Modelling C₁-C₄ alkyl nitrate photochemistry and their impacts on O₃
 production in urban and suburban environments of Hong Kong

X.P. Lyu¹, H. Guo * ¹, N. Wang², I.J. Simpson³, H.R. Cheng ** ⁴, L.W. Zeng¹, S. Meinardi³,
and D.R. Blake³

¹ Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University,
Hong Kong

⁷ ² Guangdong Provincial Key Laboratory of Regional Numerical Weather Prediction, Institute of

8 Tropical and Marine Meteorology, Guangzhou, China

³ Department of Chemistry, University of California at Irvine, Irvine, CA, USA

⁴ Department of Environmental Engineering, Wuhan University, Wuhan, China

11 * First corresponding author: <u>ceguohai@polyu.edu.hk</u>

12 ** Second corresponding author: <u>chenghr@whu.edu.cn</u>

13

14 Keywords: organic nitrate, odd nitrogen, ozone, photochemical smog, MCM

Abstract: As intermediate products of photochemical reactions, alkyl nitrates (RONO₂) regulate 15 ozone (O_3) formation. In this study, a photochemical box model (PBM) incorporating master 16 chemical mechanism (MCM) well reproduced the observed RONO₂ at an urban and a 17 18 mountainous site, with index of agreement (IOA) all higher than 0.65. Although levels of the parent hydrocarbons and nitric oxide (NO) were significantly higher at the urban site than the 19 mountainous site, the production of C₂-C₃ RONO₂ was comparable to or even lower than at the 20 mountainous site, due to the lower photochemical reactivity in the urban environment. Based on 21 22 the profiles of air pollutants at the mountainous site, the formation of C_2 - C_4 RONO₂ was limited by NO_x (VOCs) when TVOCs/NO_x was higher (lower) than 3.3/1 ppbv/ppbv. However, the 23 24 threshold of this ratio increased to 8.1/1 ppbv/ppbv at the urban site. For the formation of C₁ RONO₂, the NO_x limited regime extended the ratio of TVOCs/NO_x to as low as 1.8/1 and 3.0/125 ppbv/ppbv at the mountainous and urban site, respectively. RONO₂ formation led to a decrease 26 of simulated O₃, with reduction efficiencies (O₃ reduction/RONO₂ production) of 4-5 pptv/pptv 27

This is the peer reviewed version of the following article: Lyu, X. P., Guo, H., Wang, N., Simpson, I. J., Cheng, H. R., Zeng, L. W., ... Blake, D. R. (2017). Modeling C1–C4 alkyl nitrate photochemistry and their impacts on O3 production in urban and suburban environments of Hong Kong. Journal of Geophysical Research: Atmospheres, 122, 10,539–10,556, which has been published in final form at https://doi.org/10.1002/2017JD027315. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley's version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.

at the mountainous site, and 3-4 pptv/pptv at the urban site. On the other hand, the variations of simulated O_3 induced by RONO₂ degradation depended upon the regimes controlling O_3 formation and the relative abundances of TVOCs and NO_x.

31 **1 Introduction**

32 Alkyl nitrates (RONO₂) are a group of organic nitrates in which the nitrogen is stabilized in the molecular structure of R-O-NO₂. As an important constituent of reactive odd nitrogen (NO_v) , 33 34 particularly in areas far from urban sources (Roberts and Fajer, 1989; Buhr et al., 1990), RONO₂ participate in nitrogen cycling in their role as a temporary nitrogen reservoir due to their long 35 atmospheric lifetimes (Clemitshaw et al., 1997). Generally, oceanic emission (Atlas et al., 1993), 36 37 photochemical formation (Bertman et al., 1995; Arey et al., 2001), and to a lesser extent biomass 38 burning (Simpson et al., 2002) are the main sources of RONO₂. The photochemically formed RONO₂ are actually byproducts in the process of O₃ formation (Reactions 2 and 3), and are 39 formed through the reactions between volatile organic compounds (VOCs) and nitrogen oxides 40 (NO_x) (Reaction 1 and 4). These combined formation pathways, as a result, generally lead to the 41 tight association between RONO₂ and O₃ (Muthuramu et al., 1994; Rosen et al., 2004). 42

Many formation mechanisms have been proposed to explain observed RONO₂ levels in urban 43 settings, including RO₂ reacting with NO (Darnall et al., 1976; Carter and Atkinson, 1989) and 44 RO reacting with NO₂ (Atkinson et al., 1982a), which well documented and play dominant roles 45 46 in RONO₂ formation, particularly in daytime hours. For the reactions of RO_2 +NO, two branches exist, leading to the formation of $RONO_2$ (Reaction 1) and O_3 (Reaction 2), respectively 47 (Atkinson, 1990). The branching ratio (α) is a quantitative measure of RONO₂ yield from RO₂ 48 reacting with NO. It is defined as the ratio of $k_1/(k_1+k_2)$ (Atkinson, 1990), where k is the reaction 49 50 rate constant. Generally, the branching ratio increases with increasing pressure and decreasing temperature (Atkinson et al., 1987). In addition, more complicated molecular structures of RO₂ 51 52 tend to have higher branching ratios. For example, the branching ratios for *n*-alkanes increase 53 from $\leq 1\%$ for ethane to $\sim 33\%$ for *n*-octane, with an upper limit of $\sim 35\%$ for larger *n*-alkanes (Atkinson et al., 1982a). This theory was repeatedly confirmed by kinetic calculations and model 54 simulations (Bertman et al., 1995; Simpson et al., 2006). In combination with laboratory studies, 55 56 Carter and Atkinson (1985) put forward Formulas 1-3 for calculating branching ratios under the atmospheric conditions in troposphere. However, in urban settings the smaller-chain RONO₂, 57

particularly methyl (CH₃ONO₂) and ethyl nitrate (C₂H₅ONO₂), often have mixing ratios higher 58 than what can be explained by the reaction of RO₂ with NO (Flocke et al., 1998a). Depending on 59 the location, direct marine emissions could be one reason (Atlas et al., 1993). In addition, the 60 exact branching ratios for these RONO₂ remain uncertain. For example, Lightfoot et al. (1992) 61 proposed an upper limit of 0.005 for CH₃ONO₂ in the lower troposphere. Through RONO₂ 62 observations in the lower stratosphere, Flocke et al. (1998b) found a much lower CH₃ONO₂ 63 branching ratio of $5-10 \times 10^{-5}$, meaning it could only reach a maximum of 0.0003 even under 64 surface conditions, when applying the adjusted factor of 3 to the branching ratio in lower 65 stratosphere. Simpson et al. (2002) accepted the upper limit of 0.0003, and indicated that RO 66 reacting with NO₂ was the main pathway of CH₃ONO₂ in highly polluted environments. 67 However, according to the formulas proposed by Carter and Atkinson (1985), the branching ratio 68 for CH₃ONO₂ was approximately 0.001, which was also adopted by the master chemical 69 mechanism (MCM, accessible at http://mcm.leeds.ac.uk/MCM/). Overall, the branching ratios 70 for RONO₂ formation remain to be further examined. 71

- 72 $RO_2 + NO \rightarrow RONO_2$ (Reaction 1, k₁)
- 73 $RO_2 + NO \rightarrow RO + NO_2$ (Reaction 2, k₂)
- 74 $NO_2 + O_2 \rightarrow NO + O_3$ (Reaction 3, k₃)
- 75 $RO + NO_2 \rightarrow RONO_2$ (Reaction 4, k₄)

