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Binary collision of unequal-size droplets was investigated numerically by using the front tracking
method, with particular emphasis in studying the kinetic energy recovery and the interface hystere-
sis of bouncing droplets. The numerical results were sufficiently validated against the high-quality
experimental data in the literature to verify the quantitative predictivity of the numerical methodol-
ogy in simulating droplet bouncing. Distinct stages of droplet deformation and viscous dissipation
during droplet collision were revealed and explained for their dependence on the Weber number
and the size ratio. A linear fitting formula that well correlates the kinetic energy recovery factor of
bouncing droplets with various collision parameters was proposed and would be practically useful in
modeling inelastic droplet bouncing in Lagrangian spray simulation. As an interesting post-collision
characteristic of bouncing droplets, the interface hysteresis was found to favor smaller droplet defor-
mation by decreasing the size ratio or decreasing the Weber number or increasing the Ohnesorge
number. Published by AIP Publishing. https://doi.org/10.1063/1.5000547

I. INTRODUCTION

Energy conversion efficiency and exhaust emissions of
many combustion energy conversion devices greatly rely
on dispersed gas-liquid two-phase flows, particularly on the
accompanying phenomena of droplet collision and breakup.
A prominent example is the dense spray of liquid fuel in the
combustion chamber of a diesel, gas-turbine, or rocket engine,
where the large number density of droplets together with the
non-uniform gas flow affect frequent droplet collisions. The
collision outcomes, such as coalescence, bouncing, and sepa-
ration, would change the number density and the distributions
of droplet size and droplet velocity, which in turn influence the
subsequent spray and combustion characteristics.1

As a fundamental multiphase flow problem, binary droplet
collision has been studied since 1960s. Early experimental
studies2–4 on water droplet collision in an atmospheric envi-
ronment were motivated by understanding the formation of
rain drops. The observed collision outcomes, such as stretch-
ing separation and coalescence, were found to depend on two
nondimensional parameters: the Weber number, We, measures
the relative importance of the droplet inertia compared with
the surface tension, and the impact parameter, B, measures
the deviation of the trajectory of droplets from that of head-
on collision, with B = 0 denoting head-on collision and B = 1
denoting grazing collision. Other influence parameters include
the size ratio, ∆, which is usually defined as the radius ratio of
the larger droplet to the smaller one, and the Ohnesorge num-
ber, Oh, which compares the viscous forces with inertial and
surface tension forces.

a)Author to whom correspondence should be addressed: pengzhang.zhang@
polyu.edu.hk.

In their study of the head-on collision of equal-size alkane
droplets, Jiang et al.5 and Qian and Law6 first observed droplet
bouncing, which is absent in the head-on collision of water
droplets. Qian and Law6 gave a unified description of droplet
collision outcomes by presenting five distinct collision regimes
in a We-B nomograph, namely (Regime I) coalescence after
minor deformation, (Regime II) bouncing, (Regime III) coa-
lescence after substantial deformation, (Regime IV) coales-
cence followed by separation for near head-on collision (also
known as reflective separation), and (Regime V) coalescence
followed by separation for off-center collision (also known
as stretching separation). Droplet bouncing was also observed
by Estrade et al.7 for equal-size ethanol droplets and by Tang
et al.8 for unequal-size alkane droplets.

Most studies on binary droplet collision were concerned
with the transition between different collision regimes,3–14

the viscous dissipation during collision,5,6,8,15 the energy con-
version,16,17 the inter-mixing within coalesced droplet,17–20

and the non-Newtonian effects.21–23 Much understanding has
been obtained on droplet coalescence (Regimes I and III)
and separation (Regimes IV and V), but not on droplet
bouncing (Regime II). Although droplet bouncing does not
change the size distribution of droplets, it can change the
spatial distribution of droplets and therefore the subse-
quent mixture formation and combustion.24 This is because
droplet collision is inelastic,5,6,10 and the post-collision veloc-
ities of bouncing droplets are substantially smaller than the
prior-collision impact velocities because of the viscous dis-
sipation of the droplet internal flow induced by droplet
deformation.

It is recognized that droplet bouncing becomes particu-
larly prominent under elevated ambient pressures. Qian and
Law6 experimentally observed that bouncing is significantly
promoted by increasing the ambient pressure from 0.6 atm

1070-6631/2017/29(10)/103306/13/$30.00 29, 103306-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5000547
https://doi.org/10.1063/1.5000547
https://doi.org/10.1063/1.5000547
mailto:pengzhang.zhang@polyu.edu.hk
mailto:pengzhang.zhang@polyu.edu.hk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5000547&domain=pdf&date_stamp=2017-10-23


103306-2 Z. Zhang and P. Zhang Phys. Fluids 29, 103306 (2017)

to 12 atm. The theoretical analysis of Zhang and Law15

demonstrates that the gas film between two colliding droplets
is harder to be drained out under elevated pressures to trig-
ger droplet coalescence. By implementing Zhang and Law’s15

theory into a volume-of-fluid (VOF) code, Li25 successfully
simulated droplet collision under different ambient pressures
without numerical artifacts. Recently, the molecular dynam-
ics simulation of Zhang et al.26 also confirms that colliding
droplets tend to bounce off with increasing the ambient pres-
sure. To demonstrate the important role of droplet bouncing
in Lagrangian spray simulation, Zhang et al.27 numerically
investigated the impinging sprays under high ambient pres-
sures and found that the propensity of droplet bouncing with
increasing pressure must be taken into account to explain the
experimental observations.

