
The VLDB Journal manuscript No.
(will be inserted by the editor)

Geo-Social Group Queries with Minimum Acquaintance Constraints

Qijun Zhu · Haibo Hu · Cheng Xu · Jianliang Xu · Wang-Chien Lee

Received: date / Accepted: date

Abstract The prosperity of location-based social network-
ing has paved the way for new applications of group-based
activity planning and marketing. While such applications
heavily rely on geo-social group queries (GSGQs), existing
studies fail to produce a cohesive group in terms of user
acquaintance. In this paper, we propose a new family of
GSGQs with minimum acquaintance constraints. They are
more appealing to users as they guarantee a worst-case ac-
quaintance level in the result group. For efficient processing
of GSGQs on large location-based social networks, we de-
vise two social-aware spatial index structures, namely SaR-
tree and SaR*-tree. The latter improves on the former by
considering both spatial and social distances when cluster-
ing objects. Based on SaR-tree and SaR*-tree, novel algo-
rithms are developed to process various GSGQs. Extensive
experiments on real datasets Gowalla and Twitter show that
our proposed methods substantially outperform the baseline
algorithms under various system settings.

Keywords Location-based services · Geo-social networks ·
Spatial queries · Nearest neighbor queries

Qijun Zhu · Cheng Xu · Jianliang Xu
Department of Computer Science,
Hong Kong Baptist University,
Kowloon Tong, Hong Kong
E-mail: {qjzhu,chengxu,xujl}@comp.hkbu.edu.hk

Haibo Hu
Department of Electronic and Information Engineering,
Hong Kong Polytechnic University,
Hung Hom, Hong Kong
E-mail: haibo.hu@polyu.edu.hk

Wang-Chien Lee
Department of Computer Science and Engineering,
Pennsylvania State University,
University Park, USA
E-mail: wlee@cse.psu.edu

1 Introduction

With the ever-growing popularity of smartphone devices, the
past few years have witnessed a massive boom in location-
based social networking services (LBSN) [14, 16, 24, 33]
like Foursquare, Yelp, Google+, and Facebook Places. In all
these applications, mobile users are allowed to share their
check-in locations (e.g., restaurants, theaters) with friends.
Such location information, bridging the gap between the phys-
ical world and the virtual world of social networks, presents
to users new applications of group-based activity planning
and marketing [18, 19, 31]. In a typical use case, Facebook
now offers users to create or participate a local group event,
such as a lunch gathering or a tennis match. With location in-
formation, Facebook can proactively recommend users nearby
and invite them to this event. Third-party apps can also make
use of such information. For example Zimride, on Facebook
suggests ridesharing among a group of users with similar
commutes. These location-based social networking applica-
tions are essentially geo-social group queries with both spa-
tial and social constraints.

While research attention has recently been drawn to geo-
social group queries (e.g., [20,31]), existing works only im-
pose some loose social constraint on the query. For example
in [20], the circle-of-friend query targets at finding a set of k
users such that the maximal weighted spatial and social dis-
tance among the users is minimized. Since social distance is
only one of the two factors, users in the result group could
have very distant or diverse social relations. In an extreme
case, no users in the result group are familiar with one an-
other but they are so spatially close that the overall intra-
group distance is minimum. As an improvement, the socio-
spatial group query proposed in [31] aims to find k spatially
close users among which the average number of unfamiliar
users does not exceed a threshold p. While the use of thresh-
old p effectively reduces the occurrence of unfamiliar users

This is the Pre-Published Version.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM
terms of use(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/
s00778-017-0473-6.

2 Qijun Zhu et al.

Social

Layer

Spatial

Layer

v1
v8

v7

v2

v3

v4

v5

v6

p7

p1
p8

p6 p3
p2

p4

p5

r

Fig. 1 An example of GSGQ<v1, 3NN, 2>. Lines between the users
represent acquaintance relations and the points on the spatial layer de-
note the positions of the users.

in a result group, there is no guarantee on the minimum num-
ber of users a group member is familiar with. In the worst
case, as shown in our experiments in Section 7.2, some user
may be unfamiliar with all other users in the group. More-
over, both queries require tailor-made user inputs — [20]
imposes weights on social and spatial distances, and [31]
needs to set a unified threshold p for all users in the group
even though different users may have varied tolerance of un-
familiar users surrounded. Finally, these works mainly fo-
cused on in-memory processing (e.g., improving the user
scanning order and filtering the candidate combinations),
and cannot be adapted to external-memory indexes. There-
fore, they cannot work for large-scale and real-world LB-
SNs.

In this paper, we propose a new family of Geo-Social
Group Queries with constraint on minimum acquaintance,
hereafter called GSGQs for brevity. A GSGQ query takes
three arguments: (q, Λ, c), where q is the query issuer, Λ is
the spatial constraint, and c is the acquaintance constraint.
The acquaintance constraint c imposes a minimum degree
on the familiarity of group members (which may include
q), i.e., every user in the group should be familiar with at
least c other users. The minimum degree constraint is an
important measure of group cohesiveness in social science
research [25]. Known as c-core, it has been widely inves-
tigated in the research of graph problems [2, 6, 22] and ac-
cepted as an important constraint in practical applications [28].
The spatial constraintΛ can be a range constraint, a k-nearest-
neighbor (kNN) constraint or a relaxed k-nearest-neighbor
(rkNN) constraint, where kNN (resp. rkNN) means the re-
sult group, among all valid groups of exactly (resp. no fewer
than) k users that satisfy the minimum acquaintance con-
straint, has the minimum spatial distance to the query issuer.

Figure 1 illustrates an example of GSGQ, where the so-
cial network is split into a social layer and a spatial layer for
clarify of presentation. Suppose user v1 wants to arrange a
friend gathering of some friends nearby. To have a friendly
atmosphere in the gathering, she hopes anyone in the group
should be familiar with at least two other users. Thus, she
issues a GSGQ = (q, Λ, c) with q set as v1, Λ being 3NN,

and c = 2. With the objective of minimizing the spatial dis-
tance between q and the farthest user in the group, the result
group she will obtain is W = {v2, v5, v6}. Alternatively, to
find an acquainted group of friends within a fixed range, she
may issue a GSGQ = (q, Λ, c) with q set as v1, Λ being r
(shaded area in Figure 1), and c = 2. In this example, she
will also obtain W = {v2, v5, v6}.

We argue that, compared to the geo-social group queries
studied in prior work [20,31], our GSGQs, with the adoption
of a minimum acquaintance constraint, are more appealing
to produce a cohesive group that guarantees the worst-case
acquaintance level. Nonetheless, these GSGQs are much more
complex to process than conventional spatial queries. Par-
ticularly, when the spatial constraint is strict kNN, we prove
that GSGQs are NP-hard. Due to the additional social con-
straint, traditional spatial query processing techniques [4,
10, 13, 23] cannot be directly applied to GSGQs. Moreover,
these queries are intrinsically harder than other variants of
spatial queries, such as spatial-keyword queries [9, 29, 32]
and collective spatial keyword queries [5], which only in-
troduce independent attributes (e.g., text descriptions) of the
objects but not binary relations among them.

On the other hand, most previous works on group queries
in social networks use sequential scan in query processing.
That is, they enumerate every possible combination of a user
group and optimize the processing through some pruning
heuristics. Although [31] proposed an SR-tree to cluster the
users of each leaf node, this index achieves more signifi-
cant reduction on computation than on disk accesses since it
separates spatial and social constraints in the clustering pro-
cess. Thus, when geo-social queries such as GSGQs are pro-
cessed, still many disk pages are accessed to fetch the users
that satisfy both spatial and social constraints. Moreover,
its filtering techniques only work for average-degree social
constraints, and are not suitable for GSGQs with minimum-
degree social constraints. In this paper, we propose two novel
social-aware spatial indexing structures, namely, SaR-tree
and SaR*-tree, for efficient processing of general GSGQ
queries on external storage. The main idea is to project the
social relations of an LBSN on the spatial layer and then in-
dex both social and spatial relations in a uniform tree struc-
ture to facilitate GSGQ processing. Furthermore, we opti-
mize the in-memory processing of GSGQs with a strict kNN
constraint by devising powerful pruning strategies. To sum
up, the main contributions of this paper are as follows:

– We propose a new family of geo-social group queries
with minimum acquaintance constraint (GSGQs), which
guarantees the worst-case acquaintance level. We prove
that the GSGQs with a strict kNN spatial constraint are
NP-hard.

– We design new social-aware index structures, namely
SaR-tree and SaR*-tree, for GSGQs. To optimize the I/O
access and processing cost, a novel clustering technique

Geo-Social Group Queries with Minimum Acquaintance Constraints 3

3

4

9

1

8

2

6

5

7

query point

a

b

d

c

A

B

A B

c d

5 6 7 8 9

root

B

c d

a b

1 2 3 4

A

a b

leaf node

level

2

1

0

Fig. 2 An example of R-tree.

that considers both spatial and social factors is proposed
in the SaR*-tree. The update procedures of both indexes
are also presented.

– Based on the SaR-tree and SaR*-tree, efficient algorithms
are developed to process various GSGQs. Moreover, in-
memory optimizations are proposed for GSGQs with a
strict kNN constraint.

– We conduct extensive experiments to demonstrate the
performance of our proposed indexes and algorithms.

The rest of this paper is organized as follows. Section 2
reviews the related works. Section 3 introduces some core
concepts in the social constraint and formalizes the prob-
lems of GSGQs. Section 4 presents the designs of basic SaR-
tree and optimized SaR*-tree. Section 5 details the process-
ing methods for various GSGQs based on SaR-trees. Sec-
tion 6 describes the update algorithms of SaR-trees. Sec-
tion 7 evaluates the performance of our proposals. Finally,
Section 8 concludes the paper and discusses future direc-
tions.

2 Related Works

2.1 Spatial Query Processing

Many spatial databases use R-tree or its extensions [4, 13]
as an access method to disk storage for spatial queries (e.g.,
range, kNN, and spatial join queries). Figure 2 shows nine
objects in a two-dimensional space and how they are aggre-
gated into Minimum Bounding Rectangles (MBRs) recur-
sively to build up the corresponding R-tree. An R-tree node
is composed of a number of entries, each covering a set of
objects and using an MBR to bound them. A query is pro-
cessed by traversing the R-tree from the root node all the
way down to leaf nodes for qualified objects. During this
process, a priority queue H can be used to maintain the en-
tries to be explored. A generic query evaluation procedure
for a query Q can be summarized as follows: (1) push the
entries of the root node into H; (2) pop up the top entry e
from H; (3) if e is a leaf entry, check if the corresponding
object is a result object; otherwise push all qualified child
entries of e into H; (4) repeat (2) and (3) until H is empty
or a termination condition ofQ is satisfied. The construction
of R-trees can be either incremental [4, 13] or bulk-loaded.

Some variants of spatial queries have been studied with
the consideration of certain grouping semantics. The group
nearest-neighbor query [23] extends the concept of the near-
est neighbor query by considering a group of query points.
It targets at finding a set of data points with the smallest
sum of distances to all the query points. Based on R-tree,
[23] proposes various pruning heuristics to efficiently pro-
cess group nearest-neighbor queries. The spatial-keyword
query is another well-known extension of spatial queries that
exploits both locations and textual descriptions of the ob-
jects. Most solutions for this query, e.g., BR*-tree [32], IR2-
tree [9], and IR-tree [29], rely on combining the inverted
index, which was designed for keyword search, with a con-
ventional R-tree. The collective spatial keyword query [5]
further considers the problem of retrieving a group of spa-
tial web objects such that the group’s keywords cover the
query’s keywords and the objects, with the shortest inter-
object distances, are nearest to the query location. Based on
IR-tree, [5] proposes dynamic programming algorithms for
exact query processing and greedy algorithms for approx-
imate query processing. It is noteworthy that, while these
works deal with some grouping semantics, they do not con-
sider acquaintance relations in social networks.