76
$$\alpha = \left[\frac{Y_0^{300}[M]\left(\frac{T}{300}\right)^{-m_0}}{1 + \frac{Y_0^{300}[M]\left(\frac{T}{300}\right)^{-m_0}}{Y_\infty^{300}\left(\frac{T}{300}\right)^{-m_0}}}\right]F^z \quad \text{(Formula 1)}$$

77
$$z = \{1 + [\log \frac{Y_0^{300}[M](\frac{T}{300})^{-m_0}}{Y_\infty^{300}(\frac{T}{300})^{-m_\infty}}\}]^{-1}$$
 (Formula 2)

78 $Y_0^{300} = \beta e^{\gamma n}$ (Formula 3)

where T is the temperature (K); M represents the number of molecules (molecules/cm³) and n is the carbon number in RO₂. The values of the constants β (1.95 × 10⁻²² cm³/molecule), γ (0.947), Y_{∞}^{300} (0.435), m_0 (2.99), m_{∞} (4.69) and *F* (0.556) are all from Carter and Atkinson (1985). On the basis of the calculated results, the branching ratios for the primary and tertiary RO₂ radicals are calibrated by a factor of 0.4 and 0.25, respectively. For C_1 RONO₂, another adjusted factor of 3 should be further applied to formula 1.

It is well known that O_3 formation is closely related to the relative abundances of VOCs and NO_x , 85 mainly due to the dual role of NO_x in O_3 production (*i.e.*, fueling and suppressing O_3 formation 86 87 in low and high NO_x regimes, respectively) (Sillman and He, 2002; Shao et al., 2009). As byproducts of O₃ formation, the production of RONO₂ is also expected to be influenced by the 88 abundances of VOCs and NO_x. However, there is no evidence that NO_x directly reacts with 89 RONO₂ in the same way as the titration of NO to O₃. Instead, NO reacts with the hydroperoxyl 90 radical (HO₂) and RO₂, and NO₂ combines with hydroxyl radical (OH), to regulate the 91 92 equilibrium budgets of oxidative radicals including RO₂ and RO (Thornton et al., 2002). As such, the RONO₂ production will be influenced by NO_x. It was found that RONO₂ levels increased 93 with increasing NO_x in London (Aruffo et al., 2014), but decreased with increasing NO_x in 94 Houston (Rosen et al., 2004), suggesting a different balance in HO_x -NO_x reaction cycles. 95 96 Therefore, the relationship between RONO₂ production and NO_x needs further study.

97 Due to the associated formation pathways of $RONO_2$ and O_3 , good correlations are often found between single or total RONO₂ (Σ ANs) and O₃ or O_x (O_x=O₃+NO₂) (Rosen et al., 2004; Perring 98 et al., 2010). A roughly quantitative relationship can be established between O_x and $\sum ANs$, *i.e.*, 99 $O_x/\Sigma ANs=2(1-\alpha)/\alpha$ (Day et al., 2003), where α represents the overall branching ratio for the total 100 RONO₂. More importantly, RONO₂ photochemistry, including their formation and degradation 101 102 (photolysis and OH initiated oxidation) also influences O_3 formation. Based on correlations between O_x and ΣANs , Aruffo et al. (2014) stated that RONO₂ played important roles in O_3 103 formation in both urban and suburban London. Perring et al. (2010) indicated that the peak O₃ 104 production in the near-field of Mexico City (source region of RONO₂) was reduced by as much 105 106 as 40% due to the formation of total RONO₂. Farmer et al. (2011) even claimed that VOC 107 reductions might cause an O_3 increment because the branching ratios of RONO₂ formation decreased when fuels containing low boiling point VOCs products were used. This view was 108 109 also confirmed by Perring et al. (2013), in which a 20% reduction of VOCs led to an 8% O_3 increment due to the unexpected reduction of the average branching ratio for total RONO2 from 110 111 8% to 4%. Overall, in urban areas RONO₂ serve as a reservoir for nitrogen and reactive radicals,

- releasing them in remote areas and fueling O_3 formation. Therefore, RONO₂ photochemistry regulates O_3 formation in both source and receptor regions.
- Despite numerous studies, RONO₂ modelling is still rather difficult (Williams et al., 2014; Khan 114 et al., 2015), resulting in an insufficient understanding of RONO₂ formation mechanisms and 115 116 impacts on O₃ production. Furthermore, previous studies are generally confined to specific RONO₂ species, like CH₃ONO₂ in marine outflow (Flocke et al., 1998b; Moore and Blough, 117 2002) and isoprene nitrates in the forest areas (Chen et al., 1998; Giacopelli et al., 2005). To fill 118 in these research gaps, an observation-based model was constructed to explicitly simulate C_1 - C_4 119 120 RONO₂ in Hong Kong and address the following terms: (1) the most appropriate branching ratios for the formation of C1-C4 RONO2 in Hong Kong; (2) the pathway contributions of 121 RO_2 +NO and RO_2 to $RONO_2$; (3) the relationship between $RONO_2$ production and NO_x ; (4) 122 the impacts of RONO₂ formation and degradation on O₃ production; and (5) the importance of 123 RONO₂ formed from parent hydrocarbons with high O₃ formation potentials. 124

125 **2. Methodology**

126 **2.1 Site description and sampling**

From September 6 to November 29, 2010, an intensive sampling campaign was carried out 127 128 concurrently at a mountainous site and an urban site in Hong Kong (Figure 1). The mountainous site (22.41 N°, 114.12 E°, 640 m a.g.l.) was located on the mountainside of Hong Kong's highest 129 130 mountain (Mount. Tai Mo Shan), referred to as TMS hereafter. The dominant winds at TMS were from the north which transported air pollutants from the inland Pearl River Delta (PRD) of 131 132 southern China. In addition, mesoscale circulation (e.g., mountain-valley breezes) caused interaction of mountainous air with urban plumes at the foot of the mountain. The urban site 133 134 (22.37 N°, 114.11 E°, 10 m a.g.l.) is located in a newly developed town (Tsuen Wan, referred to TW hereafter), and is an air quality monitoring station of Hong Kong Environmental Protection 135 136 Department (HKEPD, accessible at http://www.aqhi.gov.hk/en/monitoring-network/air-qualitymonitoring-stations228e.html?stationid=77). The prevailing winds at TW were from the 137 southeast. Detailed information about the two sites is given in Guo et al. (2013) and Ling et al. 138 139 (2014, 2016).

140 Real time measurements of trace gases including SO₂, CO, NO, NO₂ and O₃ at TMS were achieved with the instruments listed in Table S1 of the Supplement, which also shows the 141 142 analytical techniques, detection limits and precision. Trace gas data at TW were downloaded from the HKEPD website (http://epic.epd.gov.hk/EPICDI/air/station/). VOC samples at these 143 two sites were collected using 2-L electro-polished stainless steel canisters. Prior to sampling, 144 the canisters were treated with 10 Torr of degassed, distilled water to quench the active surface 145 sites of the inner walls, then were cleaned and evacuated. A valve was connected to the inlet of 146 the canisters to maintain a sampling time of about 1 hour. A total of 384 samples were 147 simultaneously collected during daytime hours of 10 O₃ episode days (October 23-24, 29-31, and 148 November 1-3, 9, 19, 2010) and 10 non-O₃ episode days (September 28, October 2, 8, 14, 18-19, 149 27-28 and November 20-21, 2010) at TMS and TW, except those samples not collected at TW 150 on October 23. In this study, days with at least one hourly O₃ mixing ratio exceeding 100 ppbv 151 were defined as O_3 episode days (China's Grade II standards, accessible at 152 http://210.72.1.216:8080/gzagi/Document/gjzlbz.pdf). The O_3 values at TMS were used to 153 define the O₃ episodes and non-episodes, because freshly-emitted NO from vehicular exhaust 154 155 strongly titrated O₃ at TW (Guo et al., 2013).