Droplet collision modeling is an indispensable com-
ponent in the Lagrangian simulation of sprays. Worthy
progress has been made in predicting the droplet collision
probability28–31 and in parameterizing the complex collision
outcomes.4,7,15,32–37 Determining the post-collision charac-
teristics of bouncing droplets has however not been suffi-
ciently studied. By accounting for the viscous dissipation
during droplet bouncing, O’Rourke32 defined a kinetic energy
recovery factor, 1 � fE , by

1 − fE =
KE ′

KE
, (1)

where KE and KE ′ are the total droplet kinetic energy before
and after bouncing, respectively, and they are calculated in
the center of mass frame of reference. fE is also known as
the energy dissipation fraction of the collision. O’Rourke
proposed an empirical model as

1 − fE =

(
B − Bcr

1 − Bcr

)2

, Bcr =
√

min(1.0, [2.4 f (∆)/We]),

f (∆) = ∆−3 − 2.4∆−2 + 2.7∆−1, (2)

where Bcr is the transition impact parameter from coalescence
(B ≤ Bcr) to grazing (B > Bcr). This model was adopted by
the widely used computer program KIVA38 and subsequently
employed by a number of numerical simulations on spray com-
bustion, which have been summarized in Refs. 34–37. Jiang
et al.5 and Qian and Law6 experimentally and theoretically
analyzed the energy dissipation during equal-size droplet col-
lision and found that fE can be as large as 50%, which was
subsequently adopted by Zhang et al.27 as a rough estimation
in their simulation of impinging sprays. The dependence of fE

on various collision parameters, such as We, ∆, and Oh, has
however not been accurately quantified up to date.

Compared with equal-size droplet collision, collision
between two unequal-size droplets is more relevant to prac-
tical situations. Ashgriz and Poo4 experimentally found that
separation becomes more difficult for water droplets as the
size ratio increases. This observation was subsequently con-
firmed by Testik11 and Rabe et al.12 for water droplets and
by Estrade et al.7 for ethyl alcohol droplets. A recent exper-
imental and theoretical study of Tang et al.8 shows that the
increased size ratio has a slight influence on the transition
Weber number from bouncing (Regime II) to coalescence
(Regime III) although it has a significant influence on that from

coalescence (Regime III) to separation (Regime IV). Never-
theless, bouncing of unequal-size droplets has not been gained
enough attentions so that the evolution of the droplet interface,
the conversion among various forms of energy, and the post-
collision characteristics remain inadequately understood up
to now.

The present study aims to numerically investigate the
bouncing of unequal-size droplets, with particular interest
in quantifying the kinetic energy recovery (or equivalently
the energy dissipation fraction) during collision. A practical
correlation for predicting the post-collision kinetic energy of
droplets was proposed and validated against the present numer-
ical results. The interface hysteresis of bouncing droplets was
also investigated to understand the interesting post-collision
phenomenon, where the colliding interfaces of bouncing
droplets tend to approach each other while the centers of
mass of the droplets are departing from one another. In the
following text, we shall first expatriate the numerical method-
ology in Sec. II, followed by the results and discussion in
Sec. III.

II. NUMERICAL METHODOLOGY
A. Formulation and numerical specifications

The present study adopts the Front Tracking method
(referred to as FTM hereinafter) developed by Tryggavason
and his colleagues.39,40 The FTM traces phase interfaces in a
Lagrangian framework, while it solves the multiphase flow in
a unified domain and in a grid of Eulerian coordinates. The
FTM has been widely used in simulating many multiphase
flow problems16,17,40,41 and has demonstrated its prominent
advantages in accurately capturing moving interfaces with rel-
atively coarse meshes and therefore with remarkably reduced
computational load.

The FTM adopted in the present study has been discussed
in detail in the literature28,40 and implemented in an axisym-
metric flow solver that was used by Nobari et al.,41 Qian and
Law,6 Pan et al.,16 and one of the present authors17 for studying
binary droplet collision. As a brief summary of the formula-
tion of the present FTM, a conservative, second-order centered
difference scheme for the spatial variables and an explicit first-
order time integration method were used to solve the governing
equations for incompressible flows for both liquid and gas
phases, given by

∇ · V = 0, (3)

∂(ρV)
∂t

+ ∇ · (ρVV) = −∇p + ∇ · µ
[
∇V + (∇V)T

]

−σ

∫
knδ

(
x − xf

)
dA, (4)

where V is the velocity vector, ρ is the density, p is the pres-
sure, µ is the viscosity, σ is the surface tension coefficient,
k is twice the local mean curvature, n is a unit vector out-
wardly normal to the local surface, and x is the space vector
with the subscript “f ” denoting the interface. It is seen that sur-
face tension is implanted as a delta function integrated locally
over the immiscible interface so as to render a singular force
exerted on the flow field. The present study considers only
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head-on collisions of droplets (i.e., B = 0), which are intrin-
sically axisymmetric with respect to the axis connecting the
two centers of mass of the droplets. Consequently, the axisym-
metric versions of Eqs. (3) and (4) were used in the present
study.

All the variables in the simulation are nondimensional.
Specifically, the governing equations are non-dimensionalized
by using the radius of the smaller droplet Rs (degenerate to R
for equal-size droplets), the relative velocity U, and the liquid
density ρl. The Weber number is defined by We = 2ρlU2RS/σ,
where σ is the gas-liquid surface tension coefficient. The
size ratio is defined by ∆ = RL/RS , where RL is the radius
of the larger droplet. The Ohnesorge number is defined by
Oh = 16µl(ρlRSσ)−1/2, where µl is the liquid viscosity. The
liquid Reynolds number is defined by Rel = 2ρlURS/µl

= 16
√

2We/Oh. The density ratio, ρg/ρl, and the viscosity
ratio, µg/µl, are two or three orders of magnitude smaller than
unity, and therefore, their effects on the droplet deformation
and viscous dissipation can be neglected as confirmed by many
previous studies.15,16,39,40

A cylindrical coordinate (r, z) is established so that the
connection of the mass center for the droplets forms the radial
direction, r, and the axial direction, z, is perpendicular to it, as
shown in Fig. 1. The velocity component in the radial and axial
directions is u and w, respectively. The axisymmetric domain
of 16RL in length and 3RL in radius is discretized by a uniform,
orthogonal staggered mesh. Slip velocity boundary conditions
are specified to all the boundaries except the axis, where the
axisymmetric boundary condition is specified.

