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Abstract
We give explicit constructions of quantum dynamical filters which generate
nonclassical states (coherent states, cat states, shaped single and multi-photon states)
of quantum optical fields as inputs to general quantum Markov systems. The filters
will be quantum harmonic oscillators damped by the input fields, and we exploit the
fact that the cascaded filter and system will have a Lindbladian that is naturally
Wick-ordered in the filter modes. In particular the initialization of the modulating filter
will determine the signal state generated.
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1 Introduction
There has been considerable progress in the generation of nonclassical states of light such
as shaped single photons [–], cat states [–], etc., and this has been proposed for several
quantum technologies [–]. Here we propose the use of quantum mechanical modu-
lating filters prepared in nonclassical states which serve to generate nonclassical quantum
noise output from vacuum input, and that may then be used to drive an open quantum
system. The effect, after tracing out the modulator, is equivalent to driving the system by
an input field in a nonclassical state, see Figure .

Historical, the concept of coloring white noises has enjoyed much application in con-
trol engineering, and in particular signal processing. A white noise input, say correspond-
ing to the derivative of a Wiener process B(t), may be converted into a colored process
Y (t) =

∫
h(t – s) dB(s) where h is a causal kernel function. In practice this convolution may

be physically implementable by passing the input through a dynamical system, such as
an electronic circuit, an obtaining Y as output. The resulting output will have a nonflat
spectrum SY (ω) ≡ |H(ω)|, where H(ω) is the Fourier transform of the kernel h, see for
instance []. However, the concept is still useful as a theoretical construct in modelling
systems driven by colored noise, as it allows an extended model with a white noise input.

The idea has been extended to quantum systems, and at its simplest corresponds to
cascading an ancillary system (the filter) in front of the system, a concept going back to
Carmichael, []. A systematic study of quantum coloring filters was initiated in [] by
one of the authors. More recently, finite-level ancillas were proposed to generate multi-
photon states for quantum input processes []. In this setting, the dynamical and filtering
equations took on a matrix form determined by the ancilla space. However, due to the
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Figure 1 System with nonclassical input; a coloring filter (modulator) is used to convert vacuum noise
input into a desired nonclassical input. Tracing out the modulating filter leads to the same master
equation.

choice of couplings (raising and lowering of the ancilla levels) the class of multi-photon
states obtained had a chronological ordering property of the photon one-particle states
which was not the intended form of the multi-photon state. Or alternative here is to use
linear quantum dynamical models as ancilla. We should also mention recent work of Xue
et al. [] who have treated the Belavkin filtering problem for Ornstein-Uhlenbeck noise
input: this input may be readily modelled as output of a linear system such as a cavity
mode driven by white noise quantum input processes.

Notations Denote by Fn the span of all symmetrized vectors of the form f ⊗̂ · · · ⊗̂ fn =

n!
∑

σ fσ () ⊗ · · ·⊗ fσ (n) where f, . . . , fn lie in a one-particle Hilbert space V , and the sum is
over all permutations σ of the n indices. The Boson Fock space over V is then the direct
sum F =

⊕∞
n= Fn, with F spanned by the vacuum vector |vac〉.

The creation, annihilation and conservation operators are then given by ( f̂j indicating
the omission of term fj)

B(g)∗f ⊗̂ · · · ⊗̂ fn =
√

n + g ⊗̂ f ⊗̂ · · · ⊗̂ fn,

B(g)f ⊗̂ · · · ⊗̂ fn =
√
n

n∑

j=

〈g|fj〉f ⊗̂ · · · ⊗̂ f̂j ⊗̂ · · · ⊗̂ fn,

�(T)f ⊗̂ · · · ⊗̂ fn =
n∑

j=

f ⊗̂ · · · ⊗̂ (Tfj) ⊗̂ · · · ⊗̂ fn,

and they map Fn to Fn+, Fn– and Fn respectively.
Given a complete orthonormal basis {e, e, . . .} for V , we obtain a complete orthonormal

basis for F by setting

|n〉 =

√
n!

n!n! · · ·
⊗̂

k

e⊗nk
k ≡

∞∏

k=

√
nk !