Figure 1 Geographic locations (left panel) and topographies (right panel) of the sampling sites (TMS and TW). Regional transport and mesoscale circulation at TMS are presented according to Guo et al. (2013). The boundary between mainland China and Hong Kong is highlighted in yellow.

162 **2.2 Chemical analysis of RONO**₂

The collected VOC samples were delivered to the Rowland/Blake group at the University of California, Irvine (UCI) for chemical analyses. Detailed descriptions about the analytical system, analysis techniques, precision, accuracy, and quality control protocols can be found in Colman et al. (2001) and Simpson et al. (2003).

167 Specifically, for the quantification of C_1 - C_4 RONO₂, *i.e.*, methyl nitrate (CH₃ONO₂ or C_1 168 RONO₂), ethyl nitrate (C₂H₅ONO₂ or C₂ RONO₂), *i*-propyl nitrate (2-C₃H₇ONO₂ or 2-C₃ 169 RONO₂), *n*-propyl nitrate (1-C₃H₇ONO₂ or 1-C₃ RONO₂) and *sec*-butyl nitrate (2-C₄H₉ONO₂ or 2-C₄ RONO₂), a gas chromatography (GC)-electron capture detector (ECD) system was used. 170 171 Two whole air working standards were analyzed every four samples to calibrate the RONO₂ 172 measurements. The precision was 2% for mixing ratios above 5 pptv and 10% for mixing ratios below 5 pptv. The accuracy was 10-20% and the detection limit for C_1 - C_4 RONO₂ was 0.01 pptv. 173 It is worth noting that the RONO₂ calibration scale changed in 2008 (Simpson et al., 2011) and 174 all measurements are reported on the new calibration scale. 175

176 2.3 Construction of PBM-MCM model

A PBM-MCM model was developed to simulate RONO₂. Master Chemical Mechanism (MCM) 177 178 is an explicit chemical mechanism, which has been successfully used in photochemical simulation in Hong Kong and many other regions of the world (Saunders et al., 2003; Lam et al., 179 2013; Ling et al., 2014). The latest version of MCM (MCM v3.3) includes 17,242 reactions and 180 5,836 species. With regards to RONO₂, the main formation pathways that are considered are 181 182 RO₂+NO and RO+NO₂, while RONO₂ degradation is presented as photolysis (reaction 5) and OH initiated oxidation (reaction 6). Details about the reaction pathways and reaction coefficients 183 184 are given in Section S1 of the Supplement.

- 185 RONO₂ + $hv \rightarrow$ RO + NO₂ (reaction 5)
- 186 $RONO_2 + OH \rightarrow RO + NO_2 + products (reaction 6)$

187 The branching ratios for the reactions of RO_2 +NO were acquired from previous studies 188 (Lightfoot et al., 1992; Flocke et al., 1998b) or calculated according to the formulas 189 recommended by Carter and Atkinson (1985). For C₁ RONO₂, branching ratios of 0.00015,

- 190 0.0003, 0.001, 0.003, 0.0041 and 0.005 were examined and considered. However, since 191 branching ratio data for C_2 - C_4 RONO₂ were rather limited, the values calculated using formulas 192 1-3 were used as the branching ratios, which were 0.0094, 0.048, 0.019 and 0.085 for C_2 , 2- C_3 , 193 1- C_3 and 2- C_4 RONO₂, respectively. Bearing in mind model uncertainty, the branching ratios 194 were accepted only when IOAs between the simulated and observed RONO₂ were higher than 195 0.65 (see section 3.1 for details).
- In addition to the chemical reactions, many modules were compiled in the PBM-MCM model. 196 For example, the photolysis rate module enables us to calibrate the photolysis rates of many air 197 pollutants. The Tropospheric Ultraviolet and Visible Radiation (TUVv5) model, which considers 198 199 actual location and modelling time periods, is used to calibrate the photolysis rates (Madronich and Flocke, 1997). Moreover, the concentrations of air pollutants can be specified to initiate the 200 model in the initial concentration module. This is important, because the background RONO₂ 201 existed prior to photochemical reactions are generally non-negligible due to their long lifetimes. 202 203 In this study, RONO₂ mixing ratios observed at 07:00 (local time, LT) were treated as the initial 204 conditions. The dry deposition module considers the dry deposition of air pollutants, which are 205 parameterized as an average deposition rate within the height of the mixed layer (HMIX). Zhang et al. (2002) indicated that the dry deposition velocity for organic nitrates ranged from 0.03 to 206 207 0.56/HMIX cm/s. Within this range, deposition rates of 0.03, 0.13, 0.23, 0.33, 0.43 and 0.53/HMIX cm/s were examined for C_1 - C_4 RONO₂ in this study (step=0.1/HMIX cm/s). 208
- Overall, based on the observed mixing ratios of air pollutants, including RONO₂ precursors, the PBM-MCM model simulated RONO₂ in different scenarios with changes of branching ratios and dry deposition rates, and consideration of initial conditions. The model uncertainty was discussed and roughly estimated with the mean root square error method (Willmott, 1982) in Section S2 of the Supplement.
- 214 **3 Results and discussion**

215 **3.1 Modelling of C₁-C₄ RONO₂**

The abundance, day-to-day variation, chemical evolution and sources of C_1 - C_4 RONO₂ at TMS and TW were discussed in Ling et al. (2016). One of their key findings was that secondary formation (or photochemical formation) was the main contributor of $RONO_2$ at both sites, but the formation mechanisms remained unexplained, which were studied in this section.

Figure 2(a) shows the average photochemical production of CH₃ONO₂ at TMS as a function of 220 the branching ratio (Section 2.3), without consideration of initial concentrations and dry 221 222 deposition. Noticeably, the CH₃ONO₂ production linearly increases with increasing branching ratio (CH₃ONO₂ mixing ratio in pptv = $(4400 \times \text{branching ratio}) + 1.4$). A branching ratio of 223 approximately 0.0023 was determined to match the observed CH₃ONO₂ (11.3 pptv). This 224 branching ratio was within the range of 0.00015 to 0.005 as reported earlier (Carter and Atkinson, 225 1985; Lightfoot et al., 1992; Flocke et al., 1998b). However, the initial mixing ratio (8.8 pptv) 226 227 was not considered in Figure 2(a), which should also be a part of the observed CH_3ONO_2 even though it was subject to degradation and dry deposition. Even taking into account the 228 229 degradation (OH initiated oxidation and photolysis) and dry deposition (rate = 0.13/HMIX cm/s), the average residual of the initial CH₃ONO₂ was still 7.5 pptv. Based on this value, 230 231 photochemically formed CH₃ONO₂ was about 3.8 pptv, which corresponded to a branching ratio of 0.00055, also within the range of 0.00015-0.005. However, this value was calculated based on 232 233 model simulation rather than laboratory experiment and has never been reported in previous studies. Therefore, we adopted a branching ratio of 0.0003, reported by Flocke et al. (1998b) and 234 235 adopted by Simpson et al. (2002), which was the closest to 0.00055 among the examined values. Furthermore, by considering dry deposition, Figure 2(b) presents the modelled CH₃ONO₂ with 236 237 the branching ratio of 0.0003 and dry deposition velocities of 0.03/HMIX, 0.13/HMIX, 0.23/HMIX, 0.33/HMIX, 0.43/HMIX and 0.53/HMIX cm/s. The modelled CH₃ONO₂ decreased 238 239 linearly with increasing dry deposition velocity (CH₃ONO₂ mixing ratio in pptv = -4.5 \times deposition rate + 11.6). A dry deposition velocity of 0.07/HMIX was determined to best 240 reproduce the observed CH₃ONO₂. As such, the branching ratio of 0.0003 and dry deposition 241 velocity of 0.07/HMIX cm/s were treated as the most appropriate settings for CH₃ONO₂ 242 simulation. 243