In the present simulation, the larger droplet was set as
being initially stationary, while the smaller droplet was set to
be with an initial velocity (i.e., the relative velocity) corre-
sponding to a given collision Weber number. According to the
experiments that were used to validate the present simulation
in Subsections II B and II C, water or n-tetradecane droplets
of O(102) µm were used, and the relative velocity was about

FIG. 1. Axisymmetric computational domain, uniform structured grids, and
boundary conditions. A coarse mesh of 8 × 19 is shown for schematic.

O(1) m/s. It should be noted that the velocity of the center of
mass of the binary system has been subtracted from the result
analysis.

B. Grid-dependence analysis

For the present grid-dependence analysis, five grids were
generated by specifying different grid nodes in the r-direction
(N r) and the z-direction (N z), with the total number of nodes
being N r × N z. We considered a representative case of equal-
size droplet bouncing at We = 2.3 and Oh = 0.594 and examined
the grid-dependence of droplet deformation and droplet kinetic
energy on the grid resolution.

Figure 2(a) shows the evolution of simulated droplet
deformation and Fig. 2(b) shows that of the simulated droplet
kinetic energy for five different meshes from the coarsest one,
66 × 121, to the finest one, 88 × 968. In terms of droplet
deformation for qualitative comparison, all the meshes pro-
duce almost identical results during the entire collision process
except the coarsest grid of 66 × 121, which causes slight dis-
crepancy from the others. In terms of droplet kinetic energy for
quantitative comparison, all the meshes again produce almost
the same results throughout most of the collision process
before T = 1.4, when the droplets have started bouncing back.
Except the coarsest grid of 66 × 121, which moderately under-
estimates the droplet kinetic energy after T = 1.4, the other
predictions differ from each other by less than 15%, and the
grid-dependence is substantially decreased for the grids finer
than 88 × 242. Recognizing that the finest mesh of 88 × 968
demands significantly longer computation time than the oth-
ers; the present study adopted the mesh of 88 × 484 to balance
computation load and accuracy. A typical run with the grid of
88 × 484 for T = 2.0 takes about half an hour on an Intel Xeon
E5 2692 central processing unit (CPU).

FIG. 2. Grid-dependence of (a) droplet deformation and (b) droplet kinetic
energy (KE) for droplet bouncing at ∆ = 1.0, We = 2.3, and Oh = 0.594.
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Furthermore, it has been recognized that the front tracking
method adopted in the present study is not sensitive to the
grid size41 because the interface is represented by massless
Lagrangian points without shape or size and therefore does not
require extremely refined mesh. This is one of the advantages
of the front tracking method compared with those resolution-
demanding VOF (volume-of-fluid) and level-set methods.

C. Experimental validation

To validate the present simulation, we adopted the exper-
imental results of Pan et al.16 on head-on collisions of n-
tetradecane droplets. In their paper, high-quality time-resolved
shadowgraph images are available. It is noted that the ear-
lier experimental results of Jiang et al.5 and Qian and Law6

have been extensively used for validating interface-capturing
numerical methods, but their relatively low spatial resolutions
alleviate the difficulty of achieving good agreement between
the simulation and the experiment. The validation against
the experimental results of Pan et al.16 is significantly more
challenging because of the great details about the droplet
deformation to be captured.

It is noted that the bouncing regime (II) is located
between two coalescence regimes (I) and (III) in a We-B
nomogram. For convenience, the collisions near the transition
between regimes (I) and (II) are referred to as “soft” colli-
sions with moderate droplet deformation and those near the
transition between regimes (II) and (III) as “hard” collisions
with substantial droplet deformation.16 Consequently, both
“soft” and “hard” collisions were considered in the present
validation.

Figure 3(a) compares the experimental and simulated
evolution of droplet deformation for the “soft” bouncing of
equal-size n-tetradecane droplets at We = 2.3 and Oh = 0.594.
The natural oscillation42 of the smaller droplet, defined by
τ = π(2ρlR3

s/σ)1/2/4, was often used as a characteristic
time in droplet-related studies and therefore is also given as
a reference time scale in the present simulation. The charac-
teristic time introduced in the non-dimensionalization of the
governing equations is related to the natural oscillation time
by Ds/U = 4π−1We−1/2τ. Consequently, the nondimensional
time is T = 2Rs/Ut, where t is real time.

To facilitate the quantitative comparison, the simulated
droplet contours were selected at the same dimensional time
instants when the experimental images are available. Further-
more, the simulated droplet contours are superimposed on the
experimental images so that any discrepancies between them
are manifest. It is seen that the simulation shows very good
agreement with the experiment in terms of droplet deformation
throughout the entire collision process.