2.2 Social Network Analysis and Query Processing

There have been a lot of works on community discovery in
social networks. There is a comprehensive survey on com-
munity finding in graphs [11]. A typical approach is to op-
timize the modularity measure [12]. Since communities are
usually cohesive subgraphs formed by the users with the ac-
quaintance relationship, some graph structures such as clique
[15], k-core [25], and k-plex [2,21,22] have been well stud-
ied under this topic. However, most of these works only pro-
vide theoretical solutions with asymptotic complexity, with
a few exceptions such as the external-memory top-down al-
gorithm for core decomposition [6].

As for query processing in social networks, [8] addresses
the problem of finding a subgraph that connects a set of
query nodes in a graph. [28] studies a query-dependent vari-
ant of the community discovery problem, which finds a dense
subgraph that contains the query nodes. Based on a measure
of graph density, an optimal greedy algorithm is proposed.
The authors of [28] also prove that finding communities of
size no larger than a specified upper bound is NP-hard. Be-
sides, [30] proposes a social-temporal group query with ac-
quaintance constraint in social networks. The aim is to find
the activity time and attendees with the minimum total so-
cial distance to the initiator. As this problem is NP-hard,
heuristic-based algorithms have been proposed to reduce the
run-time complexity. However, all these works do not con-
sider the spatial dimension of the users and thus cannot be
applied to location-based social networks.

4 Qijun Zhu et al.

2.3 Geo-Social Query Processing

Efficient processing of queries that consider both spatial and
social relations is essential for LBSNs. [7] directly combines
spatial and social networks and proposes graph-based query
processing techniques. [20] proposes a circle-of-friend query
to find minimal-diameter social groups. By transforming the
relations in social networks into social distances among users,
an integrated distance combining both spatial and social dis-
tances is proposed. [31] considers a special socio-spatial group
query with the requirement of minimizing the total spatial
distance. Accordingly, in-memory pruning and searching schemes
are proposed in [31]. All these works only impose a loose so-
cial constraint in the query. As for the processing techniques,
the methods of these works enumerate all possible com-
binations guided by some searching and pruning schemes.
Although a tree structure named SR-tree is introduced in
[31], it is mainly used to reduce the enumeration of states
during the in-memory processing. With that said, external-
memory indexes tailored for geo-social query processing in
large-scale LBSNs are still lacking. More recently, [1] pro-
poses a general framework for geo-social query process-
ing, which separates the social, geographical and query pro-
cessing modules and thus enables flexible data management.
Since its pruning power comes separately from the social
and spatial index, it cannot further optimize the processing
of GSGQ with access methods that integrate both spatial and
social information. [19] studies a geo-social query that re-
trieves a group of socially connected users whose familiar
regions collectively cover a set of query points. [34] pro-
poses a geo-social location recommendation system based
on personalized social and geographical influence modeling.
Similarly, [26] proposes to cluster and categorize locations
based on social and spatial density obtained from geo-social
networks.

3 Preliminaries and Problem Statement

Aiming to find a cohesive group of acquaintances, GSGQs
use c-core [25] as the basis of social constraint to restrict the
result group. In this section, we first introduce the defini-
tion and the properties of c-core, based on which the GSGQ
problems are then formalized.

3.1 C-Core

c-core is a degree-based relaxation of clique [25]. Consider
an undirected graph G = (V,E), where V is the set of ver-
tices and E is the set of edges. Given a vertex v ∈ V , we de-
fine the set of neighbors of v asNG(v) = {u ∈ V | uv ∈ E}
and the degree of v as degG(v) = |NG(v)|. Accordingly,
the maximum and minimum degrees ofG are represented as

∆(G) = maxv∈V degG(v) and δ(G) = minv∈V degG(v),
respectively. Let G[W] denote a subgraph induced by W ⊆
V . The following is a generalized definition of a c-core [25].

Definition 1 (c-core) A subgraph G[W] is a c-core (or a
core of order c) if δ(G[W]) ≥ c.

The c-core defined in Definition 1 is not required to be
maximum and fits for GSGQs in various applications. In the
sequel, the term c-core refers to both the set W and the sub-
graph G[W]. The core number of a vertex v, denoted by cv ,
is the highest order of a core that contains this vertex.

A greedy algorithm can be used for core decomposition,
i.e., finding the core numbers for all vertices in G. The basic
idea is to iteratively remove the vertex with the minimum
degree in the remaining subgraph, together with all the edges
adjacent to it, and determine the core number of that vertex
accordingly. The most costly step of this algorithm is sorting
the vertices according to their degrees at each iteration. As
shown in [3], a bin-sort can be used with O(|V |+ |E|) time
complexity. Thus, for a given c, we can find the maximum
c-core of G in O(|V |+ |E|) time.

3.2 Problem Statement

Consider an LBSN G = (V,E), where the set of vertices
V denotes the users and the set of edges E denotes the ac-
quaintance relations1 among the users in V . For any two
users v, u ∈ V , there exists an edge vu ∈ E if and only if
v is acquainted with u. Moreover, for any user v ∈ V , its
location pv is also stored in G. Given two users v and u, let
d(v, u) denote the spatial distance between v and u, and the
(largest) distance from v to a set of users W is defined by
dmax(v,W) = maxu∈W d(v, u).

As formally defined below, a GSGQ finds a group of
users that satisfies the given spatial and social constraints.
Without loss of generality, we assume that the query issuer
q ∈ V .

Definition 2 (Geo-Social Group Query with Minimum Ac-
quaintance Constraint (GSGQ)) Given an LBSN G =

(V,E), a GSGQ is represented as Qgs = (v, Λ, c), where
v ∈ V is the query issuer, Λ is a type of spatial query
denoting the spatial constraint, and c is the minimum de-
gree of result group, denoting the social acquaintance con-
straint as in [20, 31]. GSGQ finds a maximal user result
set W which satisfies Λ and the condition that the induced
subgraph G[W ∪ {v}] is a c-core, or formally, δ(G[W ∪
{v}]) ≥ c.

1 Such relation can be either a “friend” relation or a more intimate
acquaintance relation, depending on the nature of the group event in a
GSGQ service.

Geo-Social Group Queries with Minimum Acquaintance Constraints 5

As for the spatial constraint, this paper mainly focuses
on three query types: range (i.e., window) query, relaxed k-
nearest-neighbor (rkNN) query, and strict k-nearest-neighbor
(kNN) query. Accordingly, they correspond to three types of
GSGQs:
– GSGQ with range constraint, denoted as GSGQrange.

A GSGQrange is represented as Qgs = (v, range, c),
where pv ∈ range. It targets at finding the largest c-
coreW ∪{v} located inside range, a rectangular spatial
window. For example, “find me the largest user group
satisfying c-core in 5th Avenue, Manhattan, NYC.”

– GSGQ with relaxed kNN constraint, denoted as GSGQ
rkNN . AGSGQrkNN is represented asQgs = (v, rkNN,

c). It targets at finding a maximal c-coreW ∪{v} of size
no less than k+ 1 with the minimum dmax(v,W). Here
“relaxed” means the size of the result is not strictly k+1,
and as a general requirement in GSGQ the size should
be the largest possible. For example, “find me the clos-
est (maximal) group of at least 9 users satisfying c-core
to be eligible for a bulk discount.”

– GSGQ with strict kNN constraint, denoted asGSGQkNN .
A GSGQkNN is represented as Qgs = (v, kNN, c). It
is a strict form of GSGQrkNN , which requires that the
c-core W ∪{v} has an exact size of k+ 1. For example,
“find me the closest group of 3 users satisfying c-core to
play tennis doubles with me.”
For these GSGQs, we prove the following theorems on

their complexities.

Theorem 1 GSGQrange and GSGQrkNN can be solved
in polynomial time.

Proof As we will show in the next subsection, processing a
GSGQrange can be completed by running core-decomposition
once, while processing a GSGQrkNN can be completed by
running core-decomposition at most |V | times. Since the
time complexity of core-decomposition is O(|V | + |E|),
both of the queries can be solved in polynomial time.

Theorem 2 GSGQkNN is NP-hard.

Proof It has been proved in [2] that, given a graph G and
positive integers c̄ and k, determining whether there exists
a c̄-plex of size k + 1, i.e., a set W such that δ(G[W]) ≥
|W | − c̄ and |W | = k + 1, is NP-complete. Since a c-core
of size k + 1 is equivalent to a (k + 1 − c)-plex, we can
find a (k + 1− c)-plex of size k + 1 by iteratively applying
GSGQkNN for each user v in G. If a c-core of size k + 1

is found for a user v, then a (k + 1 − c)-plex of size k + 1

exists; otherwise such a (k + 1 − c)-plex does not exist. In
this way, the c̄-plex problem can be polynomially reduced to
GSGQkNN . This proves that GSGQkNN is NP-hard.

3.3 R-tree based Query Processing

We consider the GSGQ problems for large-scale LBSNs where
the users’ location and social information are stored sepa-
rately on external disk storage as described in [1]. A baseline
approach of processing GSGQs on an R-tree index of user
locations is as follows. For aGSGQrange Qgs = (v, range, c),
we first find all users located inside range via R-tree, then
compute the c-core W ′ of the subgraph formed by these
users. If v exists in W ′, then W = W ′ − {v} is the fi-
nal result; otherwise, there is no result for Qgs. Since the
user filtering step can be done in O(|V |) time and the core
decomposition step can be done in O(|V | + |E|) time, the
complexity of this method is O(|V |+ |E|).

For a GSGQrkNN Qgs = (v, rkNN, c), according to
its definition, we access the users in ascending order of their
spatial distances to v. As such, we use a similar procedure
to kNN search on R-tree. Specifically, we employ a priority
queue H whose priority score is spatial distance to v, and a
candidate result set W̃ . At the beginning, W̃ is initialized as
{v} and all the root entries of the R-tree are put intoH . Each
time the top entry e ofH is popped up and processed. If e is a
non-leaf entry, its child entries are accessed and put into H;
otherwise, e is a leaf entry, i.e., a user, so e is added into W̃ .
When the size of W̃ exceeds k, we compute the c-core W ′

of the subgraph formed by the users in W̃ . If |W ′| ≥ k + 1

and v ∈ W ′, W = W ′ − {v} is the result; otherwise, the
above procedure is continued until the result is found. Since
each round of c-core detection can be done in O(|V |+ |E|)
time, the complexity of this method is O(|V |(|V |+ |E|)).