With these settings, the factors influencing the simulated CH_3ONO_2 were sequentially considered. Figure 3 shows the CH_3ONO_2 simulated in different scenarios at TMS, *i.e.*, (*i*) "reaction", (*ii*) "reaction + initial" and (*iii*) "reaction + initial + dry deposition". Scenario (*i*) only considered the formation and degradation reactions of CH_3ONO_2 , while the initial concentrations 248 and dry deposition were progressively considered in scenarios (*ii*) and (*iii*). The modelled CH₃ONO₂O in scenario (i) was typically bell-shaped on a diurnal basis, coincident with the 249 250 characteristics of photochemical reactions. However, the mean modelled CH₃ONO₂ (2.6 \pm 0.3 pptv) was much lower than the observed average (11.3 \pm 0.3 pptv). By introducing the initial 251 conditions, the modelled CH₃ONO₂ in scenario (*ii*) increased to a comparable level (11.7 \pm 0.3 252 pptv) to the measurements, in line with the finding that background initial concentrations are an 253 important constituent of the observed RONO₂ (Ling et al., 2016). Further consideration of dry 254 deposition in scenario (iii) resulted in a slight decrease of the modelled CH₃ONO₂ to 11.0±0.3 255 pptv, which best agreed with the observed CH₃ONO₂. By subtracting the modelled CH₃ONO₂ in 256 scenario (i) from scenario (ii) and that in scenario (ii) from scenario (iii), the respective 257 contributions of the processes, including reaction, initial conditions and dry deposition to the 258 total modelled CH₃ONO₂, were determined to be 21.5 \pm 1.8%, 85.1 \pm 2.0% and -6.6 \pm 0.3% 259 (negative contribution means removal of CH₃ONO₂). 260

Figure 2 Modelled average CH_3ONO_2 as a function of (a) branching ratio (no initial or dry deposition) and (b) deposition rate (branching ratio = 0.0003, and the initial CH_3ONO_2 was set as the values measured at 07:00 (LT) at TMS for each day.

Figure 3 Comparisons between the measured and modelled CH₃ONO₂ in different scenarios at TMS.

265

Similarly, the C_2 - C_4 RONO₂ were also simulated using the above approach. Table 1 lists the 269 model settings that best reproduced the magnitudes and patterns of the observed RONO₂ at TMS 270 and TW (shown in Figures S1-S2 in the Supplement). Overall, the simulated RONO₂ agreed well 271 with the measurements (Index of Agreement is discussed below). However, the morning peaks 272 273 of RONO₂ (e.g., September 28, October 8 and 23, and November 1 and 2) were not well 274 reproduced by the model. Since in situ photochemical formation could not be the main source of RONO₂ in the morning when solar radiation was weak, the discrepancies between modelling and 275 observation were most likely to be caused by direct emissions and/or regional transport, which 276 were not considered in the model. In addition, the modelled RONO₂ levels were generally \sim 50% 277 lower than the observations on O₃ episode days (October 23-24, 29-31, and November 1-3, 9, 278 19). Methyl chloride (CH₃Cl) levels at both TMS (episode: 1100 \pm 33 pptv; non-episode: 926 \pm 279 27 pptv) and TW (episode: 1116 \pm 32 pptv; non-episode: 1031 \pm 45 pptv) increased noticeably 280 (p<0.05) during O₃ episodes, so did levoglucosan in fine particles (84.8±27.8 and 31.6±18.5 281 ng/m³ during episode and non-episode at TMS, respectively). These suggested emissions of 282 $RONO_2$ from biomass burning. Furthermore, the frequency of northerly winds was higher during 283 O₃ episodes (78% at TMS and 29% at TW) than during non-O₃ episodes (51% at TMS and 21% 284 at TW). In view of severe photochemical pollution in the adjacent inland PRD cities and 285 increased transport of secondary pollutants from the inland PRD to Hong Kong during O₃ 286

287 episodes (Lam et al., 2005; Guo et al., 2009), regional transport might also contribute to the higher observed RONO₂ on episode days. An exception was CH₃ONO₂ at TW on November 19 288 289 when the modelled CH₃ONO₂ remarkably exceeded the measured values (Figure S2). This 290 overestimation was believed to be caused by the abnormally high aromatic levels on that day $(30.2 \pm 23.4 \text{ ppbv}, \text{ compared to the average of } 4.9 \pm 0.6 \text{ ppbv over the whole sampling period}$ 291 excluding that day). Briefly, the photochemical degradation of aromatics generated CH₃O₂ and 292 293 CH₃O in the model. Without consideration of diffusion, these precursors of CH₃ONO₂ were more significantly overestimated than those in normal periods, leading to overestimation of 294 CH₃ONO₂. 295

To quantitatively evaluate the simulations, IOA between the simulated and observed $RONO_2$ was calculated (Table 1). IOA is a statistical parameter commonly used to evaluate model performance, as calculated using Formula 4 (Hurley et al., 2001). Ranging from 0-1, higher IOAs represent better agreement between the simulated and observed values. We accepted the simulation results when the IOA was above 0.65.

301 IOA =
$$1 - \frac{\sum_{i=1}^{n} (O_i - S_i)^2}{\sum_{i=1}^{n} (|O_i - \bar{O}| + |S_i - \bar{O}|)^2}$$
 (Formula 4)

where O_i and S_i are the observed and simulated values, and \overline{O} is the average observed value of *n* samples.

Table 1 Model settings for the simulations of C_1 - C_4 RONO₂ as well as IOAs between the simulated and measured RONO₂ at TMS and TW.

	CH ₃ ONO ₂	C ₂ H ₅ ONO ₂	$1-C_3H_7ONO_2$	2-C ₃ H ₇ ONO ₂	2-C ₄ H ₉ ONO ₂
Branching ratio	0.0003	0.0094	0.019	0.048	0.085
Dry deposition	0.07/HMIX	0.07/HMIX	0.07/HMIX	0.07/HMIX	0.07/HMIX
IOA at TMS	0.67	0.72	0.72	0.72	0.72
IOA at TW	0.66	0.70	0.69	0.67	0.73

306 HMIX is the time-dependent mixed layer height, as shown in Figure S3.

307

The IOA ranged from 0.67 to 0.72 and 0.66 to 0.73 for $RONO_2$ simulations at TMS and TW,

309 respectively. Given that other sources (*e.g.*, biomass burning and oceanic emission) and regional

transport impact were not considered in the model, the IOAs indicated that the simulations wereacceptable.