Figure 3(b) shows the case of “hard” bouncing at We = 9.3
and Oh = 0.598, where the experimental droplets are slightly
smaller than those in the case shown in Fig. 3(a) and therefore
result in a slightly larger Ohnesorge number. Again, very good
agreement between the experimental and simulation results
can be observed. It is also seen that the droplets undergo sub-
stantially larger deformation at the higher Weber number since
the Ohnesorge numbers are close in the two cases. The two val-
idation cases demonstrate that the present numerical methods

FIG. 3. Time sequences of droplet bouncing from the experimental images16

(shadow graphs) and the present simulation results (thick solid lines) for equal-
size n-tetradecane droplets at atmospheric pressure. (a) ∆ = 1.0, We = 2.3, and
Oh = 0.594; R = 170.6 µm; and T0 = 0.831 ms, (b) ∆ = 1.0, We = 9.3, and
Oh = 0.598; R = 167.6 µm; and T0 = 0.811 ms. Reproduced with permission
from Pan et al., “Experimental and mechanistic description of merging and
bouncing in head-on binary droplet collision,” J. Appl. Phys. 103, 064901
(2008). Copyright 2008 AIP Publishing LLC.

can accurately predict the evolution of droplet deformation
during the bouncing processes.

III. RESULTS AND DISCUSSION
A. Bouncing of unequal-size droplets

Tang et al.8 experimentally studied the head-on collision
of unequal-size n-tetradecane droplets and presented a num-
ber of high-quality experimental shadowgraph images, which
however have not been numerically reproduced. Figure 4
presents the comparison between the experiment images and
the simulated droplet contours at We ≈ 7.3, Oh = 0.775, and
∆ = 1.46, 1.87, and 2.33. An equal-size bouncing case from
the study of Tang et al.8 at We = 8.5 and the same Ohne-
sorge number is also shown in Fig. 4(a). To facilitate the direct
comparison between the experiment and simulation, the sim-
ulated droplet contours were selected at the same dimensional
time instants when the experimental images are available.
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FIG. 4. Time sequences of droplet
bouncing from the experimental
images8 (shadow graphs) and the
present simulation results (thick solid
lines) for equal-size n-tetradecane
droplets at atmospheric pressure. (a)
∆ = 1.0, We = 8.5, (b) ∆ = 1.46, We
= 7.3, (c) ∆ = 1.87, We = 7.3, and
(d) ∆ = 2.33, We = 7.0. Oh = 0.775;
Rs = 100 µm; and T0 = 0.376 ms.
Reproduced with permission from
Tang et al., “Bouncing, coalescence,
and separation in head-on collision of
unequal-size droplets,” Phys. Fluids
24, 022101 (2012). Copyright 2012
AIP Publishing LLC.

Overall, the numerical predictions agree well with experimen-
tal results throughout the entire collision process, again sub-
stantiating the applicability of the present numerical method-
ology in simulating droplet bouncing. The discrepancies
between the simulation and the experiment may be attributed
to the imperfect experimental conditions to be specified as
follows.

For the equal-size droplet bouncing shown in Fig. 4(a),
the simulation precisely predicts the experimental droplet con-
tours except that at t = 0.43 ms, when the experimental image
shows slightly asymmetric droplet deformation as such the
left droplet is almost spherical while the right one is not. The
small experimental error may be caused by the unavoidable
disturbance of ambient gas flow to the droplets as small as
100 µm.

For the unequal-size droplet bouncing at ∆ = 1.46, shown
in Fig. 4(b), the numerical predictions also show very good
agreement with the experimental images not only for the

deformation of the smaller droplet but also for that of the larger
droplet. Small discrepancies can be found at t = 0.50 ms and
t = 1.07 ms, and they are probably caused by the experimental
uncertainties in temporal resolution. It is noted that the tempo-
ral uncertainty of collision images in the experiment of Tang
et al. is approximately 0.1 ms in the early stage of droplet col-
lision and can be as large as 20%–30% in the late stages.8,20

The same explanation can be applied to the droplet bouncing
at ∆ = 1.87, shown in Fig. 4(c), where all the experimental
images are predicted well by the simulation except the one at
t = 0.53.

Relatively large disagreement between the simulation and
experiment is found for the droplet bouncing at ∆ = 2.33,
shown in Fig. 4(d). After the initial interaction, the simulated
droplets show slightly larger deformation than the experimen-
tal ones. Two experimental issues can be considered to cause
the slight disagreement. First, both the experimental images
and the simulated droplet contours show that, with increasing
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∆by fixing RS while increasing RL, the larger droplet requires a
longer time to reach its maximum deformation than the smaller
droplet does. The prolonged collision process may cause larger
experimental uncertainties in time as discussed above. Sec-
ond, it is increasingly difficult to experimentally realize the
head-on collision of unequal-size droplets with increasing ∆
because the droplets can be easily off-center in the direction
perpendicular to the image plane.

The above discussions about the imperfections of the
experiments do not rule out the possible computational errors.
For example, the numerical errors associated with solving the
governing equation by using the 2nd-order finite difference
method may also cause errors in the velocity field and then
tracking the Lagrangian droplet interface. The large liquid-
gas density ratio43 and the extremely thin gas film44 between
two colliding droplets are other possible causes for numer-
ical uncertainty and require more sophisticated numerical
schemes.45

B. Boundary-layer-like droplet internal flow

The significance of viscous dissipation in affecting droplet
collision outcomes has been recognized by previous stud-
ies.5,6,8,10,15 Specifically, the rapid droplet deformation in the
early stage of droplet collision induces a strong droplet internal
flow and hence high viscous dissipation rates. The accumu-
lated viscous dissipation reduces the effective droplet kinetic
energy for droplet coalescence and therefore promotes droplet
bouncing.15

