we focus on a parallel system of two buck
converters which share current under a democratic current-
sharing control scheme. It has been found that period-
doubling bifurcations are possible when voltage feedback gains

%,: = &(T) (17)  are varied. These results are useful for practical design of par-
aF allel converter systems to ensure stable period-1 operation in
. —T2((1~d1,n)T)(Bs ~ B1)E (18)  the expected stable region. Similar studies of the parallel con-
af verters under the master-slave current sharing scheme have

ddzn = —T%((1~d2n)T)(Bsa—~ Bs)E (19)  been reported earlier [12]-[13].
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| Ko | Char. Mult. |  Remarks |
2.70 | -0.575% j0.334, 0.998 Stable 1T
2.90 | -0.600+ j0.273, 0.998 Stable 1T
3.10 | -0.624+ 50.195, 0.998 Stable 1T
3.30 | -0.647, -0.647, 0.998 Stable 1T
3.40 | -0.779,-0.537, 0.998 Stable 1T
3.60 | -0.899, -0.459, 0.998 Stable 1T
3.80 | -0.983,-0.414, 0.998 Stable 1T
3.85 | -1.000, -0.405, 0.998 | Period-doubling

Table 2: Characteristic multipliers for different values of Ky,

I Ko ] Char. Mult. ] Remarks |
2.20 | -0.538% 50.282, 0.998 Stable- 1T
2.50 | -0.573+ j0.231, 0.998 Stable 1T
2.80 | -0.605+ j0.165, 0.998 Stable 1T
'3.10 | -0.634, -0.634, 0.998 Stable 1T
3.30 | -0.774,-0.529, 0.998 Stable 1T
3.60 | -0.875,-0.478, 0.998 Stable 1T
3.90 | -0.950, -0.449, 0.998 Stable 1T
4.15 | -1.000, -0.431, 0.998 | Period-doubling

Table 3: Characteristic multipliers for different values of K2
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