For aGSGQkNN Qgs = (v, kNN, c), the processing is
similar to GSGQrkNN . The major difference is how to find
the result from W̃ . Since the query returns exact k users, all
possible user sets of size k+ 1 and containing v are checked
to see if it is a c-core. If such a user set W ′ exists, then
W = W ′ − {v} is the result. There are C |V−1|k possible
user sets to be checked, where C |V−1|k denotes the number
of k-combinations from the user set V −{v}. Thus, the com-
plexity of this method is O(C

|V−1|
k (|V |+ |E|)),

Obviously, these approaches are inefficient for GSGQs
with a large c value, because a large c means tighter social
constraints and thus result users from farther away. Accord-
ing to a recent study [27], the maximum c of a graph where
the c-core exists obeys a 3-to-1 power law with respect to the
count of triangles in the graph. This implies that the number
of users to search and check in these approaches increases
exponentially as c increases. On the other hand, intuitively
a large c means higher chances to prune the irrelevant users
before finding the result users. As will be proved and shown
in the rest of this paper, the efficiency can be significantly
improved by filtering the irrelevant users and optimizing the
processing order.

6 Qijun Zhu et al.

r1

r2

r3

v4

v6

v3

v1
v5

v2

v8

v7

v9

Fig. 3 An example of CBR. The LBSN is shown on the spatial layer.
The points represent the users as well as their positions, while the
dashed lines denote the acquaintance relations among users.

4 Social-aware R-trees

Since a GSGQ involves both spatial and social constraints,
to expedite its processing, both spatial locations and social
relations of the users should be indexed simultaneously. Un-
fortunately, R-tree only indexes spatial locations of the users
and is thus inefficient. In this section, we design novel Social-
aware R-trees (SaR-trees) to form the basis of our query
processing solutions. In what follows, we first introduce the
concept of Core Bounding Rectangle (CBR) and then present
the details of SaR-tree, followed by a variant SaR*-tree.

4.1 Core Bounding Rectangle (CBR)

The social constraint of a GSGQ requires the result group to
be a c-core. Unfortunately, pure social measures such as core
number and centrality cannot adequately facilitate GSGQ
processing which also features a spatial constraint. To devise
effective spatial-dependant social measures to filter users in
query processing, in this paper, we develop the concept of
Core Bounding Rectangle (CBR) by projecting the mini-
mum degree constraint on the spatial layer. Simply put, the
CBR of a user v is a rectangle containing v, inside which
any user group with v does not satisfy the minimum degree
constraint. In other words, it is a localized social measure
to a user. As a GSGQ mainly requests the nearby users, the
locality of CBR becomes very valuable for processing GS-
GQs. The formal description of a CBR of user v for a min-
imum degree constraint c, denoted by CBRv,c, is given in
Definition 3.

Definition 3 (Core Bounding Rectangle (CBR)) Consider
a user v ∈ G. Given a minimum degree constraint c,CBRv,c

is a rectangle which contains v and inside which any user
group with v (excluding the users on the bounding edges)
cannot be a c-core. Formally,CBRv,c satisfies pv ∈ CBRv,c

and ∀W = {v} ∪ {u|u ∈ V, pu ∈ CBRv,c} δ(G[W]) < c.

v4(1)

v6

v3(1)

v1(1)
v5(2)

v2

v8

v7

v9

CBRv2,2

(a) Initialization

CBRv2,2

v8(1)

v7(2)

v4

v6

v1
v5

v2

v9

v3

(b) Expansion

Fig. 4 An exemplary procedure of computing CBRv2,2 in an LBSN.
The number after a user vi denotes the core number of v2 in the
subgraph determined by vi. For a), the subgraph is formed by the
users inside �v2,vi

; for b), the subgraph is formed by the users in-
side CBRv2,2 when moving its bottom edge outward to go through
vi.

An example is shown in Figure 3. According to the ac-
quaintance relations of user v2, rectangular area r1 is aCBR
v2,2, because any user group inside r1 that contains v2 can-
not be a 2-core. On the contrary, r2 is not a CBRv2,2, be-
cause some user groups inside r2 that contain v2, e.g., {v2, v1,
v6}, are 2-cores. Note that CBRv,c is not unique for a given
v and c. For example, r3 is another CBRv2,2 for user v2.
From Definition 3, we can quickly exclude a user v from the
result group by checking CBRv,c during query processing.
For example, if the query range of a GSGQrange is covered
by CBRv,c, then v can be safely pruned from the result.
This property makes CBR a powerful pruning mechanism.

Computing CBR of a User. In an LBSN G, given a
user v and minimum degree constraint c, a simple method
to compute CBRv,c is to search neighboring users in as-
cending order of distance until there is a user u such that
the core number of v in the subgraph formed by the users
inside�v,u (i.e., the circle centered at v with radius d(v, u))
is no less than c, i.e., all user groups located within �v,u are
not qualified as a c-core. CBRv,c can then be easily derived
from �v,u as follows. We first compute the bounding box
of the circle and move out one bounding edge to go through
u. Then we check the nodes inside the rectangle but out-
side the circle. For each of them, we move out one bound-
ing edge to go through u so that the node becomes outside
of the new rectangle. An example is shown in Figure 4(a),
where a CBRv2,2 is constructed based on users v5, v6, and
v8. This generated CBR satisfies Definition 3 since the users
inside it (i.e., v1, v2, v3) cannot form 2-core groups. How-
ever, it is not a maximal one, thus limiting its pruning power
in GSGQ processing. We improve this initial CBRv,c by
recursively expanding it from each bounding edge until no
edge can be further moved outward (see Figure 4(b)). De-
pending on different initial CBRs and different expanding
orders, there could be a number of maximal CBRs.

Geo-Social Group Queries with Minimum Acquaintance Constraints 7

Algorithm 1 details the procedure of computingCBRv,c.
In Line 1, we first sort the users of V in ascending order
of their distances to v. In Lines 2-5, we find the nearest
user u such that cv ≥ c in the subgraph formed by the
users in V with equal or shorter distances to v. In Line 6,
we initialize CBRv,c based on u such that CBRv,c does
not contain any user outside �v,u. An exemplary way is
to compute the bounding box of �v,u first and move one
bounding edge to go through u. Then, check the users which
are located inside the rectangle but outside �v,u. For each
of them, move one bounding edge of the rectangle to go
through it so that the user is not located inside the new rect-
angle. In this procedure, a greedy scheme is adopted to al-
ways select the bounding edge which maximizes the area of
the rectangle. In Lines 7-10, we expand CBRv,c by moving
each bounding edge l of CBRv,c outward, if cv < c in the
subgraph formed by the users insideCBRv,c and on l. Obvi-
ously, the rectangle generated by Algorithm 1 is a maximal
CBRv,c, i.e., it is a CBRv,c and cannot be fully covered
by any other CBRv,c. This property guarantees its pruning
power for GSGQ processing, and such maximal CBRs will
be stored in the social-aware R-trees. Figure 4 provides an
exemplary procedure for computing CBRv2,2 when apply-
ing Algorithm 1 on an LBSN.

Algorithm 1 Computing CBR of a User
Input: LBSN G = (V,E), user v, constraint c
Output: CBRv,c

CompCBR(G, v, c)
1: Sort users of V in ascending order of distances to v;
2: for each user u in V do
3: Compute cv in the subgraph formed by the users before (and

including) u;
4: if cv ≥ c then
5: Break;
6: end if
7: end for
8: Build an initial CBRv,c which goes through u and does not con-

tain any user outside �v,u; //u is the user that breaks the above
loop

9: Sort users of V in horizontal and vertical order, respectively.
10: while existing a bounding edge l of CBRv,c s.t. cv < c in the

subgraph formed by the users inside CBRv,c and on l do
11: Move l outward to the next (or previous) user in horizontal (or

vertical) order until cv ≥ c in the subgraph formed by the users
inside CBRv,c and on l;

12: end while
13: return CBRv,c;

To save the computing and storage cost, we only main-
tain a limited number of CBRs for user v — CBRv,20 ,
CBRv,21 , · · · ,CBRv,2blog2 cvc — where cv is the core num-
ber of v in G. We choose CBRs with respect to exponential
minimum degree constraints because for a larger c, as shown
in Section 7, much fewer c-cores exist and keeping sparse
CBRs is sufficient to support effective pruning.

A B

Root

v4

v6

v3

v1

v5

v2

v8

v7

v9

range

a

d

A

c

B

b

A B

a b c d

1 2 5 3 4 6 9 7 8

CBRb,1

CBRb,2

CBRsb

A B A B A B a b

a b a c d

c d 1 2 5 7 8

c=1

1 page

c=2 c=3

... ...

CBRs

storage

...

a b c d

c=1

Fig. 5 SaR-tree. CBRse denotes the set of CBRs for an entry e.

Complexity Analysis. Let n = |V | andm = |E|. In Al-
gorithm 1, the sorting step, i.e., Line 1, requires O(nlogn)

time complexity. Since the core number of a user in graph
G can be computed in O(n+m) time, initializing CBRv,c

in Lines 2-6 requires O((n + m)n) time complexity. Fur-
ther sorting step in Line 7 requiresO(nlogn) time complex-
ity. During CBR expansion in Lines 8-9, the movement of a
bounding edge requiresO((n+m)n) time complexity. In to-
tal, the time complexity of Algorithm 1 is O((n+m)n). By
applying a binary search to find a proper u in CBR initial-
ization and a proper user to go through in CBR expansion,
the time complexity can be reduced to O((n + m)logn).
Usually, m > n in an LBSN, so the time complexity of Al-
gorithm 1 is O(mlogn).

4.2 SaR-tree

We now present the basic SaR-tree. It is a variant of R-tree
in which each entry further maintains some aggregate social-
relation information for the users covered by this entry. Fig-
ure 5 exemplifies an SaR-tree. Different from a conventional
R-tree, each entry of an SaR-tree refers to two pieces of in-
formation, i.e., a set of CBRs (detailed below) and an MBR,
to describe the group of users it covers. An example of the
former, CBRsb is shown in the figure. It comprises the core
number cb and two CBRs {CBRb,1, CBRb,2} for entry b.
The core number of an entry is the maximum core number
of the users it covers, which bounds the number of CBRs
of this entry. Considering that only one CBR of an entry is
related to a GSGQ, we optimize the storage by decoupling
CBRs from MBR, as shown in Figure 5. Then, we can di-
rectly access the CBR page with the specified c, without los-
ing any pruning power of R-tree. Perceptually, a CBR in the
SaR-tree bounds a group of users from the social perspective
while an MBR bounds the users from the spatial perspective.
As such, SaR-tree gains the power for both social-based and
spatial-based pruning during GSGQ processing, as will be
explained in the next section.

CBR of an Entry. To define the CBRs for each SaR-
tree entry, we extend the concept of CBR defined for each

8 Qijun Zhu et al.

individual user (in the previous subsection). LetMBRe and
Ve denote the MBR and the set of users covered by an entry
e, respectively. A CBR of e is a rectangle which intersects
MBRe and inside which any user group containing any user
from Ve cannot satisfy the minimum degree constraint. The
formal definition of a CBR of entry e with respect to a min-
imum degree constraint c, denoted by CBRe,c, is given as
follows:

Definition 4 (CBR of an Entry) Consider an entry e with
MBRMBRe and user set Ve. Given a minimum degree con-
straint c,CBRe,c is a rectangle which intersectsMBRe and
inside which any user group containing any user from Ve
(not including the users on the bounding edges) cannot be a
c-core.

Note thatCBRe,c is required to intersectMBRe to guar-
antee its locality. Figure 5 shows two examples of CBRs for
an entry b, where Vb = {v3, v4}. We can see that any user
group inside CBRb,2 and containing v3 or v4 (not includ-
ing v9 on the bounding edges) cannot be a 2-core. Thus,
during GSGQ processing, we may safely prune entry e, for
example, if the query range of a GSGQrange (with a min-
imum degree constraint of 2) is fully covered by CBRb,2.
Since CBRe,c is determined by the set of users in Ve, we
use CBRVe,c and CBRe,c interchangeably.