Inspired by von Kármán’s classical theory on rotating-
disk flow, Zhang and Law15 proposed an analytically tractable
model for the droplet internal flow induced by the approxi-
mately flattened, outwardly expanding droplet interfaces. The
velocity components for the axisymmetric flow are given by

u =
1
2
νlη

2re−ηz, w = −νlη(1 − e−ηz), (5)

where η = 1.503(κ/νl)1/2, κ is the strain rate, and νl = µl/ρl

the kinematic viscosity of the liquid. In the early stage of
droplet collision, the rapid droplet deformation results in large
κ and therefore large η. Consequently, the flow resembles a

boundary-layer-like one, and 1/η << R represents the char-
acteristic length of the boundary layer, beyond which the
viscous dissipation can be neglected. Although Eq. (5) has
been found to yield reasonable estimations to the viscous dis-
sipation within the droplet, it has not been explicitly validated
by either experiment or simulation. The numerical simulation
of Pan et al.16 on the head-on collision of equal-size droplets
shows that the velocity gradient near the colliding interface
is much larger than that inside the droplet, but no details
about its physical implications were given. In the present
study, the instantaneous, local viscous dissipation rate is
calculated by46

Φ = µ


2

(
∂u
∂r

)2

+ 2
(u

r

)2
+ 2

(
∂w
∂z

)2
+ µ(

∂u
∂z

+
∂w
∂r

)2

−
2
3
µ

[
1
r
∂ (ru)
∂r

+
∂w
∂z

]2

, (6)

where the last item vanishes for incompressible flows. In the
following discussion, the non-dimensionalΦ is denoted by the
viscous dissipation rate (VDR) for short.

We compared the numerical results and theoretical esti-
mations of Zhang et al.15 for the streamlines and the VDR
contours at selected times in the early stage for a hard colli-
sion at We = 7.3 and Oh = 0.775, as shown in Fig. 5. Several
observations can be made from the comparison as follows.
First, regardless of some discrepancies to be discussed, the
theoretical estimation qualitatively agrees with the simulation
in terms of the VDR distribution and the instantaneous stream-
lines. Second, notable viscous dissipation is concentrated in a
very thin layer near the colliding interface, where large strain
rates can be found, as clearly shown in the amplified VDR
contours in the layer. Third, the numerical VDR distribution is
not uniform at T = 0.09 as it slightly increases from the inter-
face center to the interface rim, where the flow has higher local
strain rates. This is however not predicted by the theoretical
estimation because the theory idealizes the outwardly expand-
ing interface as a sufficiently large one and hence ignores the
boundary effect around the interface rim. Finally, the colliding
interfaces slowly approach to each other after the early stage,

FIG. 5. Viscous dissipation rate (VDR)
contours and instantaneous streamlines
from the present simulation results (on
the left half) and the theoretical analysis
of Zhang and Law15 (on the right half)
for the case of “hard” droplet bouncing
at ∆ = 1.0, We = 7.3, and Oh = 0.775.
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while the droplets continue deforming under their inertia and
the high VDR area moves from the vicinity of the colliding
interfaces to the droplet interiors.

To further substantiate the boundary-layer-like droplet
internal flow, we simulated and showed the case of soft col-
lision at We = 2.3 and Oh = 0.775 in Fig. 6. It is seen that,
although the droplet deformation for the soft collision is less
intense compared with that for the hard collision, the droplet
internal flow induced by the outwardly expanding interfaces
still shows the boundary-layer characteristics with the high
local strain-rates and hence the high VDRs being concentrated
around the colliding interfaces. It is noted that the boundary
effect around the interface rim is insignificant for the soft col-
lision because the droplet deformation is small at the small
Weber number.

C. Viscous dissipation in bouncing droplets of unequal
sizes

The experiment of Tang et al.8 has shown that the size
ratio slightly affects the transition Weber number from bounc-
ing (Regime II) to coalescence (Regime III). Figure 7 shows
the evolution of various droplet energies during the hard colli-
sions at We = 7.3, Oh = 0.775, and various ∆, all of which result
in droplet bouncing. The unequal-size cases (b)–(d) in Fig. 7
correspond to the cases (b)–(d) in Fig. 4, and the equal-size
case (a) at the same We and Oh is also shown for comparison.
Although the present FTM does not have to solve the energy
equation, the total energy (TE), consisting of the kinetic energy
(KE), the surface energy (SE), and the dissipation energy (DE),
is well conserved throughout the entire collision process and
for all the considered cases. To facilitate the following dis-
cussion, a bouncing time TB was defined as the instant when
the width of the gas film at the axis is larger than a threshold,
say, hc = 0.05Rs, after the maximum droplet deformation. It is
noted that droplet TB increases slightly with ∆, implying that
the collision behavior of the smaller droplet may dominate the
entire “hard” bouncing process.

The entire droplet deformation can be divided into several
distinct stages. The first stage is characterized by the out-
wardly expanding interfaces that induce a “stagnation-like”

droplet internal motion in each droplet. The droplet interiors
away from the expanding interfaces are nearly undeformed, as
clearly indicated by the almost uniform streamlines. The total
viscous dissipation rate (TVDR), calculated by integrating the
VDR over the droplets, arrives a peak value at the end of the
stage, denoted by T1, and starts to decrease afterwards. It is
noted that the peak TVDR increases with ∆ because of the
enlarged area with high VDRs around the colliding interfaces,
as clearly seen in the VDR contour at time T1.

The second stage is characterized by the significant defor-
mation of the smaller droplet in contrast to the slight deforma-
tion of the larger droplet, where the streamlines remain mostly
uniform. As shown at a representative time T2, the decreased
TVDR is mainly distributed in the area away from the colliding
interfaces, such as in the “shoulders” of both droplets in case
(a) for equal-size collision and in the “shoulder” of the smaller
droplet in cases (b)–(d) for unequal-size collisions. At the end
of the stage, the TVDR contour has a local minimum, exactly
corresponding to the time instant when the equal-size droplets
reach their maximum deformation (i.e., the maximum SE).
The local minimum of the TVDR appears slightly advance the
maximum SE for ∆ = 1.46 but significantly prior to those for
∆ = 1.87 and ∆ = 2.33. This is because the droplets reach their
individual maximum deformation at different time instants and
the total SE is increasingly determined by the deformation of
the larger droplet with increasing ∆.