B(ek)∗nk |vac〉,
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where n = (n, n, . . .) is a sequence of occupation numbers and n =
∑

k nk . The state |n〉
corresponds to having nk photons in the state ek for each k.

For V = L[,∞), the space of square-integrable functions ξ (t) in t ≥ , we intro-
duce the annihilation process Bt = B(χ[,t]) where χ[,t] is the function equal to unity on
the interval  to t, and zero otherwise. The Itō differential dBt has the action dBt|n〉 =
∑∞

k=
√nk|n, . . . , nk – , . . .〉ek(t) dt, where, for convenience, we may assume an orthonor-

mal basis of continuous test functions ek . For nonorthonormal states we have

dBtf ⊗̂ · · · ⊗̂ fn =
√
n

∑

j

f ⊗̂ · · · ⊗̂ f̂j ⊗̂ · · · ⊗̂ fnfj(t) dt.

For convenience we consider a single quantum input process.
Now fix a quantum mechanical system with Hilbert space h, called the initial space,

then an open system is described by the triple of operators G ∼ (S, L, H) on h - with S
the unitary scattering matrix, L the collapse, or coupling, operator and H the Hamiltonian
- which fixes the open dynamical unitary evolution U(t) on h ⊗ F as the solution to the
quantum stochastic differential equation []

dUt =
{

(S – I) ⊗ d�t + L ⊗ dB∗
t – L∗S ⊗ dBt –

(



L∗L + iH
)

⊗ dt
}

Ut ()

and in the Heisenberg picture we set jt(X) = U∗
t X ⊗ IUt so that

djt(X) = jt(LX) ⊗ d�t + jt(LX) ⊗ dB∗
t

+ jt(LX) ⊗ dBt + jt(LX) ⊗ dt, ()

where we have the Evans-Hudson super-operators []

LX =



L∗[X, L] +


[
L∗, X
]
L – i[X, H],

LX = S∗[X, H], LX =
[
L∗, X
]
S,

LX = S∗XS – X.

The output processes are given by the formula

Bout
t = U∗(t)B(t)U(t), ()

and we have dBout
t = jt(S) dBt + jt(L) dt.

Finally we recall that there is the natural factorization F = F–
t ⊗F+

t of the Fock space into
past and future Fock spaces for each t >  [].

Definition  (from []) An operator on a tensor product h ⊗ h is the ampliation of an
operator X on h if it takes the form X ⊗ I. A quantum stochastic process (X(t))t≥ is
adapted if, for each t > , it is the ampliation of an operator on the past space h ⊗ F–

t to
the full space h ⊗ F.

The unitary evolution process (U(t))t≥ is adapted, as will be the Heisenberg dynamical
process (jt(X))t≥, for each initial choice of operator X. The following formula will be used
extensively.
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Lemma Let (X(t))t≥ be a quantum stochastic integral process of the form

X(t) = X ⊗ IF +
∫ t



[
x(s) ds + x(s) dB∗

s + x(s) dBs + x(s) d�s
]
, ()

where the (xαβ(t))t≥ are adapted processes. Then

d
[
U∗(t)X(t)U(t)

]
= U∗(t)

{[
L(X) + x(t) + L∗x + xL + xL

]
dt

+
[
L(X) + S∗x(t) + S∗xL

]
dB∗

t

+
[
L(X) + x(t)S + L∗xS

]
dBt

+
[
L(X) + S∗x(t)S

]
d�t
}

U(t). ()

The proof is a routine application of the quantum stochastic calculus []. We note that
if we set the (xαβ(t))t≥ equal to zero then we recover the standard Lindblad-Heisenberg
equations of motion for U∗(t)(X ⊗ IF)U(t): that is the noisy dynamics of the system ob-
servable with initial value X. Conversely setting X =  and taking the (xαβ(t))t≥ to be
constants leads to the input-output relation. Equation () therefore contains general in-
formation about evolution of both system observables and field observables.