To efficiently generate the CBRs of the entries in SaR-
tree, we adopt a bottom-up approach in our implementation.
Obviously, the CBR of a leaf entry e is just the CBR of the
user it covers. For a non-leaf entry e, let e1, e2, · · · , em be
the child entries of e. Then, the CBR of e can be computed
by recursively applying the following function on CBRe1 ,

. . . , CBRem :

CBR{e1,...,ei+1},c =

CBR{e1,...,ei},c, if
MBRei+1

∩ CBR{e1,...,ei},c = φ

CBR{e1,...,ei},c ∩ CBRei+1,c,

otherwise

Finally,CBRe,c = CBR{e1,...,em},c. It is easy to verify that
the CBRs of the entries generated by the above approach
satisfy Definition 4.

For an entry e, similar to a user, we only store the CBRs
of e with respect to minimum degree constraints 20, 21, · · · ,
2blog2 cec, where ce = maxv∈Ve

cv is the core number of e.
Let cG denote the maximum core number of the users in G
and s denote the minimum fanout of an SaR-tree. The total
number of CBRs in an SaR-tree can be estimated as,

nCBR ≤
∑
v∈V

(blog2 cvc+ 1) +
2n(blog2 cGc+ 1)

s

≤ n(blog2

∑
v∈V cv

n
c+

2(blog2 cGc+ 1)

s
+ 1).

Since cG and
∑

v∈V cv
n are quite small in a typical LBSN

(e.g., they are 43 and 4.5 for the Gowalla dataset used in our

experiments), the storage cost of CBRs is comparable to G
(e.g., around 2.3n in our experiments).

Based on the concept of CBRs, SaR-tree can be directly
built on top of R-tree. That is, we first construct a standard
R-tree based on the locations of the users and then embed
the CBRs into each entry. In this way, SaR-tree indexes both
spatial locations and social relations of the users. Note that
the users in SaR-tree are organized merely based on their lo-
cations — they are spatially close, but may not be well clus-
tered in terms of their social relations. This unfortunately
weakens the pruning power of SaR-tree in processing GS-
GQs. To overcome this weakness, we propose a variant in
the next subsection.

4.3 SaR*-tree

Inspired by R*-tree, the R-tree variant that optimizes the
grouping of spatial object to minimize the disk I/O cost,
we propose SaR*-tree as an variant of SaR-tree. It has the
same node structure but uses a different closeness metric to
group users into nodes. Specifically, instead of using only
the spatial area of MBR for closeness, SaR*-tree defines a
new closeness metric I(V) for a group of users V that inte-
grates both CBRs and MBRs to measure the combined so-
cial and spatial closenesses:

I(V) = ||MBRV || ·
∑
c

(||∪v∈V CBRv,c−CBRV,c||) (1)

where ||·|| is the area of an MBR or CBR, and∪v∈V CBRv,c−
CBRV,c quantifies the similarity of CBRs of the users in V .
Obviously, a small I(V) indicates that the users of V have
both close locations and similar CBRs. This new closeness
metric will be used in the R-tree construction.

Similar to SaR-tree, SaR*-tree is also constructed by
iteratively inserting users. During this construction, CBRs
and MBRs are generated at the same time and used for fur-
ther user insertion. Moreover, if a node N of an SaR*-tree
overflows, it will be split. The details about these two main
operations in SaR*-tree construction, i.e., user insertion and
node split, are described below.

– User insertion. When a user v is inserted into an SaR*-
tree, for a node N with entries e1, e2, · · · , em, we will
select the entry ei with the minimal I(Vei∪{v}) to insert
v.

– Node split. When a node N of an SaR*-tree overflows,
we split N into two sets of entries N1 and N2 with the
minimal I(∪ei∈N1

Vei) + I(∪ej∈N2
Vej). Then, the par-

ent node of n use two entries to point to n1 and n2, re-
spectively. This splitting may propagate upwards until
the root.

Geo-Social Group Queries with Minimum Acquaintance Constraints 9

5 GSGQ Processing

In this section, we present the detailed processing algorithms
based on SaR-trees for various GSGQs. As mentioned in
Section 3, we mainly focus on three types of GSGQs, namely,
GSGQrange,GSGQrkNN , andGSGQkNN . We will show
that the CBRs of SaR-trees can be used in different ways for
processing these queries.

5.1 GSGQ with Range Constraint

When processing a GSGQrange Qgs = (v, range, c), each
entry of the SaR-tree or SaR*-tree that may cover result
users will be visited and possibly further explored. Com-
pared to traditional R-trees, which only provide spatial in-
formation via MBRs, an SaR-tree or SaR*-tree provides much
greater pruning power due to the social information in CBRs.
Consider an exemplary GSGQQgs = (v1, range, 2) in Fig-
ure 5, where the shaded area is the query range. When en-
try b (which covers users v3 and v4) is visited, b needs fur-
ther exploration if we only consider MBRb like in regular
R-tree. However, with CBRb,2, we can easily decide that
any user group inside the query range and containing any
user in Vb (i.e., v3 or v4), cannot be a 2-core, because the
query range is covered by CBRb,2. Since Vb does not con-
tain any result user, we can simply prune entry b from further
processing, as formally proved in Theorem 3. Considering
SaR-trees only maintain the CBRs with respect to exponen-
tial minimum degree constraints, given a minimum degree c,
we use CBRv,2blog2 cc to represent CBRv,c in GSGQrange

processing. Similar ideas are also applied in GSGQrkNN

and GSGQkNN processing.

Theorem 3 For a GSGQrange Qgs = (v, range, c) where
pv ∈ range, any user in Ve of entry e does not belong to
the result group if range ⊂ CBRe,c and range does not
contain any bounding edge of CBRe,c.

Proof We prove it by contradiction. If the theorem is not
true, i.e., a user u ∈ Ve belongs to the result group W . Since
the users of W ∪{v} are located inside range and range ⊂
CBRe,c does not contain any bounding edge of CBRe,c,
W ∪ {v} is a c-core with u inside CBRe,c (not including
the users on the bounding edges), which is contradictory to
the CBR definition for an entry.

Algorithm 2 details the procedure of processing aGSGQ
range based on an SaR-tree or SaR*-tree. At the beginning,
we access the CBR of user v. If cv < c or range ⊂ CBR

v,2blog2 cc , it means the core number of v is smaller than c
in the subgraph formed by the users inside range. Thus, we
cannot find any c-core containing v inside range and there
is no answer to Qgs (Lines 2-3). Otherwise, we move on to
find all candidate users W̃ via the proposed pruning schemes

Algorithm 2 Processing GSGQrange

Input: LBSN G = (V,E), Qgs = (v, range, c)
Output: Result of Qgs

ProGSGQRange(G, Qgs)
1: Let c′ = 2blog2 cc;
2: if cv < c or range ⊂ CBRv,c′ then
3: return φ;
4: end if
5: Initialize H with the root entries of index tree;
6: while H has non-leaf entries do
7: Pop the first non-leaf entry e from H;
8: for each child entry e′ of e do
9: if range ∩ MBRe′ 6= φ and ce′ ≥ c and range 6⊂

CBRe′,c′ then
10: Put e′ into H;
11: end if
12: end for
13: end while
14: Get the users W̃ corresponding to the entries of H;
15: Compute the maximum c-core W ′ of G[W̃];
16: if v ∈W ′ then
17: return W =W ′ − {v};
18: else
19: return φ;
20: end if

(Lines 6-13). Then, we compute the maximum c-core W ′ of
G[W̃] by applying the core-decomposition algorithm (Line
15). If v ∈ W ′, W = W ′ − {v} is the answer; otherwise,
there is no answer to Qgs.

We again use the example in Figure 5 to illustrate the
pruning power of the proposed algorithm for processingGSGQrange.
When applying the baseline algorithm based on R-tree, 5

users, i.e., v2, v3, v5, v6 and v8, need to be accessed. In con-
trast, in the proposed algorithm, by using both MBRs and
CBRs, there is no need to access index node b (as well as its
covered user v3) and user v8 since range ⊂ CBRb,2 and
range ⊂ CBRv8,2. As a result, only 3 users are accessed,
achieving a great saving on computing and I/O cost.

5.2 GSGQ with Relaxed kNN Constraint

To process a GSGQrkNN Qgs = (v, rkNN, c) on an SaR-
tree or SaR*-tree, we maintain a priority queueH of entries,
whose priority score is the spatial distance from v to both
MBRe and CBRe,c. Let LCBRe,c

denote the set of bound-
ing edges of CBRe,c and d(v, l) denote the distance from v

to edge l. The distance from v toCBRe,c, where v is located
inside CBRe,c, is defined as the minimum distance from v

to reach any bounding edge of CBRe,c. Formally,

din(v, CBRe,c) =

{
minl∈LCBRe,c

d(v, l), v ∈ CBRe,c

0, otherwise

In our implementation, din(v, CBRe,c) is computed based
on CBRv,2blog2 cc . H uses de = max{d(v,MBRe), din(v,

CBRe,c)} of an entry e as the sorting key in the queue. The

10 Qijun Zhu et al.

v6
v1

v5

v2

v8

v7

CBRb,2
v9

a

c

d

d1

d2

v4

v3
b

A

B CBRc,2

Fig. 6 An example of processing a GSGQrkNN Qgs =
(v1, r3NN, 2).

rationale of adopting this priority queue is as follows. By
Definition 4 and the definition of din, any user group inside
the area �(v, din(v, CBRe,c)) and containing any user in
Ve cannot be a c-core. In other words, if some users cov-
ered by entry e belong to a candidate group which satisfies
the social acquaintance constraint, the maximum distance
of the candidate group to v is expected to be at least de.
Therefore, we can derive another constraint on dmax(v,W)

(recall that dmax(v,W) is defined as maxu∈W d(v, u)) as
summarized in Theorem 4 below. By combing both con-
straints of dmax(v,W) in de, we can get an optimized pro-
cessing order of the entries on an SaR-tree or SaR*-tree. Fig-
ure 6 shows an example to demonstrate this rationale. Sup-
pose user v1 issues a GSGQrkNN Qgs = (v1, r3NN, 2).
When entry b covering users v3 and v4 is visited, we have
d1 = d(v1,MBRb) and d2 = din(v1, CBRb,2). Then, the
key of b is set to be db = max{d1, d2} = d2. We can see
that if v3 or v4 belongs to the result group, it should also con-
tains v9 to make the whole group a 2-core, which makes the
maximum distance to v1 larger than dc. Thus, we can access
entry c before b, although c is spatially farther away from v1
than b. As a result, a candidate group W = {v2, v6} can be
obtained after accessing entry c, since dmax(v1,W) < db,
there is no need to visit entry b any longer, thereby saving
the access cost.

Theorem 4 Given a user v and a minimum degree con-
straint c, if a user set W makes G[W ∪ {v}] a c-core, then
dmax(v,W) ≥ de for any entry e with Ve ∩W 6= φ.