312 **3.2 Secondary RONO₂ formation**

Based on the above settings, the secondary (photochemical) production of RONO₂ (referred to as 313 secondary RONO₂ hereafter) was simulated without consideration of initial conditions and dry 314 315 deposition, as summarized in Table 2. Also shown are the concentrations of parent hydrocarbons, 316 corresponding RO₂ radicals, NO and NO₂. The measured mixing ratios of parent hydrocarbons 317 and NO_x (both NO and NO₂) were significantly higher at TW than at TMS (p < 0.05). Likewise simulated C_1 and 2- C_4 RONO₂ levels at TW were significantly higher than at TMS (p<0.05), 318 319 while the simulated C₂ and C₃ RONO₂ levels at TW were comparable to or even lower than 320 those at TMS. To explore the reasons for these differences, the relative contributions of RO₂+NO 321 and $RO+NO_2$ were quantified (Table 3), using the method described by Lyu et al. (2015). Briefly, the two pathways were switched off in turn. The simulated RONO₂ was subtracted from that 322 simulated in base scenario with both pathways switched on. In this way, RONO₂ produced by the 323 each pathway was obtained. The pathway of RO₂+NO dominated the formation of C₂-C₄ RONO₂ 324 at both sites, consistent with our previous study at Tai O, a background site in southwestern 325 Hong Kong (Lyu et al., 2015). In contrast, the reaction of RO+NO₂ made considerable 326 contributions to CH₃ONO₂ (mean ±95% confidence interval (C.I.): 2.7±0.3 pptv or 41.9±5.9% at 327 TMS and 4.8 ± 1.0 pptv or $76.2\pm15.7\%$ at TW). In addition to higher CH₄ levels, the more 328 329 abundant secondary CH₃ONO₂ at TW was likely because that NO₂ at TW (31.6±3.1 ppbv) was significantly higher than that at TMS (8.7 ± 0.8 ppbv) (p<0.05). Indeed, following suggestions 330 that RO+NO₂ could be an important pathway for CH₃ONO₂ formation in polluted environments 331 (Flocke et al., 1998a; Simpson et al., 2006), Archibald et al. (2007) confirmed that this pathway 332 becomes important at about 10 ppb of NO₂, and dominant at about 35 ppb, based on MCM 333 simulations for European conditions. For C2-C3 RONO2, although the measured parent 334 hydrocarbons were less abundant at TMS than at TW, the simulated concentrations of RO₂ 335 radicals were all remarkably higher under low NO_x conditions (as discussed below), leading to 336 comparable (for C₂H₅ONO₂ and 2-C₃H₇ONO₂) or even higher (for 1-C₃H₇ONO₂) mixing ratios 337 338 of RONO₂ at TMS. However, for C₄ RONO₂, the higher concentrations of its parent hydrocarbon $n-C_4H_{10}$ (4131±361 pptv) and NO (26.9 ± 2.9 ppbv) at TW resulted in higher levels of secondary 339

2-C₄H₉ONO₂ (17.6±2.4 pptv) because the concentration of 2-C₄H₉O₂ at TW was lower than TMS by a factor of 4.2, compared to 6.7, 6.6 and 13.3 for C₂H₅O₂, 2-C₃H₇O₂ and 1-C₃H₇O₂, respectively.

The difference in NO_x levels was considered to be the main cause of the anti-correlation between 343 the parent hydrocarbons and related RO₂ radicals. As O₃ formation is generally limited by VOCs 344 at both sites (Guo et al., 2013; Ling et al., 2014), the reaction chains of O₃ formation were 345 terminated by NO_x reacting with reactive radicals. Figure S4 shows that the simulated OH and 346 HO₂ levels were much lower at TW than at TMS. This is because the higher NO_x at TW 347 consumed more oxidative substances (e.g., O₃) and radicals (OH and HO₂). Consequently, 348 reactions including the oxidation of parent hydrocarbons at TW were more suppressed, leading 349 to lower production efficiency of RO₂ radicals. 350

Table 2 Average mixing ratios of parent hydrocarbons, NO_x and secondary $RONO_2$ at TMS and

352 TW. Error bars represent 95% C.I.s.

	TMS	TW
CH ₄ (ppbv)	1950±7	1970±7
C ₂ H ₆ (pptv)	1848±76	2144±81 *
C ₃ H ₈ (pptv)	1123±71	3343±331 *
<i>n</i> -C ₄ H ₁₀ (pptv)	887±84	4131±361 [*]
NO (ppbv)	3.5±0.1	26.9±2.9 *
NO ₂ (ppbv)	8.7±0.8	31.6±3.1 *
CH ₃ O ₂ (molecules/cm ³)	(3.1±0.4)×10 ⁷ *	$(0.6\pm0.3)\times10^7$
C ₂ H ₅ O ₂ (molecules/cm ³)	$(2.0\pm0.2)\times10^{6}$ *	$(0.3\pm0.1)\times10^{6}$
$2-C_3H_7O_2$ (molecules/cm ³)	(4.6±0.5)×10 ⁵ *	$(0.7\pm0.2)\times10^5$
$1-C_3H_7O_2$ (molecules/cm ³)	(4.0±0.6)×10 ⁵ *	$(0.3\pm0.1)\times10^5$
$2-C_4H_9O_2$ (molecules/cm ³)	(7.1±0.8)×10 ⁵ *	$(1.7 \pm 0.5) \times 10^5$
Secondary CH ₃ ONO ₂ (pptv)	2.7±0.3	4.8±1.0 [*]
Secondary C ₂ H ₅ ONO ₂ (pptv)	4.0±0.4	3.6±0.7
Secondary 2-C ₃ H ₇ ONO ₂ (pptv)	5.2±0.5	4.5±0.7

Secondary 1-C ₃ H ₇ ONO ₂ (pptv)	1.1±0.1 *	0.7±0.1
Secondary 2-C ₄ H ₉ ONO ₂ (pptv)	13.5±1.4	17.6±2.4 *

* Significant difference between the two sites (p < 0.05). Bolded are species with observed values, and the rest are simulated values.

Table 3 Relative contributions (%) of the RO_2 +NO and RO+NO₂ pathways to $RONO_2$ at TMS

RONO ₂	TMS		TW	
	RO ₂ +NO	RO+NO ₂	RO ₂ +NO	RO+NO ₂
CH ₃ ONO ₂	58.1±6.8	41.9±5.9	23.8±4.8	76.2±15.7
C ₂ H ₅ ONO ₂	99.0±13.4	1.0±0.2	95.8±24.2	4.2±1.2
$2-C_3H_7ONO_2$	99.6±12.7	0.4±0.1	98.9±19.4	1.1±0.2
$1-C_3H_7ONO_2$	99.5±12.4	0.5±0.1	98.1 ± 17.8	1.9±0.4
$2-C_4H_9ONO_2$	99.9±14.1	0.10±0.02	99.7±18.4	0.3±0.1

and TW. Error bars represent 95% C.I.s.