2 Modulating filter
Our strategy is to employ a modulating filter M to process vacuum input and to feed this
forward to the system. In principle, the modulator and system are run in series as a single
Markov component driven by vacuum input, as in Figure . Tracing out the modulator de-
grees of freedom leads to an effective model which leads to the same statistical model as a
nonvacuum input to the system. We shall show below how to realize different nonclassical
driving fields in this way. In our proposal we consider a linear passive system as modulator:
physically corresponding to modes in a cavity. The choice of (time-dependent) coupling
operators describing the modulator will be important in shaping the output, however, in
this set-up the crucial element determining nonvacuum statistics will be the initial state
φ ∈ hM of the modulator.

We consider our system G ∼ (S, L, H) which is driven by the output of a modulator M ∼
(I, LM, HM) which itself is driven by vacuum noise. The modulator and system in series is
described by the series product [, ] on the joint space hM ⊗ hG

G̃ = G � M ∼ (I ⊗ S, I ⊗ L + LM ⊗ S, I ⊗ H + HM ⊗ I + Im
{

LM ⊗ L∗S
})

. ()

Let us denote by Ũt the joint unitary generated by G̃. This is a unitary adapted process
with initial space h = hM ⊗ hG.

Definition  Let G determine an open quantum system and let 
 ∈ F be a state of the
input field. A modulator M with initial state φ and vacuum input is said to replicate the
open system if we have (with |�〉 = |φ ⊗ ψ ⊗ vac〉)

〈�|Ũ(t)∗
(
IM ⊗ X(t)

)
Ũ(t)|�〉 = 〈ψ ⊗ 
|U(t)∗X(t)U(t)|ψ ⊗ 
〉 ()

for every adapted process (X(t))t≥ on hG ⊗ F and all ψ ∈ h.
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2.1 The cascaded Lindbladian
The total Lindbladian corresponding to G̃ is

L̃(A ⊗ X) = LM(A) ⊗ X +
∑

μ=,

∑

ν=,

[
L∗

M
]μA[LM]ν ⊗LμνX, ()

where LMA = 
 [L∗

M, A]LM + 
 L∗

M[A, LM] – i[A, HM] is the modulator Lindbladian.

2.2 Oscillator mode modulators
Our interest will be in modulators that are linear passive systems. To this end, we begin
with the simplest model of a single Boson mode a (say a cavity mode) as modulator, and
set

HM = ω(t)a∗a, LM = λ(t)a. ()

For simplicity we shall take ω(t) ≡  and λ to be a complex-valued time-dependent damp-
ing parameter.

A key feature of equation () when LM = λ(t)a is that the a and a∗ appear in Wick ordered
form about A. We now exploit this property.

To compute expectations, we introduce the operator

ãt � Ũ∗
t (a ⊗ I)Ũt

and observe that d̃at = –z(t)̃at dt – λ(t)∗ dBt where we have the complex damping z(t) =

 |λ(t)| + iω(t). The solution to this is the operator

ãt = e–ζ (t)a –
∫ t


λ(s)∗eζ (s)–ζ (t) dBs

with ζ (t) =
∫ t

 z(s) ds.
Setting |�〉 = |φ ⊗ ψ ⊗ vac〉, we have

d
dt

〈�|Ũ(t)∗(IM ⊗ X ⊗ IF)Ũ(t)|�〉

=
∑

μ,ν=,

〈�|Ũ(t)∗
([

λ(t)∗a∗]μ[λ(t)a
]ν ⊗LμνX

)
Ũ(t)|�〉

=
∑

μ,ν=,

〈�|
[
λ(t)∗̃a∗

t
]μŨ(t)∗(IM ⊗LμνX)Ũ(t)