The third stage is characterized by the significant defor-
mation of the larger droplet and by the bouncing tendency of
the smaller droplet, whose streamlines are directed upward.
The bouncing smaller droplet causes a local maximum of the
TVDR at T3, and the viscous dissipation is concentrated in the
vertex area of the smaller droplet.

The fourth stage is characterized by the bouncing ten-
dency of the larger droplet, which causes another local maxi-
mum of TVDR at T4. It is seen that the streamlines across the
larger droplet are directed downward. Similar local maximum
of the TVDR does not appear in the equal-size case because
the identical droplets start bouncing back at the same time
instant. The final stage is the eventual bouncing of the droplets
after T4.

FIG. 6. Viscous dissipation rate (VDR)
contour and instantaneous streamlines
from the present simulation results (on
the left half) and the theoretical analysis
of Zhang and Law15 (on the right half)
for the case of “soft” droplet bouncing
at ∆ = 1.0, We = 2.3, and Oh = 0.775.
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FIG. 7. Evolution of various energies of the droplets during the “hard” droplet bouncing under atmospheric pressure at We = 7.3, Oh = 0.775 and (a) ∆ = 1.0,
(b) ∆ = 1.46, (c) ∆ = 1.87, and (d) ∆ = 2.33, which correspond to those in Fig. 4. The total kinetic energy (KE), the total dissipation energy (DE), the surface
energy(SE), the total energy (TE), and the total viscous dissipation rate (TVDR) of the droplets, which are normalized by the initial total energy of the droplets.
Local viscous dissipation rate (VDR) contours and instantaneous streamlines are shown at selected times in the right graphs.

Time-dependent DE(T ) is calculated by integrating the
TVDR over the nondimensional time. It is interesting to
observe that DE(TB), which is the accumulated DE at the
bouncing time, first increases then decreases with increasing
∆ and reaches its peak value at about ∆ = 1.87. This can be
understood by recognizing that DE(TB) is linearly proportional
to the energy dissipation fraction fE by fE = 1 − (KE ′/KE)
= DE(TB)/KE. Either the previous empirical formula pro-
posed by O’Rourke, Eq. (2), or the fitting formula to be shown
shortly in Sec. III D implies the possibility of such a non-
monotonicity. The physical reason is that, for unequal-size
droplet collision, the correct measure of the relative impor-
tance of the kinetic energy compared with the surface energy
is We∗cr = Wecr∆

3/[12(1 + ∆3)(1 + ∆2)], which is a nonlinear
function of ∆.12 Moreover, the prominent peak values of the
VDR at T3 and T4 for ∆ = 1.87 and We = 7.3 can be under-
stood by that the strong internal motions are induced by the
droplet deformation at the size ratio and the Weber number,
which also result in the peak value of DE(TB), as we discussed
earlier.

To further investigate the viscous dissipation during
droplet bouncing, we extended the above discussion to the

soft bouncing at We = 2.3. It is noted that the experimental
results reported in Tang et al.8 for the transition from coales-
cence (Regime I) to bouncing (Regime II) also suggest the
tendency of droplet bouncing with increasing ∆ to being less
than 3.0. Because the collision at We = 2.3 and ∆ = 1.0 results
in bouncing, as observed by Pan et al.,16 droplet bouncing at
the same Weber number and larger ∆s are expected to happen.

Figure 8 show the energy budget and VDR contour for
the soft bouncing at We = 2.3, Oh = 0.775, and ∆ = 1.0, 1.46,
1.87, and 2.33. Several observations can be made about the
simulations. First, the total energy is well conserved and the
boundary-layer-like droplet internal flow is also confirmed.
Second, all the droplet deformation stages of hard collision can
be found for their counterparts in the soft collisions although
the latter ones have smaller deformation because of the smaller
Weber number. Third, the local maximum TVDR increases
with ∆, but the increase is far less than that in the hard collision.
Fourth, the droplet bouncing time slightly decreases with ∆,
implying the increasing influence of the surface energy of the
larger droplet at the small Weber number.

An interesting observation can be found in cases (c) and
(d), where the larger droplet starts to bounce off prior to the
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FIG. 8. Evolution of various energies of the droplets during the “soft” droplet bouncing under atmospheric pressure at We = 2.3, Oh = 0.775 and (a) ∆ = 1.0,
(b) ∆ = 1.46, (c) ∆ = 1.87, and (d) ∆ = 2.33. The notations are the same as those used in Fig. 7.

smaller one, as seen at the representative time T3. To under-
stand this, we noted that the surface energy plays a dominant
role in the energy budget of droplet collision at small We and
with increasing ∆. Consequently, in the soft collision cases
with large ∆, the kinetic energy of the larger droplet is relatively
too small to have a significant influence in the collision pro-
cess, and the larger droplet has a smaller deformation and tends
to recover its spherical shape earlier than the smaller droplet.
In addition, the nonmonotonic trend of DE(TB) is insignificant
for the soft collision, where DE(TB) remains almost constant
with increasing ∆.