Algorithm 3 presents the details of processing a GSGQ
rkNN based on an SaR-tree or SaR*-tree. A set W̃ is used to
store the currently visited users and initialized as {v}. The
entries in H are visited in ascending order of de. If a vis-
ited entry e is not a leaf entry, it will be further explored
and its child entries with ce′ ≥ c are inserted into H (Lines
7-10); otherwise, we get its corresponding user u (Line 12)
and proceed with the following steps. If cu < c, it means u
cannot be a result user. Thus, we simply ignore it and con-

tinue checking the next entry of H . On the other hand, if
cu ≥ c, u is added into the candidate set W̃ (Lines 13-14).
Then, we compute the maximum c-core, denoted as W ′, in
the subgraph formed by W̃ (Line 15). If |W ′| ≥ k + 1 and
v ∈ W ′, W ′ − {v} is the result (Line 16-17); otherwise,
the above procedure is continued until the result is found or
shown to be non-existent. Theorem 5 proves the correctness
of Algorithm 3 and its superiority to the baseline accessing
model.

Algorithm 3 Processing GSGQrkNN

Input: LBSN G = (V,E), Qgs = (v, rkNN, c)
Output: Result of Qgs

ProGSGQrKNN(G, Qgs)
1: if cv < c then
2: return φ;
3: end if
4: W̃ = {v};
5: Initialize H with the entries of the root node;
6: while H 6= φ do
7: Pop the first entry e from H;
8: if e is not a leaf entry then
9: for each child entry e′ of e do

10: if ce′ ≥ c then
11: Compute de′ and put e′ into H;
12: end if
13: end for
14: else
15: Get the corresponding user u of e;
16: if cu ≥ c then
17: W̃ = W̃ ∪ {u};
18: if the first entry e′ in H has de′ > de then
19: Compute the maximum c-core W ′ in W̃ ;
20: if |W ′| ≥ k + 1 and v ∈W ′ then
21: return W ′ − {v};
22: end if
23: end if
24: end if
25: end if
26: end while
27: return φ;

Theorem 5 For a GSGQrkNN Qgs = (v, rkNN, c), Al-
gorithm 3 generates the result of Qgs. Moreover, it checks
equal or less users than that of the baseline accessing model
based on d(v,MBRe).

Proof Let W be the user set returned by Algorithm 3. and
user u′ = argu∈W max d(v, u). Suppose another user set
W ′, W ′ 6= W , is the result. Then, it should be either 1)
dmax(v,W ′) < dmax(v,W) or 2) dmax(v,W ′) = dmax(v,W)

and W ⊂W ′.
For case 1), consider a user u ∈ W ′. For any entry e

which covers u, based on Theorem 4, we have de ≤ dmax(v,

W ′) < dmax(v,W) = d(v, u′) ≤ du′ . According to Al-
gorithm 3, a super set of W ′, denoted as W ′′, should be
checked before getting W and G[W ′′ ∪ {v}] does not con-
tain a c-core of size no less than k+ 1 covering v. Then, W ′

Geo-Social Group Queries with Minimum Acquaintance Constraints 11

cannot be the result, which is contradictory to the assump-
tion.

For case 2), consider a user u ∈W ′ and u /∈W . Accord-
ing to Algorithm 3, there is a any entry e which covers u and
de > du′ . Based on Theorem 4, we have dmax(v,W ′) ≥
de > du′ ≥ d(v, u′) = dmax(v,W), which is contradictory
to the assumption dmax(v,W ′) = dmax(v,W).

To conclude, W is the result of Qgs.
Let S and S′ be the entries explored by Algorithm 3 and

by the baseline accessing model based on d(v,MBRe), re-
spectively, for finding the result setW . Based on Theorem 4,
for any entry e ∈ S, we have de ≤ dmax(v,W) (if not, e
will not be further explored since all the users of W have
been accessed and the result set W has been found). Con-
sidering that S′ = {e|d(v,MBRe) ≤ dmax(v,W)}, then
S ⊆ {e|e ∈ S′ ∧ din(v, CBRe,c) ≤ dmax(v,W)} ⊆ S′. It
means S contains equal or less users than that of S′.

Recall the example in Figure 6. When applying Algo-
rithm 3 to process Qgs = (v1, r3NN, 2), the access order
of the users is v2, v6, v5, v3, v4, v9 and v7. The result can
be obtained by accessing the first 3 users. In contrast, the
baseline algorithm based on R-tree accesses the users in the
order of v2, v3, v6, v5, v4, v8, v9, and v7. Then, 4 users
are accessed and processed. Obviously, by reorganizing the
access order of entries, Algorithm 3 processes GSGQrknn

more efficiently.

5.3 GSGQ with Strict kNN Constraint

For a GSGQkNN Qgs = (v, kNN, c), we adopt the same
processing framework as in Algorithm 3. However, when a
valid W ′ is found for GSGQrkNN at Line 16, more steps
will be needed to obtain the result of GSGQkNN . Let W ′

be the maximum c-core formed by the set of currently vis-
ited users W̃ . Only if |W ′| ≥ k + 1 and v ∈ W ′, it is
possible to find a c-core of size k + 1 in W̃ that contains
v. Moreover, such a c-core must be a subset of W ′. Thus,
we invoke a function FindExactkNN to check all user sets
of size k + 1 that contain v in W ′. If such a user set W ′′ is
found, W ′′ − {v} is the result of Qgs; otherwise, the above
procedure is repeated when Algorithm 3 continues to find
the next candidate W ′.

In-Memory Optimizations. The above processing frame-
work provides optimized node access on SaR-trees forGSGQ
kNN . However, due to the NP-hardness of GSGQkNN , the
in-memory processing function FindExactkNN also has a
great impact on the performance of the algorithm. A naive
idea of checking all possible combinations of the user sets
costs up to exponential time complexity of k. In this subsec-
tion, we single out this problem to optimize the FindExac-
tkNN function by designing two pruning strategies.

Algorithm 4 details the optimized FindExactkNN, which
employs a branch-and-bound method and expands the source
user set S from the candidate user set U . At the beginning,
S and U are initialized as {v, u} and W ′ − {v, u} (u de-
notes the newly accessed user in Algorithm 3), respectively.
Note that if a result W ′′ exists in W ′, W ′′ must contain u,
because it has been proved thatW ′−{u} does not contain a
result. During the processing, two major pruning strategies,
namely, core-decomposition based pruning (Lines 6-11, 16-
20) and k-plex based pruning (Lines 5, 12), are applied.

1) Core-Decomposition based Pruning: Based on the
definition of c-core, we can observe that if the current source
user set S′ can be expanded to a c-core of size k+ 1, it must
be contained by the maximum c-core of U ′ ∪ S′, where U ′

denotes the set of remaining candidate users. Therefore, we
conduct a core-decomposition on U ′ ∪ S′ before further ex-
ploration. If a user of S′ has a core number smaller than c in
U ′∪S′, S′ cannot be expanded to a result from the candidate
user set U ′ and thus we can safely stop further exploration.
In addition, if the maximum c-core in U ′ ∪ S′ contains S′

and has size k + 1, it is the result of GSGQkNN and the
whole processing terminates. Otherwise, further exploration
on the maximum c-core of U ′ ∪ S′ is required. Finally, if S′

cannot be expanded to a c-core of size k+ 1, we roll back to
explore S and the remaining U . Similarly, we compute the
maximum c-coreW ′ of S∪U . If |W ′| ≥ k+1 and S ⊆W ′,
S could be expanded to the result from U = W ′ − S and
further exploration is applied; otherwise, no result can be
found.

2) k-plex based Pruning: One major challenge of the c-
core problem is that it does not preserve locality, that is, ifW
is a c-core, adding or dropping some users fromW no longer
retains it as a c-core. As a workaround, we transfer the prob-
lem to a dual c̄-plex problem [2] (which preserves the local-
ity property) by adding some constraint. Simply speaking, a
c̄-plex W ⊆ V is a set such that δ(G[W]) ≥ |W | − c̄.

Since a c-core of size k+1 is also a (k+1− c)-plex, we
seek to find a (k+1−c)-plex of size k+1 to achieve further
pruning. c̄-plex preserves the locality property because if W
is a c̄-plex, dropping some users can still make it a c̄-plex. In
other words, if the maximum (k+1− c)-plex in U ′∪S′ has
a size no less than k+ 1, it is certain that a (k+ 1− c)-plex
of size k + 1 can be found; otherwise, such a (k + 1 − c)-
plex cannot be found. Moveover, (k + 1 − c)-plex is more
constrained than c-core because the size of the maximum
(k+1−c)-plex is always no larger than that of the maximum
c-core of size no smaller than k + 1.

The properties of (k + 1 − c)-plex can be used to de-
vise powerful pruning strategies in processing GSGQkNN .
First, we prune those users in U who cannot expand the
source user set S′ to a (k + 1 − c)-plex. This pruning is
implemented in Line 5 of Algorithm 4. Second, we estimate
the size of a maximum (k + 1 − c)-plex to provide further

12 Qijun Zhu et al.

Algorithm 4 Finding c-core of size k + 1
Input: User set U and S, c, k
Output: c-core W

FindExactkNN(U , S, c, k)
1: if |S| = k + 1 then
2: return S;
3: end if
4: while U 6= φ do
5: S′ = S ∪ {u}, U = U − {u} for some u ∈ U ;
6: U ′ = {u ∈ U : S′ ∪ {u} is a (k + 1− c)-plex };
7: Compute the maximum c-core W ′ of U ′ ∪ S′;
8: if |W ′| ≥ k + 1 and S′ ⊆W ′ then
9: if |W ′| = k + 1 then

10: return W ′;
11: else
12: U ′ =W ′ − S′;
13: if Bp(G[U ′ ∪ S′]) ≥ k + 1 then
14: W ′′ = FindExactkNN(U ′, S′, c, k);
15: if W ′′ 6= φ then
16: return W ′′;
17: end if
18: end if
19: end if
20: end if
21: Compute the maximum c-core W ′ of S ∪ U ;
22: if |W ′| ≥ k + 1 and S ⊆W ′ then
23: U =W ′ − S;
24: else
25: break;
26: end if
27: end while
28: return φ;

pruning. Some theoretic bounds on it have been proposed
in the literature. In this paper, we adopt the result of [21]
and compute an upper bound B on the size of a maximum
(k + 1− c)-plex in a graph G as,

Bp(G) = mini=1,...,p{
1

i
B(Ci

1, . . . , C
i
mi

)}, (2)

and

B(Ci
1, . . . , C

i
mi

) =

mi∑
j=1

min{2c̄− 2 + c̄ mod 2, c̄+ ai,j ,

∆(G[Ci
j]) + c̄, |Ci

j |},

where c̄ = k + 1 − c, Ci
1, . . . , C

i
mi

are co-c̄-plexes [21]
in which every vertex of V appears exactly i times, ai,j =

max{n : |{v|v ∈ V ∧degG(v) ≥ n}| ≥ c̄+ l} for each Ci
j ,

and p is a parameter to limit the iterations of computing.
Figure 7 shows the steps of both the basic and optimized

version of function FindExactkNN where user set W ′ =

{v1, v2, v3, v6, v9, v8, v4, v7} and Qgs = (v1, 3NN, 2). In
the optimized procedure, each step shows the investigated
source user set S′ and the candidate setU ′ after filtering. For
example, in the first step, we try to check S′ = {v1, v7, v4}
and U ′ = {v2, v3, v6, v8, v9}. After filtering U ′ via Line 5
of Algorithm 4, we can get U ′ = {v2, v6, v8, v9}. Since the
maximum 2-core of U ′ ∪ S′ only has size 3, no 2-core of

v6

v9

v8

v1

v5

v4

v10

v11

v12

v3

v2

v7
W'={v1,v2,v3,v6,v9,v8,v4,v7}

Basic:

Check all 4-user subsets

Cost: 70 combinations

Optimized:

S'={v1,v7} U'={v2,v3,v4,v6,v8,v9}

1.S'={v1,v7,v4} U'={v2,v6,v8,v9}

=> pruned by core-decomposition

2.S'={v1,v7,v9} U'={v2,v6,v8}

=> pruned by core-decomposition

3.S'={v1,v7,v3} U'={v2,v6,v8}

Get C1={v1,v2,v6,v7},C2={v3,v8,v1,v6},

C3={v2,v7} => b2(G[U'∪S'])=3

=> pruned by k-plex model

Cost: 3 combinations

Fig. 7 Exemplary procedures of the original and optimized func-
tion FindExactkNN when W ′ = {v1, v2, v3, v6, v9, v8, v4, v7} for
GSGQkNN Qgs = (v1, 3NN, 2). The entries are omitted here be-
cause they are not related to function FindExactkNN.

size 4 can be found in U ′ ∪ S′. Thus, all the combinations
of these users can be ignored. A similar case can be found
in the second step when S′ = {v1, v7, v9}. In the third step,
we can get the upper bound of the size of the maximum 2-
plex in U ′ ∪ S′ as 3 by computing B2(G[U ′ ∪ S′]). Thus,
U ′ ∪ S′ does not contain a 2-core of size 4. We can stop
searching here because no user is filtered from U ′ in the last
step, which means all the combinations are covered. We can
see that the optimized function FindExactkNN effectively
prunes unnecessary explorations and saves significant com-
putation cost.

6 Update of SaR-trees

The SaR-trees, once built, can be used as underlying struc-
tures for efficient GSGQ processing with generic spatial con-
straints. It is particularly favorable for applications where
both social relations and user locations (e.g., home addresses)
are stable. However, for other applications where users may
regularly change their locations and social relations, effi-
cient update of the SaR-trees is required. This is challenging
because an update of a user affects not only her own CBR
but also those of others. In this section, we propose a lazy
update approach tailored for SaR-trees that strikes a balance
between update efficiency and effectiveness of GSGQ pro-
cessing.

6.1 Lazy Update in SaR-trees

An update from user v ∈ Gmeans either her location changes
from pv to p′v or her social relation NG(v) changes. How-
ever, not all changes lead to the update of CBRs. The fol-
lowing two rules show the location and social conditions on
which CBRs might need updates.

Update Rule 1 Location update. ACBRu,c might become
invalid only if there exists some user v such that c ≤ cv ,
pv /∈ CBRu,c, and p′v ∈ CBRu,c.

Geo-Social Group Queries with Minimum Acquaintance Constraints 13

Fig. 8 Lazy Update and Update Memo

Update Rule 2 Social updates. A CBRu,c might become
invalid only if there exist two users v, v′ such that edge vv′

is newly added,min{cv, cv′} ≥ c and {pv, pv′} ∈ CBRu,c.

To relieve an update procedure from intensive CBR re-
computation, we propose a lazy update model for SaR-trees.
Particularly, a memo M is introduced to store those accu-
mulated updates which have not been applied on the CBRs
of SaR-trees. Figure 8 illustrates the data structure for the
SaR-tree in Figure 5. A user update is thus handled in three
steps. In the first step, the user record is updated, and core-
decomposition is performed on G to update the core num-
bers of users if it is a social update. If the core number of
a user u changes, the core numbers of the entries along the
path from u to the root are updated. In the second step, the
user update is added into M . In this figure, user v2 adds
an edge with v3, and the new edge has been inserted to M .
Similar operation is performed for location updates when a
user moves into other users’ CBRs. In the third step, when
the size of M reaches a threshold, named the Batch Update
Size, a batch update is applied on the CBRs of SaR-trees.
This calls for re-computation of all affected CBRs in M .

To facilitate CBR updates, an R-tree is built on the CBRs
of users. By a point containment query on this R-tree, we
can find the CBRs that cover the latest location of an up-
dated user. The retrieved CBRs are then filtered based on
Update Rule 1 and Update Rule 2. For the remaining CBRs,
we first determine their validity by computing the core num-
bers of the corresponding users in the subgraphs formed by
the users inside the CBRs. Then, each invalid CBR is recom-
puted by applying Algorithm 1 and its update is propagated
to the root along the SaR-tree path.

6.2 GSGQ Processing with Update-Memo on SaR-trees

With an update-memo M , GSGQ processing algorithms on
SaR-trees need to be revised for correctness as some CBRs
may be invalid. In the following, we outline the major changes
of the processing algorithms for different GSGQs.

GSGQrange processing. To revise Algorithm 2, the CBRs
will no longer be used to prune entries when traversing the
SaR-tree. As a result, the priority queue H is composed of
a number of leaf entries, each corresponding to a user with

core number equal to or larger than c inside range. As such,
for each user u in H s.t. range ⊂ CBRu,c, we check the
other users inH located inside range: if some other user has
updates in M which might invalidate CBRu,c according to
Update Rule 1 or 2, we keep u in H; otherwise, u is pruned
from H . In the end, if the query issuer v is pruned from H ,
there will be no result; otherwise, we obtain the result from
H as Algorithm 2 does.

GSGQrkNN (orGSGQkNN) processing. To revise Al-
gorithm 3, we still use the second priority queue H ′ to store
the entries of H in ascending order of their minimal dis-
tances to v. When putting an entry e intoH , if din(v, CBRe,c)

> d(v,MBRe), we need to verify the validity of CBRe,c.
For a non-leaf entry e, we simply set de = d(v,MBRe)

to avoid the validating cost. For a leaf entry e, let u be the
corresponding user. We retrieve all users with shorter dis-
tances to the query issuer v than din(v, CBRe,c) by explor-
ingH ′, denoted as U . Then, we filter out the users in U who
has no update in M or cannot invalidate CBRe,c according
to Update Rule 1 or 2. If U is not empty, din(v, CBRe,c)

is updated as minu′∈Ud(v, u′). It is easy to verify that if
pu ∈ �(v,minu′∈Ud(v, u′)), any user group with u inside
�(v,minu′∈Ud(v, u′)) cannot be a c-core. This guarantees
the correctness of the algorithm.

7 Performance Evaluation

In this section, we evaluate the proposed methods on three
real datasets, namely, Gowalla, Dianping, and Twitter-2010,
and investigate the impact of various parameters. The code
is written in C++ and compiled by GNU gcc x64 4.5.2. All
the experiments are performed on a Dell R430 server with
dual Intel Xeon E5-2620 CPU and 64GB RAM, running
GNU/Ubuntu Linux 64-bit 14.04 LTS.

7.1 Experimental Setting

The Gowalla dataset was collected from the location-based
social network Gowalla (available on http://snap.stan-
ford.edu/data/loc-gowalla.html), the Dianping
dataset was crawled by us from a Chinese restaurant re-
view site (available on https://goo.gl/uUV4Wg), and
the Twitter-2010 dataset is from the social network Twitter
(available on http://law.di.unimi.it/webdata/
twitter-2010/). For the Gowalla dataset and the Di-
anping dataset, we remove the users with no check-ins and
select the first check-in position of each user as his/her lo-
cation. As a result, the preprocessed Gowalla dataset has
107,092 nodes (users) and 456,830 edges (friend relations),
while the preprocessed Dianping dataset has 2,673,970 nodes
and 922,977 edges. In comparison, the Twitter-2010 dataset
is much bigger, with 41,652,098 nodes and 684,500,219 edges.

14 Qijun Zhu et al.

Table 1 System parameter settings

Parameter Value Parameter Value
c 1− 5 r 0.002− 0.05
k 10− 250 Page size 4KB
Page acc. time 2ms

Gowalla
User # 107, 092 Edge # 456, 830
Max degree 9, 967 Avg. degree 9.177
Max core num. 43 Avg. core num. 4.839
Dataset size 27.2MB

Dianping
User # 2, 673, 970 Edge # 922, 977
Max degree 11423 Avg. degree 5.184
Max core num. 24 Avg. core num. 2.741
Data size 162M

Twitter-2010
User # 41, 652, 098 Edge # 684, 500, 219
Max degree 1, 405, 986 Avg. degree 30.453
Max core num. 2, 059 Avg. core num. 14.692
Dataset size 29.7GB

The locations of the users in Twitter-2010 are randomly gen-
erated with a uniform distribution. For both datasets, we nor-
malize the location data into a unit space [0,1] x [0, 1].

We implement four indexes for performance evaluation,
namely, R-tree, C-imbedded R-tree, SaR-tree, and SaR*-tree.
The C-imbedded R-tree is built on top of an R-tree and ad-
ditionally stores the core numbers of the index entries. The
average CPU time of constructing a user CBR in the latter
two trees is less than 100 ms for Gowalla and Dianping, and
50 ms for Twitter-2010. The sizes of SaR-trees are 15.5MB
for Gowalla, 257MB for Dianping and 2.1GB for Twitter-
2010. The index construction time is less than 1 minute for
Gowalla and Dianping, and 1.3 hours for Twitter-2010. The
corresponding GSGQ processing methods on these indexes
are denoted as BR (baseline R-tree), CR, SaR and SaR*, re-
spectively. CR enhances BR by pruning those nodes whose
core numbers cannot satisfy the minimum degree constraint
c in query processing.

To have a fair comparison, we implement CR, SaR, and
SaR* by coupling extra pages with each index node to store
the information of core numbers (for CR) or CBRs (for SaR
and SaR*). These extra pages are called coupled nodes. To
compare the performance of different methods, we mainly
use two metrics, namely, the page access cost and the query
running time. The former includes the page accesses of in-
dex nodes, coupled nodes, and user data. On the other hand,
the query running time measures the actual clock time to
process a GSGQ, including the CPU time and the I/O time.
In the experiments, no cache is used for GSGQ processing
and the page access time is set as 2 ms per page access. Each
test ran a set of 1,000 randomly generated GSGQs and we
report the average performance.

Three types of queries, namely,GSGQrange,GSGQrkNN ,
and GSGQkNN , are tested. For GSGQrange, the range r

Table 2 Minimum degree of the result group given k = 50 on
Gowalla.

Query ρ
1 2 3 4 5

kNN 0 0 0 0 0
SSGQ(p = ρ) 0.05 0.08 0.11 0.16 0.21
GSGQrkNN (c = ρ) 1 2 3 4 5

is defined as a square centered at the location of the query
issuer. In the sequel, we use the edge length to represent r,
which is set at 0.002 for Gowalla and Dianping, and 0.05 for
Twitter-2010 by default. For GSGQrkNN and GSGQkNN ,
k is selected from 10 to 250, which represents large-scale
time-consuming queries for real-life social applications, e.g.,
the marketing example shown in Section 1. Finally, the min-
imum degree constraint c is selected from 1 to 5. Table 1
summarizes the major parameters and their values used in
the experiments, where the average degree only counts con-
nected nodes.

7.2 Overall Performance

Table 2 shows the average minimum degree of the result
groups for three different query semantics on Gowalla, where
kNN denotes a classic k-nearest-neighbor query and SSGQ
denotes the socio-spatial group query proposed in [31]. As
expected, GSGQ always retrieves the groups that satisfy the
minimum degree constraints, while the other two queries
have a minimum degree of close to zero. This justifies the
improved social constraint introduced by GSGQ.