[
λ(t)̃at

]ν |�〉

=
∑

μ,ν=,

[
ξ (t)∗
]μ[

ξ (t)
]ν 〈[a]μ�

∣
∣Ũ∗

t (I ⊗LμνX ⊗ I)Ũt
∣
∣[a]ν�

〉
, ()

where

ξ (t) = λ(t)e–ζ (t). ()
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2.3 Generating shaped 1-photon fields
The problem we ideally wish to solve is how to generate a desired pulse shape ξ , and
this means choosing the correct λ. It will be required that ξ be normalized, that is,
∫∞

 |ξ (t)| dt = . Now let us set w(t) = exp{– ∫ t
 |λ(s)| ds}, then

d
dt

w(t) = –
∣
∣λ(t)
∣
∣ exp

{

–
∫ t



∣
∣λ(s)
∣
∣ ds
}

≡ –
∣
∣ξ (t)
∣
∣

and, imposing the correct initial condition w() = , we obtain

w(t) ≡
∫ ∞

t

∣
∣ξ (s)
∣
∣ ds. ()

Again taking ω(t) ≡  for simplicity, we find z(t) ≡ 
 |λ(t)|, real-valued. As we are given

ξ normalized, we see that the appropriate choice for λ is

λ(t) =
√

w(t)
ξ (t), ()

with w given by (). An additional phase term will appear if we have ω(t) nonzero.

2.4 Replicating nonvacuum input
Let G ∼ (S, L, H) and M ∼ (IM,λa,ωa∗a) and let (X(t))t≥ be a quantum stochastic integral
process on hG ⊗ F, as in () then we may generalize () to get

d
dt

〈�|Ũ(t)∗
(
IM ⊗ X(t)

)
Ũ(t)|�〉

= 〈�|Ũ(t)∗IM ⊗ (L(X) + x + L∗x + xL + L∗xL
)
Ũ(t)|�〉

+ ξ ∗〈�|a∗Ũ(t)∗IM ⊗ (L(X) + S∗x + S∗xL
)
Ũ(t)|�〉

+ ξ 〈�|Ũ(t)∗IM ⊗ (L(X) + xS + L∗xS
)
Ũ(t)a|�〉

+ ξ ∗ξ 〈�|a∗Ũ(t)∗IM ⊗ (L(X) + S∗xS
)
Ũ(t)a|�〉. ()

This follows from () where we replace the S and L with the cascaded operators IM ⊗ S
and IM ⊗ L + λa ⊗ S.

For the modulator to replicate the dynamics with nonvacuum state 
, the derivative

d
dt

〈ψ ⊗ 
|U(t)∗X(t)U(t)|ψ ⊗ 
〉

must equal the corresponding expression () for any quantum stochastic integral process
X(t) on the Hilbert space hG ⊗ F. We may use () to show directly that this is computed
from the following expectation

d〈ψ ⊗ 
|U(t)∗X(t)U(t)|ψ ⊗ 
〉
= 〈ψ ⊗ 
|U∗(t)

{[
L(X) + x(t) + L∗x + xL + xL

]
dt

+
[
L(X) + S∗x(t) + S∗xL

]
dB∗

t
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+
[
L(X) + x(t)S + L∗xS

]
dBt

+
[
L(X) + S∗x(t)S

]
d�t
}

U(t)|ψ ⊗ 
〉. ()

The modulator therefore replicates the nonvacuum input model.

2.5 Replicating coherent states
As a simple illustration let us show how we may construct a modulator that replicates a
coherent state |β〉 for the input field, where β(t) is a square integrable function of time
t ≥ . Note that

dBt|β〉 = β(t)|β〉.

We see that the equations () and () have structural similarities, and a first guess for
the initial state of the modulator is another coherent state

φ = |α〉,

where α ∈ C is the intensity of the mode coherent state. In this case aφ = αφ and ()
and () coincide for the choice

ξ (t)α ≡ β(t). ()

We therefore get the following result.

Theorem  The quantum open system G ∼ (S, L, H) driven by input in the continuous-
variable coherent state 
 = |β〉 is replicated by the single mode modulator of the linear
form M ∼ (IM,λa,ωa∗a) with the initial state φ = |α〉 for the modulator and with λ(t) and
ω(t) chosen so that () holds.