357

To further investigate RONO₂ formation in different environments, a total of 225 scenarios were 358 designed for model simulations. Briefly, RONO₂ production was simulated with a matrix of total 359 VOCs (TVOCs) and NO_x ranging from 4-720 ppbv and 0.5-90 ppbv, respectively (TVOCs = 4, 8, 360 16, 32, 48, 64, 80, 160, 240, 320, 400, 480, 560, 640 and 720 ppbv; NO_x = 0.5, 1, 2, 4, 6, 8, 10, 361 362 20, 30, 40, 50, 60, 70, 80 and 90 ppby). The rationale for concentration setting is to include the observed TVOCs and NO_x in the middle of the sequence. Apart from their mixing ratios, the 363 composition of TVOCs and NO_x might also influence the production of RONO₂. Therefore, the 364 ratios between VOC species and NO and NO₂ (referred to as air pollutant profiles hereafter) at 365 TMS and TW were used to distribute VOCs species in TVOCs, and NO and NO₂ in NO_x. Figure 366 4 shows the isopleths of CH₃ONO₂ and C₂H₅ONO₂ production with the changes of TVOCs and 367 368 NO_x based on the air pollutant profiles at TMS (panels (a) and (b)) and TW (panels (c) and (d)). 369 The isopleth of $C_2H_5ONO_2$ production was selected as an example of C_2 - C_4 RONO₂, which had the same pattern variations in response to the changes of TVOCs and NO_x (see Figure S5). It is 370 noteworthy that both formation pathways of RO2+NO and RO+NO2 were considered for C1-C4 371 372 RONO₂. Based on Figure 4, the NO_x limited and VOC limited regimes in RONO₂ formation were identified. Briefly, the points with the lowest TVOCs on each isopleth line (red dots in the 373

374 figure panels) were linked in a straight line (ridge line), and RONO₂ formation in the area below and above the line was limited by NO_x and VOCs, respectively. Please note, the red dots 375 376 associated with NO_x of 90 ppbv (the largest scale for the y-axis) were excluded, because they might not be the turning points from a NO_x-limited to VOC-limited regime given that the 377 isopleths for NO_x levels higher than 90 ppbv were not simulated. Consequently, the ridge lines 378 ended in the middle of the plots. Linear regressions were carried out for these ridge linesand a 379 TVOC/NO_x ratio of approximately 3.3/1 ppbv/ppbv ($R^2=0.96$) was obtained for the simulated 380 production of C₂-C₄ RONO₂ based on the air pollutant profiles at TMS. In other words, when the 381 ratio of TVOCs/NO_x was higher (lower) than 3.3/1 ppbv/ppbv, the C₂-C₄ RONO₂ formation was 382 limited by NO_x (VOCs). However, this ratio was much higher based on the air pollutant profiles 383 at TW (TVOCs/NO_x=8.1/1 ppbv/ppbv, R²=0.99). This might be due to much lower levels of 384 oxidative radicals (see Figure S4) and the more important role of NO_x in consuming oxidative 385 radicals at this urban site (Ling et al., 2014), causing significant reduction of oxidative radicals 386 even at a relatively high ratio of TVOCs/NOx. Analysis of the relationship between RONO2 387 production and the TVOC/NO_x ratio found that in the NO_x limited regime, increasing NO_x 388 stimulated the production of RONO₂ (RO₂+NO \rightarrow RONO₂). However, increasing NO_x led to a 389 direct or indirect reduction of OH (OH+NO₂ \rightarrow HNO₃ and NO+O₃ \rightarrow NO₂+O₂) and subsequent 390 reductions of HO₂, RO₂ and RO in the VOC limited regime. Conversely, an increase of TVOCs 391 elevated the production of these radicals. Therefore, in the VOC limited regime, an increase of 392 393 TVOCs (NO_x) resulted in an increase (decrease) of RO₂, subsequently stimulating (suppressing) RONO₂ formation. 394

396

Figure 4 Isopleths of photochemical production of (a) CH₃ONO₂ and (b) C₂H₅ONO₂ (as an 397 example of C₂-C₄ RONO₂) based on the air pollutant profiles at TMS; (c) CH₃ONO₂ and (d) 398 $C_2H_5ONO_2$ (as an example of C_2 - C_4 RONO₂) based on the air pollutant profiles at TW. The line 399 400 with the red dots separates NO_x limited regime from VOCs limited regime. The blue and red blocks in the figure represent the average observed TVOCs, NOx and simulated RONO2 at TMS 401 402 (blue) and TW (red), respectively.

404 Note that the threshold ratios of TVOC/NO_x turning to VOC-limited were lower for CH₃ONO₂ formation than for C_2 - C_4 RONO₂ at both TMS and TW, which were around 1.8/1 ppbv/ppbv 405 (R²=0.98) and 3.0/1 ppbv/ppbv (R²=0.99) based on the air pollutant profiles at TMS and TW, 406 respectively. In contrast to C_2 - C_4 RONO₂, which were mainly generated from RO₂ reacting with 407 NO, CH₃ONO₂ had two pivotal formation pathways, *i.e.*, RO₂+NO and RO+NO₂ (Table 3). 408 Figure 5 (a) and (b) show the respective isopleths of CH_3ONO_2 produced by the pathways of 409 CH₃O₂+NO and CH₃O+NO₂ based on the air pollutant profiles at TMS (the isopleths at TW are 410 presented in Figure 5 (c) and (d)). The CH₃ONO₂ generated by CH₃O₂+NO (panels (a) and (c)) 411 followed the same patterns as C₂-C₄ RONO₂ (TVOCs/NO_x ratio of 3.3/1 and 8.1/1 ppbv/ppbv as 412 the threshold between the VOC- and NO_x-limited regimes at TMS and TW, respectively). 413 However, the ridge line separating the VOC- and NO_x-limited regimes was not determined at 414 TMS for CH_3O+NO_2 (Figure 5 (b)), because the formation of CH_3ONO_2 was all limited by NO_x . 415 Namely, based on the air pollutant profiles at TMS, the formation of CH₃ONO₂ from the 416 CH_3O+NO_2 always increased with increasing NO_x , implying a continuous NO_x limited regime. 417 Even based on the air pollutant profiles at TW, the simulation results indicated that NO_x did not 418 facilitate CH₃ONO₂ formation until the ratio of TVOC/NO_x was lower than 2.9/1 ppbv/ppbv for 419 the TVOC range of 4-160 ppbv. Moreover, for the scenarios with TVOCs \geq 240 ppbv, 420 CH_3ONO_2 generated from $CH_3O + NO_2$ continuously increased with increasing NO_x (continuous 421 NO_x limited regime). The continuous stimulation effect of NO_x on CH₃ONO₂ formation at low 422 423 ratios of TVOC/NO_x (high NO_x) was also identified by Archibald et al. (2007), which might be caused by the competitiveness of NO₂ associating with CH₃O relative to the oxidation of CH₃O 424 425 $(CH_3O+O_2 \rightarrow HCHO+HO_2)$ increasing under high NO_x.

In summary, Table 4 lists the ranges of TVOC/NO_x ratios corresponding to the NO_x limited and VOCs limited regimes in RONO₂ formation, which were simulated on the basis of the air pollutant profiles at TMS and TW. Please note: these values were the slopes derived from linear regressions. The uncertainty of model simulation was roughly estimated by root mean square of the accuracies of input parameters, which was ~13%.

Figure 5 Isopleths of CH_3ONO_2 production from the pathway of (a) CH_3O_2 +NO and (b) CH₃O+NO₂ based on the air pollutant profiles at TMS; (c) CH_3O_2 +NO and (d) CH_3O +NO₂ based on the air pollutant profiles at TW.

TVOCs/NO _x	Profiles of air pollutants at TMS		Profiles of air pollutants at TW	
(ppbv/ppbv)	NO _x limited	VOC limited	NO _x limited	VOCs limited
^a CH ₃ ONO ₂	>1.8/1	<1.8/1	>3.0/1	<3.0/1
^b CH ₃ ONO ₂	>3.3/1	<3.3/1	>8.1/1	<8.1/1
^c CH ₃ ONO ₂	All ratios	None	>2.9/1	<2.9/1
C ₂ -C ₄ RONO ₂	>3.3/1	<3.3/1	>8.1/1	<8.1/1

441 Table 4 Ranges of TVOC/NO_x ratios corresponding to regimes controlling RONO₂ formation 442 based on the air pollutant profiles at TMS and TW.