Figure 9, Figure 10 and Figure 11 show the overall per-
formance of the GSGQ methods under three different queries
on Gowalla, Dianping and Twitter-2010, respectively. Gen-
erally, SaR and SaR* achieve significant improvement over
BR and CR in all tested cases. Take Twitter-2010 as an ex-
ample. For GSGQrange, SaR and SaR* outperform BR and
CR by 77.9% − 77.6% and 84.5% − 84.3% in terms of the
query running time (see Figure 11(a)). This is mainly due
to the savings in accessing the user data as shown in Fig-
ure 11(b). It is interesting to note that CR incurs an even
higher page access cost than BR because of the week prun-
ing power of the core numbers for large social networks and
additional accesses on the coupled nodes. More specifically,
SaR and SaR* check much fewer users (around 2,946 users)
than CR (around 103,060 users) and BR (around 85,686
users) to derive the results. SaR* further reduces the page
accesses to 3,135 compared to SaR (4,089), CR (15,293),
and BR (14,436). All the results exhibit the high pruning
power of CBRs for GSGQrange processing.

For GSGQrkNN , SaR and SaR* achieve similar im-
provement over BR and CR in terms of the query running
time and the page access cost (see Fig. 11(c) and Figure 11(d)).

Geo-Social Group Queries with Minimum Acquaintance Constraints 15

0

50

100

150

200

250

300

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

m
s)

Method

(a) GSGQrange (r=0.002, c=4)

0

20

40

60

80

100

120

140

BR CR SaR SaR*

#
 P

a
g

e
 A

cc
e

ss

Method

Coupled Node

User

Index Node

(b) GSGQrange (r=0.002, c=4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Method

(c) GSGQrkNN (k=100, c=4)

0

40

80

120

160

200

240

280

320

BR CR SaR SaR*

#
 P

a
g

e
 A

cc
e

ss

Method

Coupled Node
User
Index Node

(d) GSGQrkNN (k=100, c=4)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Method

(e) GSGQkNN (k=100, c=3)

0

20

40

60

80

100

120

140

160

180

BR CR SaR SaR*

#
 P

a
g

e
 A

cc
e

ss

Method

Coupled Node

User

Index Node

(f) GSGQkNN (k=100, c=3)

Fig. 9 Overall performance comparison on Gowalla.

They access much less users in query processing. Specifi-
cally, SaR and SaR* only check 3.0% users of BR and 3.6%

users of CR. For GSGQkNN , the improvement on query
running time is even more higher for SaR and SaR* be-
cause of the in-memory optimizations (see Figure 11(e)).
That is, compared to BR (resp. CR), SaR and SaR* save
92.5% (resp. 90.4%) and 93.5% (resp. 91.7%) of query run-
ning time. This indicates that by optimizing the accessing
order of the entries based on the CBRs, a greater perfor-
mance improvement can be achieved.

Finally, comparing Fig. 11 to Figure 9 and Figure 10, we
can see that our methods gain a higher improvement over
CR on Twitter-2010 than on Gowalla and Dianping. This
is because Twitter-2010 has a denser social network and
more diverse locations, thus limiting the pruning power of
the core numbers and making it harder to process a GSGQ.
As a further investigation on the impact of the social graph
with different sizes and density, we choose subsets of users
in Twitter-2010 from 5M to 40M, and Table 3 shows the av-
erage degrees and core numbers of these induced subgraphs.
Figure 12 plots the performance comparison ofGSGQrkNN

0

2

4

6

8

10

12

14

16

18

20

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Method

(a) GSGQrange (r=0.002, c=4)

0

1

2

3

4

5

6

7

8

9

10

BR CR SaR SaR*

#
 P

a
g

e
 A

c
c
e

ss
 (

k
)

Method

Coupled Node

User

Index Node

(b) GSGQrange (r=0.002, c=4)

0

5

10

15

20

25

30

35

40

45

50

BR CR SaR SaR*
Q

u
e

ry
 R

u
n

n
in

g
 T

im
e

 (
s)

Method

(c) GSGQrkNN (k=100, c=4)

0

1

2

3

4

5

6

BR CR SaR SaR*

#
 P

a
g

e
 A

cc
e

ss
 (

k
)

Method

Coupled Node
User
Index Node

(d) GSGQrkNN (k=100, c=4)

0

5

10

15

20

25

30

35

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Method

(e) GSGQkNN (k=30, c=8)

0

1

2

3

4

5

BR CR SaR SaR*
#

 P
a

g
e

 A
cc

e
ss

 (
k

)

Method

Coupled Node

User

Index Node

(f) GSGQkNN (k=30, c=8)

Fig. 10 Overall performance comparison on Dianping.

Table 3 Density of Twitter-2010 with different user #.

User # (m) 5 10 20 40
Avg. degree 1.957 2.613 4.783 28.556
Avg. core num. 1.066 1.461 2.463 14.480

queries on these social graphs. We can see that as the graph
density grows, the performance gap between CR and SaR/SaR*
increases, because less pruning power can be obtained from
the core numbers. Compared to BR, SaR and SaR* retain
the pruning power and reduce the page access by roughly the
same ratio. The query running time of BR increases on the
graph of 40M users because there is a jump of the graph den-
sity from 20M users to 40M users and thus less time saving
can be achieved in the in-memory processing. To conclude,
the pruning power of SaR and SaR*, mainly contributed by
the social relations in CBRs, benefits more from larger and
denser social networks.

16 Qijun Zhu et al.

0

5

10

15

20

25

30

35

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Method

(a) GSGQrange (r=0.05, c=2)

0

2

4

6

8

10

12

14

16

18

BR CR SaR SaR*

#
 P

a
g

e
 A

cc
e

ss
 (

k
)

Method

Coupled Node

User

Index Node

(b) GSGQrange (r=0.05, c=2)

0

5

10

15

20

25

30

35

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Method

(c) GSGQrkNN (k=20, c=2)

0

1

2

3

4

5

6

7

BR CR SaR SaR*

#
 P

a
g

e
 A

cc
e

ss
 (

k
)

Method

Coupled Node
User
Index Node

(d) GSGQrkNN (k=20, c=2)

0

20

40

60

80

100

120

140

160

180

BR CR SaR SaR*

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Method

(e) GSGQkNN (k=20, c=2)

0

1

2

3

4

5

6

7

BR CR SaR SaR*

#
 P

a
g

e
 A

cc
e

ss
 (

k
)

Method

Coupled Node

User

Index Node

(f) GSGQkNN (k=20, c=2)

Fig. 11 Overall performance comparison on Twitter-2010.

0

0.2

0.4

0.6

0.8

1

1.2

5 10 20 40

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

o
f

B
R

)

Users (m)

BR CR

SaR SaR*

(a) GSGQrkNN (k=10, c=2)

0

0.2

0.4

0.6

0.8

1

1.2

5 10 20 40

#
 P

a
g

e
 A

cc
e

ss
 (

o
f

B
R

)

Users (m)

BR CR

SaR SaR*

(b) GSGQrkNN (k=10, c=2)

Fig. 12 Overall performance comparison on Twitter-2010 with differ-
ent user #.

7.3 GSGQrange Processing

For aGSGQrange Qgs = (v, r, c), Figure 13 shows the per-
formance with different c settings on Gowalla and Twitter-
2010. All methods except BR incur shorter query running
time for a larger c. The performance gap between BR and
the other methods increases as c grows. This is because more
users and index nodes can be pruned in CR, SaR, and SaR*

0

50

100

150

200

250

300

1 2 3 4 5

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

m
s)

c (r=0.002)

BR CR

SaR SaR*

(a) Gowalla

0

5

10

15

20

25

30

35

1 2 3 4 5

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
(s

)

c (r=0.05)

BR CR

SaR SaR*

(b) Twitter-2010

Fig. 13 Query running time of the methods for GSGQrange queries
with different c settings.

0

100

200

300

400

500

600

0.002 0.004 0.006 0.008 0.01

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

m
s)

r (c=4)

BR CR

SaR SaR*

(a) Gowalla

0

5

10

15

20

25

30

35

0.01 0.02 0.03 0.04 0.05

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
(s

)

r (c=2)

BR CR

SaR SaR*

(b) Twitter-2010

Fig. 14 Query running time of the methods for GSGQrange queries
with different r settings.

for a large c. SaR and SaR* outperform CR in all cases. The
improvement reduces a little at c = 3 and c = 5 because
only approximate CBRs (corresponding to c = 2 and c = 4,
respectively) are used for query processing in these cases
(recall that only the CBRs with respect to exponential min-
imum degree constraints are stored). Moreover, SaR* bene-
fits more from the index than CR and SaR, as it groups the
users based on both spatial and social closenesses, making
the pruning of index nodes and user pages more powerful.
As for various settings of query range r (see Figure 14), the
performance of all methods degrades when r grows, because
more users within the range need to be checked. In terms of
query running time, SaR and SaR* perform much better than
the other two methods. Moreover, SaR* has the best perfor-
mance and thus is the most favorable approach.

7.4 GSGQrkNN Processing

This subsection investigates the performance of the meth-
ods for GSGQrkNN under various c and k settings. As we
observed similar performance trends for GSGQkNN under
these settings, we omit the details on GSGQkNN here.

For aGSGQrkNN Qgs = (v, rkNN, c), Figure 15 shows
the performance with different c settings on Gowalla and
Twitter-2010. All methods incur higher query running time
for a larger c. This is because a large c tightens the social

Geo-Social Group Queries with Minimum Acquaintance Constraints 17

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

c (k=100)

BR CR

SaR SaR*

(a) Gowalla

0

50

100

150

200

250

300

1 2 3 4 5

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

c (k=20)

BR CR

SaR SaR*

(b) Twitter-2010

Fig. 15 Query running time of the methods for GSGQrkNN queries
with different c settings.

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

k (c=4)

BR CR

SaR SaR*

(a) Gowalla

0

5

10

15

20

25

30

35

10 20 30 40 50

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

k (c=2)

BR CR

SaR SaR*

(b) Twitter-2010

Fig. 16 Query running time of the methods for GSGQrkNN queries
with different k settings.

Table 4 Average # of updated CBRs w.r.t. batch update size.

Upd. Size (k) 1 3 10 30 100 300
Gowalla 13.14 5.71 2.27 1.05 0.45 0.16
Upd. Size (k) 10 30 100 300 1000
Twitter-2010 2927.7 1137.3 346.1 115.4 34.6

constraint of GSGQrkNN and thus more users need to be
visited. Similar to GSGQrange, the performance gaps be-
tween SaR* and the other two methods increase as c grows.
For a larger c, the candidate users for GSGQrkNN process-
ing tend to share similar CBRs. Thus, the social-aware user
organization of SaR* can effectively reduce the page ac-
cesses.

Figure 16 shows the performance with different k set-
tings on Gowalla and Twitter-2010. Compared to c, the in-
crement of k causes only a moderate increase in cost. SaR
and SaR* beat BR and CR for all k settings and the perfor-
mance gaps become larger as k grows. This implies that the
pruning techniques of SaR and SaR* are scalable to large
user groups.