3 Replicating multi-photon input
3.1 Fock state input fields
The state of a single mode quantum input field corresponding to n quanta with the same
(normalized) one-particle test function ξ ∈ L[,∞) is

ξ⊗n =
√
n!

B∗(ξ )n|vac〉.

We see that the annihilator acts on such states as

dBtξ
⊗n =

√
nξ (t)ξ⊗n– dt.

One of the consequences of this comes when we try and compute expectations of the form

〈
ψ ⊗ ξ⊗n∣∣x(t) dBt

∣
∣ψ ⊗ ξ⊗n〉

which then equals

√
nξ (t)
〈
ψ ⊗ ξ⊗n∣∣x(t)

∣
∣ψ ⊗ ξ⊗n–〉dt
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which is a matrix element between an n photon state and an n– photon state. This feature
will be typical, and so it is convenient to introduce general matrix elements

Mnl ,nr
t (X) =

〈
ψ ⊗ ξ⊗nl

∣
∣U(t)∗X(t)U(t)

∣
∣ψ ⊗ ξ⊗nr

〉
,

whenever X(t) is a quantum stochastic integral and nl, nr ≥ . We set Mnl ,nr
t (X) ≡  if we

ever have nl or nr negative.
Taking X to have the form (), we see that () leads to

d
dt

Mnl ,nr
t (X) = Mnl ,nr

t
(
L(X) + x(t) + L∗x + xL + xL

)

+
√

nξ ∗(t)Mnl–,nr
t

(
L(X) + S∗x(t) + S∗xL

)

+
√

nξ (t)Mnl ,nr–
t

(
L(X) + x(t)S + L∗xS

)

+ n
∣
∣ξ (t)
∣
∣Mnl–,nr–

t
(
L(X) + S∗x(t)S

)
. ()

We note the hierarchical nature of these equations with the rate of change of Mnl ,nr
t (X)

depending on lower order matrix elements.
Now let us introduce the single mode modulator, and let |n〉 be the number states for

the oscillator mode (n = , , , . . .). We may similarly introduce the matrix elements

M̃nl ,nr
t (X) = 〈nl ⊗ ψ ⊗ vac|Ũ(t)∗

(
IM ⊗ X(t)

)
U(t)|nr ⊗ ψ ⊗ vac〉,

with nl, nr ≥ , and M̃nl ,nr
t (X) =  if either index is negative.

From (), we see that

d
dt

M̃nl ,nr
t (X) = M̃nl ,nr

t
(
L(X) + x(t) + L∗x + xL + xL

)

+
√

nξ ∗(t)M̃nl–,nr
t

(
L(X) + S∗x(t) + S∗xL

)

+
√

nξ (t)M̃nl ,nr–
t

(
L(X) + x(t)S + L∗xS

)

+ n
∣
∣ξ (t)
∣
∣M̃nl–,nr–

t
(
L(X) + S∗x(t)S

)
. ()

It follows that the systems of equations () and () are identical, and so we identify

Mnl ,nr
t (X) ≡ M̃nl ,nr

t (X)

for all quantum stochastic integral process X(t) on the joint system and field. We summa-
rize the result as follows.

Theorem  The quantum open system G ∼ (S, L, H) driven by input in the nonclassi-
cal state 
 = ξ⊗n is replicated by the single mode modulator of the linear form M ∼
(IM,λ(t)a,ω(t)a∗a) with the initial state φ = |n〉 for the modulator and with λ(t) and ω(t)
chosen so that () holds.
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3.2 General multi-photon input fields
To generate multi-photon input field state (assumed normalized)


(n) =
N⊗̂

k=

ξ
⊗nk
k , ()

where now the ξk are distinct, we need a multimode cavity with several independent pho-
ton modes a, . . . , aN . The coupling operator may now be extended to

LM =
∑

k

λk(t)ak .