^a Total CH₃ONO₂ produced by CH₃O₂+NO and CH₃O+NO₂; ^b CH₃ONO₂ produced by CH₃O₂+NO; ^c CH₃ONO₂ produced by CH₃O+NO₂.

445

446 **3.3 Impacts on O₃ production**

447 **3.3.1 During RONO₂ formation**

To investigate the impacts of RONO₂ formation on O₃ production, two categories of scenarios, 448 *i.e.*, a base case and five constrained cases were tested in this study. Briefly, in the base case all 449 reaction pathways were switched on in the model, while the formation pathways (RO₂+NO and 450 RO+NO₂) of each individual RONO₂ were switched off in each corresponding constrained case. 451 452 The five constrained cases corresponded to the five RONO₂. All other settings were identical between the base and constrained cases. The base case simulated the secondary production of 453 454 RONO₂. The O₃ variations (Δ O₃) induced by RONO₂ formation were obtained by subtracting O₃ in the constrained cases from that in the base case, as were the variations of NO, NO₂, OH and 455 456 HO₂. Figure 6 shows the relationship between ΔO_3 and secondary RONO₂ production at TMS and TW. Overall, as secondary RONO₂ production increased, O_3 levels decreased. The formation 457 458 of CH₃ONO₂, C₂H₅ONO₂, 2-C₃H₇ONO₂, 1-C₃H₇ONO₂ and 2-C₄H₉ONO₂ caused an average O₃ 459 reduction (mean $\pm 95\%$ C.I.) of 9.7 ± 1.1 , 14.7 ± 1.6 , 18.4 ± 1.9 , 6.9 ± 0.6 and 60.2 ± 6.8 pptv at TMS, and 10.5 ± 3.2 , 7.1 ± 2.0 , 8.3 ± 2.1 , 2.0 ± 0.5 and 40.0 ± 9.8 pptv at TW, respectively. 460 Furthermore, the O₃ reduction was linearly correlated with the production of secondary RONO₂ 461 (0.72 <R² <0.95 at TMS, 0.77 <R² <0.84 at TW) at TW for CH₃ONO₂, C₂H₅ONO₂, 2-462 C₃H₇ONO₂, 1-C₃H₇ONO₂ and 2-C₄H₉ONO₂, respectively. Notably, the O₃ reduction efficiencies 463

(ΔO_3 /secondary RONO₂) were significantly lower at TW than at TMS (p<0.05), meaning that 464 $RONO_2$ production caused less O_3 reduction at TW than at TMS. Since O_3 formation was 465 generally limited by VOCs at TMS and TW (Ling et al., 2014), the variations of reactive radicals 466 (RO, HO₂ and OH) during the RONO₂ formation were expected to be the main cause of O_3 467 reduction. This assumption was confirmed by the correlations of daily average O_3 reduction with 468 daily average variations in simulated NO, NO₂, OH and HO₂ (hourly average values between 469 07:00 and 19:00), as shown in Figures S6-S7. The O₃ reduction correlated well with the 470 reduction of OH (R^2 = 0.83 and 0.71 at TMS and TW, respectively) and of HO₂ (R^2 = 0.84 and 471 0.98 at TMS and TW, respectively), while poor correlations were found between O₃ reduction 472 and the variation of NO or NO₂. As discussed earlier, OH and HO₂ at TW were much lower than 473 at TMS (see Figure S4). Therefore, the lower O₃ reduction efficiencies at TW mainly resulted 474 from the lower photochemical reactivity, which was unfavorable to the chain propagation of O_3 475 formation reactions. 476

478 Figure 6 Relationship between O₃ reductions and the simulated secondary RONO₂ productions at
479 (a) TMS and (b) TW.

480 **3.3.2 During RONO₂ degradation**

The oxidative radicals and NO_x stabilized within RONO₂ molecules can be released and fuel O₃ formation as the RONO₂ degrades. OH oxidation and photolysis are the main degradation pathways of RONO₂. Figure S8 shows the average simulated OH oxidation and photolysis rates for C₁-C₄ RONO₂ at TMS and TW. As expected based on the literature (*e.g.*, Clemitshaw et al., 1997), the photolysis of CH₃ONO₂ was stronger than its OH oxidation at both sites. As the 486 $RONO_2$ carbon number increases the importance of photolysis decreases (Atkinson et al., 1982b; 487 Bertman et al., 1995; Clemitshaw et al., 1997). Here the OH oxidation rates were comparable to 488 photolysis rates for C₂H₅ONO₂ and 2-C₃H₇ONO₂, and exceeded photolysis rates for 1-C₃H₇ONO₂ and 2-C₄H₉ONO₂ at TMS. However, at TW, the OH oxidation was still weaker than 489 photolysis for C₂H₅ONO₂ and 2-C₃H₇ONO₂, and comparable to photolysis for 1-C₃H₇ONO₂ and 490 2-C₄H₉ONO₂. The weaker response of the OH oxidation rate to increasing carbon number at TW 491 was ascribed to the lower OH concentration at TW (1.1 $\pm 0.2 \times 10^6$ molecules/cm³) compared to 492 TMS $(4.3 \pm 0.5 \times 10^6 \text{ molecules/cm}^3)$. 493

494 The impacts of RONO₂ degradation on O₃ production were studied with two simulation 495 scenarios, *i.e.*, a base scenario with all the reaction pathways switched on and a constrained scenario in which OH oxidation and photolysis for all five C₁-C₄ RONO₂ were switched off. The 496 differences of model output between the two scenarios reflected the impact of RONO₂ 497 degradation. Note that this impact was studied in the form of total C₁-C₄ RONO₂ rather than 498 individual species, because the highest resolution of the model output was 1×10^8 molecules/cm³ 499 (~4 pptv), and the small O_3 variation induced by individual RONO₂ could not be accurately 500 501 simulated. During RONO₂ degradation NO₂ is released, which decomposes and generates NO and O, allowing O₃ to be formed from O₂ and O. On the other hand, the released NO₂ also reacts 502 503 with OH, leading to the decreases of OH and HO₂, and reduced O₃ production. The RO released from RONO₂ degradation fuels O₃ formation. Therefore, the net impact of RONO₂ degradation 504 505 on O₃ production involves the combined effect and relative strengths of NO₂ stimulating, NO₂ suppressing, and RO stimulating processes, which exist simultaneously in RONO₂ degradation. 506

Figure 7 shows the simulated daily average variations of O₃, NO, NO₂, OH and HO₂ induced by 507 degradation of the C₁-C₄ RONO₂. The daily average O₃ variations ranged from -7.4 pptv to 2.3 508 509 pptv at TMS, but increased at TW throughout the sampling campaign (average increase of 2.9 \pm 0.8 pptv). At TMS, the O₃ variation correlated well with the OH and HO₂ variations (R^2 of 0.86 510 and 0.85, respectively), but negatively with the variations of NO and NO₂ (R^2 of 0.89 and 0.76, 511 respectively). This implied that O_3 formation at TMS was generally VOC-limited (NO_x-512 suppressed). When NO and NO₂ levels increased at TMS, O₃, OH and HO₂ decreased. This 513 514 might be due to the consumption of OH by NO₂ and/or NO titration with O₃. Since NO increases resulted from the decomposition of NO₂, we defined this impact of RONO₂ degradation on O₃ 515

Figure 7 Simulated variations of (a) O_3 , (b) NO, (c) NO₂, (d) OH and (e) HO₂ at TMS and TW induced by C₁-C₄ RONO₂ degradation.