D. Kinetic energy recovery of bouncing droplets

To make the above results on inelastic droplet bouncing
practically useful for Lagrangian spray simulation, we con-
ducted a comprehensive parametric study on the influence of
We, ∆, and Oh on the kinetic energy recovery factor, 1 � fE , or
more conveniently on the energy dissipation fraction, fE . The
objective of the study is to derive a fitting formula for fE , which
should be physically meaningful and based on the simulation
results.

Figure 9 is used to show that the proposed formula ( fE

� fE,cr)/(We* � Wecr*) correctly includes the effect of the size
ratio and therefore can be used to directly compare the results

for different size ratios. To derive such a fitting formula, we first
recognized that a ∆�weighted Weber number, We*, should be
used to replace the Weber number, We, in the energy analysis,

We∗ =
∆3

12(1 + ∆3)(1 + ∆2)
We. (7)

FIG. 9. Variation of the energy dissipation fraction, fE , with the modified
Weber number, We∗ = We∆3/[12(1 + ∆3)(1 + ∆2)]. Symbols denote the
simulated data and solid lines denote the linear correlations.
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The modified Weber number was first proposed by Rabe
et al.12 to measure the relative importance of the total kinetic
energy of two droplets compared with their total surface
energy. By using the modified Weber number, the results
for different size ratios can be directly compared with each
other.

Inspired by the experimental observation of Jiang et al.5

that the total viscous dissipation is a linear function of the
Ohnesorge number, we proposed the fitting formula as

fE − fE,cr

We∗ −We∗cr
= c1Oh + c2, (8)

where We∗cr = Wecr∆
3/[12(1 + ∆3)(1 + ∆2)] and Wecr is the

critical Weber number between regimes (I) and (II) for head-
on collisions. For tetradecane droplet collision at atmospheric
pressure, Wecr = 2.26 has been experimentally determined.6

Equation (8) reflects the experimental observation that fE

increases with We* because higher We* results in larger droplet
deformation and higher kinetic energy loss due to viscous dis-
sipation. The inclusion of fE ,cr and Wecr* accounts for the
fact the viscous dissipation is nonzero for We* < Wecr*, when
droplet coalescence occurs.

It is seen in Fig. 9 that all the simulated data are
satisfactorily fitted by Eq. (8) with

FIG. 10. (a) Evolution of the representative width, hc, of the gas film between
colliding droplets under atmospheric pressure and at various size ratios and
fixed We = 7.3 and Oh = 0.775 and (b) the nondimensional pressure contours
and velocity vectors for the cases at ∆ = 1.0 and ∆ = 2.33.

fE,cr = 0.14∆ + 0.275Oh + 0.134, c1 = −1.82, c2 = 4.017,

(9)

and R2 = 0.907. The dependence of f E ,cr on ∆ and Oh is
expected because the viscous dissipation during the droplet
collision (coalescence) below the critical Weber number
should also vary with ∆ and Oh; the linearity is the result
of a best fitting. To examine the sensitivity of the formula on
the fitting coefficients, we plotted another two fitting formulas
with c1 = �1.85, c2 = 3.5 and c1 = �1.85, c2 = 4.5. It is seen that
all the simulated data are located in the area enclosed by the
two lines representing the formulas. Because of the paucity of
experimental data, the proposed fitting can be considered as
practical, nevertheless, physically justifiable approximations
for accounting for the energy recovery of bouncing droplets
after inelastic head-on collision.

E. Interface hysteresis for hard and soft bouncing

In their numerical simulation of equal-size droplet col-
lision, Pan et al.16 observed an interesting phenomenon that,
when the colliding interfaces start bouncing back, the pressure
on the gas film side of the interfaces drops so rapidly that the
higher pressure on the droplet sides of the interfaces pushes the
concave (toward the droplets) interface to be convex (toward
the gas film). They also found that the phenomenon occurs

FIG. 11. (a) Evolution of the representative width, hc, of the gas film between
colliding droplets for the “soft” bouncing under atmospheric pressure for var-
ious size ratios and fixed We = 2.3 and Oh = 0.775 and (b) the nondimensional
pressure and velocity vectors at the cases of ∆ = 1.0 and ∆ = 2.33.
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not only in soft bouncing but also in hard bouncing. Similar
observation can be seen in VOF simulation of Li for equal-size
droplet collision.25 In the present study, we call the interest-
ing but inadequately understood post-collision phenomenon
“interface hysteresis,” in which the colliding interfaces of two
bouncing droplets tend to approach each other for a short
period of time when the centers of mass of the droplets have
already started to depart from each other.

Figure 10(a) shows the evolution of the gas film thick-
ness at the axis, hc, at We = 7.3 and various ∆s. For the
case of ∆ = 1, hc decreases rapidly to a minimum value
in the early stage of droplet collision. The minimum hc

decreases with increasing ∆, indicating closer interfaces and
larger droplet deformation. Subsequently, instead of monoton-
ically increasing with time, hc increases to a local maximum,
decreases to a local minimum, and then increases again, man-
ifesting the interface hysteresis. The nondimensional pressure
(P = pRs/2σ) contours and velocity vectors at three repre-
sentative times during the interface hysteresis, such as T1,
T2, and T3, are shown in Fig. 10(b). At T1, the flows in the
droplets direct away from each other and the flow in the gas
film is radially inward, indicating the droplets are bouncing
off from each other. Such an inward gas flow may cause more
rapid pressure drop in the gas film than that in the droplet,
and therefore the droplet interfaces are driven by the pressure
difference to deform toward another other to new shapes (posi-
tions) that satisfy the dynamic boundary condition across the
gas-liquid interfaces. It can be seen clearly that, at T2, the flows
in the droplets direct toward each other and the flow in the gas

film is radially outward, indicating the droplets are approach-
ing to each other. Once the interfaces find their new balanced
shapes and positions, they are dragged to move away from each
other again owing to the bouncing droplet masses, as shown
in T3.