It is convenient to introduce the vectors

ξ (t) =
[
ξ(t), . . . , ξN (t)

]
,

λ(t) =
[
λ(t), . . . ,λN (t)

]
,

a =

⎡

⎢
⎢
⎣

a
...

aN

⎤

⎥
⎥
⎦

so that LM ≡ λ(t)a. We consider the vector of time-evolved modes ãt = Ũ∗
t aŨt and from

the Itō rules, we find

dãt = A(t)ãt dt = λ(t)† dBt ,

where A(t) in the time-dependent N × N matrix with entries

Ajk(t) = –


λ∗

j (t)λk(t) – iωkδjk .

The solution is

ãt = �(t)a – �(t)
∫ t


�(s)–λ(s)† dBs,

which is given in terms of the transition matrix �(t) satisfying

d
dt

�(t) = A(t)�(t), �() = IN .

We then obtain the following vectorial generalization of ()

d
dt

〈�|Ũ(t)∗
(
IM ⊗ X(t)

)
Ũ(t)|�〉

= 〈�|Ũ(t)∗IM ⊗ (L(X) + x + L∗x + xL + L∗xL
)
Ũ(t)|�〉

+ 〈�|a∗�(t)†λ(t)∗Ũ(t)∗IM ⊗ (L(X) + S∗x + S∗xL
)
Ũ(t)|�〉

+ 〈�|Ũ(t)∗IM ⊗ (L(X) + xS + L∗xS
)
Ũ(t)λ(t)�(t)a|�〉

+ 〈�|a∗�(t)†λ(t)∗Ũ(t)∗IM ⊗ (L(X) + S∗xS
)
Ũ(t)λ(t)�(t)a|�〉. ()
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Evidently, to get a prescribed set of pulses ξ (t), we need to choose λ(t) and the ωk(t)’s
such that

ξ (t) = λ(t)�(t). ()

In general this is a difficult problem to solve, but for weak pulses the Magnus expansion
[] may offer a way to construct approximations. The set of functions ξk that may be
constructed in this way is expected to be fully general given the freedom of choosing the
λk and ωk , [].

We now prepare the modulator in the initial state

φ = |n〉 = |n, . . . , nN 〉, ()

where we have nk quanta in the kth cavity mode.
This time we consider the family of expectations

M̃nl ,nr
t (X) = 〈nl ⊗ ψ ⊗ vac|Ũ∗

t
(
IM ⊗ X(t)

)
Ũt|nr ⊗ ψ ⊗ vac〉,

for occupation sequences nl = (nk,l) and nr = (nk,r).

d
dt

M̃nl ,nr
t (X)

= M̃nl ,nr
t
(
L(X) + x(t) + L∗x + xL + xL

)

+
N∑

k=

√
nk,lξk(t)∗M̃nl–δk ,nr

t
(
L(X) + S∗x(t) + S∗xL

)

+
N∑

j=

√nj,rξj(t)M̃nl ,nr–δj
t

(
L(X) + x(t)S + L∗xS

)

+
N∑

k=

N∑

j=

√
nk,lξk(t)∗√nj,rξj(t)M̃nl–δk ,nr–δj

t
(
L(X) + S∗x(t)S

)
, ()

where now δk is the occupation sequence where nk =  and all other terms are zero. We
add sequences together in the obvious way so that n – μδk equals n if μ = , and (n, . . . ,
nk – , . . . , nN ) if μ = .

By similar arguments to before, we see that system of expectations

Mnl ,nr
t (X) =

〈
ψ ⊗ 
(nl)

∣
∣U∗

t X(t)Ut
∣
∣ψ ⊗ 
(nr)

〉
,

generate the same system of as the M̃nl ,nr
t (X) and so may be equated. We have therefore

established that

Theorem  The quantum open system G ∼ (S, L, H) driven by input in the nonclassical
state 
(n) =

⊗̂N
k=ξ

⊗nk
k is replicated by the N mode modulator of the linear form M ∼

(IM,
∑

k λk(t)a,
∑

k ωk(t)a∗
kak) with the initial state φ = |n〉 for the modulator and with

λk(t) and ωk(t) chosen so that () holds.
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4 Superposition principles
We now make a basic observation.