7.5 Update Performance of SaR-trees

This section investigates the update performance of SaR-
trees. We take the locations of user check-ins along the time-
line of Gowalla and Twitter-2010 to generate location up-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 10 30 100 300

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Batch Update Size(k)

BR CR SaR SaR*

(a) Query Running Time

0

50

100

150

200

250

300

350

400

1 3 10 30 100 300

#
 P

a
g

e
 A

cc
e

ss

Batch Update Size(k)

BR CR SaR SaR*

(b) Page Access Cost

Fig. 17 The performance of the lazy update model on Gowalla.

0

5

10

15

20

25

30

35

40

10 30 100 300 1000

Q
u

e
ry

 R
u

n
n

in
g

 T
im

e
 (

s)

Batch Update Size(k)

BR CR SaR SaR*

(a) Query Running Time

0

1

2

3

4

5

6

7

8

10 30 100 300 1000

#
 P

a
g

e
 A

cc
e

ss
 (

k
)

Batch Update Size(k)

BR CR SaR SaR*

(b) Page Access Cost

Fig. 18 The performance of the lazy update model on Twitter-2010.

dates (where the new check-ins for Twitter-2010 are ran-
domly generated with the maximum distance 0.0015 from
the last ones) and randomly insert new edges to generate
social updates on users. Due to the fact that social updates
are relatively infrequent in real social networks [17], the
proportion of social updates is set to 5%. We first investi-
gate the effect of batch update size. In general, the aver-
age amortized update time decreases as more updates are
applied in batch processing. This is mainly because fewer
CBRs, on average, are required to update as summarized in
Table 4. Figure 17 (resp. Figure 18) shows the performance
for the GSGQrkNN queries with default settings under dif-
ferent batch update sizes on Gowalla (resp. Twitter-2010).
We can see that the performance of SaR and SaR* degrades
as the batch update size grows, which is mainly because
more CBRs are invalidated by the updates of M and less
pruning power could be achieved (yet still better than BR or
CR).

To further measure the impact of updates on query pro-
cessing, we generate workloads of mixed update and query
requests (i.e., theGSGQrkNN queries with default settings).
Figure 19(a) shows the throughputs under various query/update
ratios (workloads) on Gowalla. SaR* and SaR achieve higher
throughputs than CR when the workload has fewer updates,
i.e., q/u > 1 and 10, respectively, because the performance
gain from query processing can compensate for the addi-
tional CBR update cost. Figure 19(b) shows the thoughputs
under different batch update sizes on Gowalla. We can see

18 Qijun Zhu et al.

0

0.5

1

1.5

2

2.5

3

0.1 1 10 100 1000

Q
u

e
ry

 T
h

ro
u

g
h

p
u

t
(/

s)

q/u

BR CR

SaR SaR*

(a) Batch Update Size = 30k

0

0.5

1

1.5

2

2.5

3

1 3 10 30 100 300

Q
u

e
ry

 T
h

ro
u

g
h

p
u

t
(/

s)

Batch Update Size (k)

BR CR

SaR SaR*

(b) q/u = 10

Fig. 19 The query throughput of the methods on Gowalla.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.1 1 10 100 1000

Q
u

e
ry

 T
h

ro
u

g
h

p
u

t
(/

s)

q/u

BR CR

SaR SaR*

(a) Batch Update Size = 300k

0

0.02

0.04

0.06

0.08

0.1

0.12

10 30 100 300 1000

Q
u

e
ry

 T
h

ro
u

g
h

p
u

t
(/

s)

Batch Update Size (k)

BR CR

SaR SaR*

(b) q/u = 10

Fig. 20 The query throughput of the methods on Twitter-2010.

that SaR outperforms CR only for a range of the batch up-
date size. It is because large batch update size leads to obvi-
ous performance degradation of SaR for GSGQ processing,
making it incapable to compensate for the CBR update cost
any more. In comparison, SaR* always achieves the highest
throughput. This can also be observed on Twitter-2010, as
shown in Figure 20.

7.6 Case Study: SSGQ vs. GSGQ

We also conducted a case study on the usefulness of GSGQ
against SSGQ [31]. We randomly chose 8 users from the
Gowalla dataset and generated SSGQ and GSGQ kNN re-
sults under the following 4 parameter settings (i.e., 2 users
under each setting): (1) k = 5, c = p = 1; (2) k = 5,
c = p = 2; (3) k = 10, c = p = 1; (4) k = 10, c = p = 2

. For each user, the SSGQ result is visualized side by side
with the GSGQ result in the context of Google Map and
social relation of users. 28 participants were invited to give
(blind) opinions on which result each user should choose for
a group activity. Figure 21 shows the comparison result. Of
all 8 users except for #2 user, GSGQ is consistently chosen
more often than SSGQ queries, and overall in 78% cases a
participant chooses GSGQ results and in only 18% cases a
participant chooses SSGQ results. This case study justifies
our motivation of GSGQ as a more useful geo-social group
query.

0

0.2

0.4

0.6

0.8

1

User 1 2 3 4 5 6 7 8 Overall

GSGQ_kNN SSGQ_kNN Cannot decide

Fig. 21 Percentage of Participants’ Choice for Each User

8 Conclusion

This paper has studied geo-social group queries (GSGQs)
with minimum acquaintance constraints for large social net-
working services. Our main contribution is the design of two
social-aware index structures, namely SaR-tree and SaR*-
tree. Based on them, we have developed efficient algorithms
to process various GSGQs, together with a number of opti-
mization techniques. Extensive experiments on real-world
datasets demonstrate that our proposed methods substan-
tially outperform the baseline methods based on R-tree un-
der various system settings, and that such GSGQ services
are feasible on a commodity server for large user popula-
tions. As for future work, we plan to extend GSGQs to in-
corporate more sophisticated spatial queries such as skyline
and distance-based joins.

Acknowledgements

This work was supported by National Natural Science Foun-
dation of China (Grant No: 61572413 and U1636205), and
Research Grants Council, Hong Kong SAR, China, under
projects 12244916, 12201615, 12202414, 12200914, 15238116,
and C1008-16G.

References

1. Nikos Armenatzoglou, Stavros Papadopoulos, and Dimitris Papa-
dias. A general framework for geo-social query processing. In
Proc. VLDB, 2013.

2. B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations
in social network analysis: The maximum k-plex problem. In Op-
erations Research, 2009.

3. V. Batagelj and M. Zaversnik. An o(m) algorithm for cores de-
composition of networks. In CoRR, 2003.

4. Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and
Bernhard Seeger. The R*-tree: An efficient and robust access
method for points and rectangles. In Proc. SIGMOD, 1990.

5. Xin Cao, Gao Cong, Christian S. Jensen, and Beng Chin Ooi. Col-
lective spatial keyword querying. In SIGMOD Conference, 2011.

6. James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Ozsu. Ef-
ficient core decomposition in massive networks. In Proc. ICDE,
2011.

7. Yerach Doytsher, Ben Galon, and Yaron Kanza. Querying geo-
social data by bridging spatial networks and social networks. In
ACM LBSN, 2010.

Geo-Social Group Queries with Minimum Acquaintance Constraints 19

8. C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery of
connection subgraphs. In KDD, 2004.

9. Ian De Felipe, Vagelis Hristidis, and Naphtali Rishe. Keyword
search on spatial databases. In Proc. ICDE, 2008.

10. Raphael Finkel and J. L. Bentley. Quad trees: A data structure for
retrieval on composite keys. In Acta Informatica, 1974.

11. S. Fortunato. Community detection in graphs. Physics Reports,
486:3-5:75–174, 2010.

12. M. Girvan and M. E. J. Newman. Community structure in social
and biological networks. In Proceedings of the National Academy
of Sciences of the USA, 2002.

13. Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proc. SIGMOD, 1984.

14. Fei Hao, Shuai Li, Geyong Min, Hee-Cheol Kim, S.S. Yau, and
L.T. Yang. An efficient approach to generating location-sensitive
recommendations in ad-hoc social network environments. IEEE
Transactions on Services Computing, 2015.

15. F. Harary and I. C. Ross. A procedure for clique detection using
the group matrix. In Sociometry, 1957.

16. Osman Khalid, Muhammad Usman Shahid Khan, Samee U. Khan,
and Albert Y. Zomaya. OmniSuggest: A ubiquitous cloud based
context aware recommendation system for mobile social net-
works. IEEE Transactions on Services Computing, 2016.

17. Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew
Tomkins. Microscopic evolution of social networks. In KDD,
2008.

18. Yafei Li, Rui Chen, Lei Chen, and Jianliang Xu. Towards social-
aware ridesharing group query services. IEEE Transactions on
Services Computing (TSC), accepted to appear.

19. Yafei Li, Rui Chen, Jianliang Xu, Qiao Huang, Haibo Hu, and
Byron Choi. Geo-social k-cover qroup queries for collaborative
spatial computing. IEEE Transactions on Knowledge and Data
Engineering (TKDE), 27(8): 2729-2742, October 2015.

20. Weimo Liu, Weiwei Sun, Chunan Chen, Yan Huang, Yinan Jing,
and Kunjie Chen. Circle of friend query in geo-social networks.
In DASFFA, 2012.

21. B. McClosky and I. V. Hicks. Combinatorial algorithms for max
k-plex. In Journal of Combinatorial Optimization, 2012.

22. H. Moser, R. Niedermeier, and M. Sorge. Algorithms and exper-
iments for clique relaxations-finding maximum s-plexes. In SEA,
2009.

23. Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos
Mouratidis. Group nearest neighbor queries. In ICDE, 2004.

24. Roman Schlegel, Chi-Yin Chow, Qiong Huang, and Duncan S.
Wong. Privacy-preserving location sharing services for social net-
works. IEEE Transactions on Service Computing, 2016.

25. S. B. Seidman. Network structure and minimum degree. In Social
Networks, 1983.

26. Jieming Shi, Nikos Mamoulis, Dingming Wu, and David W. Che-
ung. Density-based place clustering in geo-social networks. In
Proc. ACM SIGMOD, 2014.

27. Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos.
CoreScope: Graph Mining Using k-Core Analysis - Patterns,
Anomalies, and Algorithms. In Proc. IEEE ICDE, 2016.

28. M. Sozio and A. Gionis. The community-search problem and how
to plan a successful cocktail party. In KDD, 2010.

29. Dingming Wu, Man Lung Yiu, Christian S. Jensen, and Gao Cong.
Efficient continuously moving top-k spatial keyword query pro-
cessing. In Proc. ICDE, 2011.

30. De-Nian Yang, Yi-Ling Chen, Wang-Chien Lee, and Ming-Syan
Chen. On social-temporal group query with acquaintance con-
straint. In Proc. VLDB, 2011.

31. De-Nian Yang, Chih-Ya Shen, Wang-Chien Lee, and Ming-Syan
Chen. On socio-spatial group query for location-based social net-
works. In KDD, 2012.

32. Dongxiang Zhang, Yeow Meng Chee, Anirban Mondal, Anthony
K. H. Tung, and Masaru Kitsuregawa. Keyword search in spatial
databases: Towards searching by document. In Proc. ICDE, 2009.

33. Jia-Dong Zhang, Chi-Yin Chow, and Y. Li. iGeoRec: A person-
alized and efficient geographical location recommendation frame-
work. IEEE Transactions on Services Computing, 2015.

34. Jia-Dong Zhang and Chi-Yin Chow. iGSLR: Personalized geo-
social location recommendation - A kernel density estimation ap-
proach. In Proc. ACM GIS, 2013.