The interface hysteresis, which results from the difference
between the higher pressure within the liquid droplet and the
lower pressure in the gas film, can be observed not only at
∆ = 1.0 but also at ∆ = 1.46 and 1.87, but it is however absent
at ∆= 2.33. To understand this observation, we first noted from
Fig. 10(a) that hc increases more gradually with increasing ∆.
The most slowly increasing hc at ∆ = 2.33 cannot result in
a rapid pressure drop in the gas film and consequently the
interface hysteresis is unlikely to occur.

The tendency of suppressing the interface hysteresis with
increasing ∆ can also be found for soft collisions at We = 2.3,
as shown in Fig. 11. Although, the interface hysteresis can be
observed in all four size ratios, the non-monotonic evolution of
hc that indicates the interface hysteresis becomes less promi-
nent with increasing ∆. It is interesting to see that in Fig. 11(b),
significantly higher pressure differences are induced at
We = 2.3 compared with those at We = 7.3, implying that
the interface hysteresis favors smaller droplet deformation
at smaller Weber numbers. This is because more slight and
symmetric deformation of the colliding droplet promotes the
pressure relaxation of the compressed gas film and therefore
tends to cause the interface hysteresis.

Viscous dissipation can also promote the interface hys-
teresis by reducing the droplet deformation. We compared the

FIG. 12. Influence of the Ohnesorge number, Oh, on the evolution of the gap distance hc at (a) ∆ = 1.0 and We = 7.3, (b) ∆ = 2.33 and We = 7.3, (c) ∆ = 1.0 and
We = 2.3, and (d) ∆ =2.33 and We = 2.3.
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evolution of hc at different size ratios and different Ohnesorge
numbers in Fig. 12, where Oh is varied by changing the liq-
uid viscosity. It is seen that, for equal-size droplet collision
at either We = 7.3 or We = 2.3, shown in Figs. 12(a) and
12(c), respectively, the minimum hc increases with Oh owing
to the increasing viscous dissipation and hence reduced kinetic
energy for droplet deformation; manifest interface hysteresis
can be observed in all the cases in Figs. 12(a) and 12(c). As the
size ratio increases to 2.33, as shown in Figs. 12(b) and 12(d),
the interface hysteresis emerges only at sufficiently large Oh.
Specifically, the interface hysteresis is absent at Oh = 0.387,
0.775, and 1.162 but can be observed at Oh = 2.467 for hard
bouncing; it is absent for all the Oh less than 0.096 for soft
bouncing.

IV. CONCLUDING REMARKS

A numerical study on the head-on collisions of unequal-
size droplets was conducted by using the Front Tracking
method (FTM) and sufficiently validated against the high-
quality, spatially and temporally resolved shadowgraph images
from the experiments of Pan et al.16 and Tang et al.8 The
particular interest of the study is to characterize the energy
dissipation and interface dynamics of the bouncing droplets
upon inelastic head-on collisions.

The first focus of the study is to numerically verify the the-
oretical hypothesis of Zhang and Law15 on the concentration of
high viscous dissipation rate in the vicinity of colliding inter-
faces of two identical droplets and to confirm the applicability
of the hypothesis to unequal-size droplet collision. The results
show that, in the early stage of droplet collision, the droplet
deformation is characterized by the rapid outward expan-
sion of colliding interfaces, which induce boundary-layer-
like viscous flow and therefore effect concentrated viscous
dissipation.

The second focus of the study is to analyze the droplet
deformation and energy conversion during droplet collision. In
general, the entire droplet bouncing process can be divided into
five distinct stages: (I) the early outward expansion of colliding
interfaces that induce a boundary-layer-like droplet internal
motion in each droplet, (II) the substantial deformation of the
smaller droplet, (III) the substantial deformation of the larger
droplet and the simultaneous bouncing tendency of the smaller
droplet, (IV) the bouncing tendency of the larger droplet,
and (V) the eventual bouncing of the droplets. Compared
with equal-size droplet collision, unequal-size droplet colli-
sion results in increased viscous dissipation, which increases
with the size ratio because of the increased area of high strain
rates, especially in the early collision stage (I). At smaller
Weber numbers and larger size ratios, the surface energy of
the larger droplet plays an increasingly important role in the
overall energy budget, resulting the interesting phenomenon
that the stage (IV) occurs prior to the stage (III).

Motivated by improving the existing model for droplet
bouncing in the Lagrangian spray simulation, we conducted
the parametric study on the dependence of the energy dissi-
pation fraction, fE , on various collision parameters such as
We, ∆, and Oh. A practically useful and physically meaning-
ful fitting formula was derived as ( fE − fE,cr)/(We∗ −We∗cr) =

c1Oh + c2, which was found to well correlate with the numeri-
cal results for n-tetradecane droplets. Further validation of the
formula against more experimental data is merited in future
studies.

The last focus of the study is to investigate the inter-
face hysteresis in stage (V) of droplet bouncing, which occurs
when the pressure gradient at the colliding interface reverses
its direction and then recovers back. Specifically, the pressure
gradient directs from the gas film to the liquid droplet when
droplets compress the intervening gas film. During the droplet
bouncing, a rapid pressure drop in the gas film, which favors
smaller droplet deformation to facilitate the back flow of ambi-
ent gas, may reverse the direction of the pressure gradient until
the interfaces deform to new balanced shapes. Furthermore, it
was found that increasing the Ohnesorge number enhances the
interface hysteresis by increasing the viscous dissipation and
hence reducing the droplet deformation. By the same reason,
increasing the Weber number and the size ratio suppresses the
interface hysteresis.
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