Principle of Superimposed models For a fixed modulator M - that is, a quantum
open system with definite (IM, LM, HM) - suppose that initial states |φA

 〉, |φB
 〉, . . . replicate

|
A〉, |
B〉, . . . respectively and are compatible in so far as

〈
φA

 ⊗ ψ ⊗ vac
∣
∣Ũ(t)∗

(
IM ⊗ X(t)

)
Ũ(t)
∣
∣φB

 ⊗ ψ ⊗ vac
〉

=
〈
ψ ⊗ 
A∣∣U(t)∗X(t)U(t)

∣
∣ψ ⊗ 
B〉 ()

for each pair A, B. Then if the modulator is prepared in a normalized superposition |φ〉 =
cA|φA

 〉 + cB|φB
 〉 + · · · replicates the nonclassical state |
〉 = cA|
A〉 + cB|
B〉 + · · · .

This follows automatically from the bra-ket structure of the matrix elements.

4.1 Replicating cat states
We would like to generate a superposition of coherent states (cat states [–])

� =
∑

k

γk|βk〉,

with
∑

k,l γ
∗
k γle〈βk ,βl〉 =  for normalization. It is easy to see that pairs of coherent states are

compatible in the sense of the superposition principle.
We know that the modulator (with fixed structure LM = λ(t)a, HM = ω(t)a∗a) prepared

in coherent state |αk〉 will replicate the open system with coherent state |βk〉 for the

βk(t) = ξ (t)αk . ()

The principle of superposition therefore implies that the initial state
∑

k γk|βk〉 for the
modulator will then replicate the cat state � =

∑
k γk|βk〉. Note that the βk that may be

generated this way must take the form (). This is somewhat restrictive since we cannot
obtain independent pulse, only pulse which differ by the scale factors αk . However this
already gives a wide class of cat states for practical purposes.

5 Conclusion
We have shown that the concept of a modulating filter ‘coloring’ a quantum vacuum noise
input process may be usefully extended to the quantum domain. The technique in prin-
ciple offers a way to generate nonclassical states, however, in a real sense we have now
transferred the problem to one of preparing the ancillary oscillators in the appropriate
nonclassical state and engineering the specific time dependent couplings, both of which
remain difficult problems, but likely to be simpler than directly trying to produce designed
nonclassical field states themselves. However, the power of this result is in modeling sys-
tems driven by nonclassical states which may be difficult to analyze directly using quan-
tum stochastic techniques. Instead one replaces the problem with a cascaded model of
modulator and system, with the modulator processing vacuum noise and feeding it into
the system. We have shown that certain modulator models replicate the original system
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Figure 2 Continuous measurement of (A) the output of a system driven by nonclassical noise, and
(B) and equivalent model from a modulated vacuum noise.

and noise model in a strong sense: that is we show that general quantum stochastic in-
tegral processes on the system plus noise space have identical averages in the original
model with nonclassical input and in the modulated model with vacuum input. This in
particular establishes equivalence of the system dynamics (effectively the same Ehrenfest
equations for system observables) as well as equivalence of the outputs. The latter point
is of major importance with regards to quantum trajectories (quantum filtering theory)
since whenever we perform continuous measurements (e.g., quadrature homodyning, or
photon counting), [–] on the output we have that the measurement processes of the
original model and the modulate model are statistically identical. See Figure .

As a conceptual tool, this opens up the prospect of extending known results on quantum
trajectories for vacuum inputs to models with nonclassical inputs. One such feature which
we will address in a future publication is the issue of filter convergence, that is, when does
the estimated conditional density operator converge to the true conditional density oper-
ator when one starts with the wrong initial state ψ for the system - this has been treated
for vacuum inputs [], but is largely unknown in the case of nonclassical inputs.
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