To extend the impact of RONO₂ degradation on O_3 production to different environments, O_3 541 542 production in a total of 225 base scenarios and 225 constrained scenarios were simulated. The 543 240, 320, 400, 480, 560, 640 and 720 ppbv) and 15 gradients of NO_x ($NO_x = 0.5, 1, 2, 4, 6, 8, 10$, 544 20, 30, 40, 50, 60, 70, 80 and 90 ppbv). Similar to the simulations of RONO₂ formation, these 545 546 simulations were based on the air pollutant profiles at TMS and TW, respectively. The degradation reactions of C₁-C₄ RONO₂ were switched off in all the constrained scenarios. Figure 547 8 and Figure 9 show the average differences of O₃, NO, NO₂, OH, HO₂ and total C₁-C₄ RONO₂ 548 between each base scenario and its corresponding constrained scenario, based on the air pollutant 549 profiles at TMS and TW, respectively. The negative values to the right of the y-axis in panel (f) 550 551 indicates the degradation amounts of total C_1 - C_4 RONO₂ (the difference of simulated RONO₂) between the base and constrained scenarios), and panels (a)-(e) reflect the impact of the RONO₂ 552

- degradation on the production of these compounds or radicals. To help understand the variations of these species or radicals, the NO_x-limited and VOC-limited regimes in O₃ formation at TMS and TW are shown in Figure S9. Notably, the variation patterns of O₃ with the changes of TVOCs and NO_x were highly consistent with those of C₂-C₄ RONO₂. Namely, 3.3/1 and 8.1/1 ppbv/ppbv were the threshold TVOC/NO_x ratios separating the NO_x and VOC limited regimes. This is reasonable because C₂-C₄ RONO₂ and O₃ share the same formation pathways.
- According to Figure 8 and Figure 9, with the degradation of C_1 - C_4 RONO₂, O_3 generally 559 increased in the NO_x limited regime, regardless of the site. The increase of O_3 was always 560 accompanied by increased NO and NO₂ (panels (b) and (c)). However, the oxidative radicals 561 562 (OH and HO₂) could either increase or decrease with RONO₂ degradation in the NO_x limited regime. For the convenience of discussion, the areas with OH or HO₂ increases (decreases) were 563 defined as "R1" ("R2") in panels (d) and (e). The OH and HO₂ increases might be caused by the 564 increase of O₃ following by the photolysis. The added RO from RONO₂ degradation also 565 566 facilitated the production of these oxidative radicals. However, in areas "R2" where more RONO₂ was degraded and more NO₂ was released (see panels (c) and (f)), OH and HO₂ 567 568 decreased, possibly from the higher consumption of OH by NO₂ that was released from RONO₂ degradation and/or consumption of OH by RONO₂ itself (RONO₂+OH→RO+NO₂+products). 569 570 Since O_3 formation was limited by NO_x in this regime, the O_3 increase was most likely related to stimulation of O₃ formation by NO₂ released from RONO₂ degradation. Note that this NO₂ 571 572 stimulating effect on O_3 production was not observed at TMS and TW, where O_3 formation was generally VOC limited. In contrast, O₃ either decreased or increased with RONO₂ degradation in 573 574 the VOC limited regime.
- In the areas close to the NO_x limited regime (defined as area "R3"), O_3 generally decreased. 575 576 Consistently, both OH and HO₂ decreased in this area due to RONO₂ degradation, while NO and NO₂ increased. It is widely known that VOCs and NO_x favor and inhibit O₃ formation in the 577 VOC limited regime, respectively. Since RONO₂ degradation released RO and NO₂, the decrease 578 of O_3 implied that the effect of NO_2 suppression overrode the effect of RO stimulation on O_3 579 formation. In other words, the net impact of RONO₂ degradation on O₃ production was NO₂ 580 581 suppression in this area "R3". However, RONO₂ degradation led to a slight O₃ increase in another area of the VOC limited regimes (defined as area "R4"), where OH and HO₂ also 582

583 increased. The average variations of O₃, NO, NO₂, OH and HO₂ are annotated in area "R4" for 584 panels (a)-(e) in Figures 8 and 9. Note that these variations were minor and difficult to 585 distinguish; the O₃ variations in this area are separately shown in Figure S10. In view of the VOC limited regime controlling O₃ formation and the synchronous increases of O₃, OH and HO₂, 586 the O₃ increase induced by RONO₂ degradation was attributable to the addition of RO and its 587 stimulating effect on O₃ formation. Namely, RO stimulation overrode NO₂ suppression in area 588 589 "R4". Since area "R4" had lower TVOCs and higher NO_x than "R3", the change from NO₂ suppression in "R3" to RO stimulation in "R4" might be driven by the lower ratio of TVOC/NO_x, 590 as discussed earlier. 591

- 592 Moreover, in accordance with the simulations at TMS and TW (see Figure 7), the O_3 variations
- induced by the degradation of C_1 - C_4 RONO₂ with changing TVOCs and NO_x (panel (a)) also
- revealed that O₃ production decreased (at a relatively higher ratio of TVOC/NO_x, point "TMS1"
- in Figure 8) or increased (at a relatively lower ratio of TVOC/NO_x, point "TMS2" in Figure 8) at
- 596 TMS, and was consistently elevated at TW (point "TW" in Figure 9).

Figure 8 Variations of (a) O₃ (b) NO (c) NO₂ (d) OH (e) HO₂ and (f) total C₁-C₄ RONO₂ 600 induced by the degradation of C₁-C₄ RONO₂ following changes of TVOCs and NO_x, simulated 601 based on air pollutant profiles at TMS. The white squares "TMS1" and "TMS2" show the 602 average simulated variations based on the measured TVOCs and NO_x at TMS in the cases of O₃ 603 decrease and increase, respectively. Area "R1" (or "R2") shows the increases (or decreases) of 604 OH/HO₂ in the NO_x limited regime. "R3" (or "R4") are areas with O₃ decrease (or increase) in 605 the VOC limited regime. Numbers in the brackets of "R4" present the average variation of each 606 607 species.

Figure 9 Variations of (a) O_3 (b) NO (c) NO_2 (d) OH (e) HO_2 and (f) total C_1 - C_4 RONO₂ induced by the degradation of C_1 - C_4 RONO₂ following changes of TVOCs and NO_x , simulated based on air pollutant profiles at TW. The white square "TW" shows the average simulated variations based on the measured TVOCs and NO_x at TW. Area "R1" (or "R2") shows the increases (or decreases) of OH/HO₂ in the NO_x limited regime. "R3" (or "R4") are areas with O₃ decrease (or increase) in the VOC limited regime. Numbers in the brackets of "R4" present the average variation of each species.

618 4 Conclusions

619 A PBM-MCM model was developed to simulate gas-phase RONO₂ measured at an urban and a 620 mountainous site in Hong Kong. The magnitudes and variations of the observed C₁-C₄ RONO₂ at 621 both sites were well reproduced by the model. The modeling results indicated that RONO₂ formation depended upon not only the abundances of precursors but also the photochemical 622 reactivity, which was closely related to the levels of VOCs and NO_x. Although the precursors of 623 $RONO_2$ at the mountainous site were less abundant than at the urban site, the higher 624 photochemical reactivity led to higher production of RO₂ radicals, resulting in comparable or 625 even higher RONO₂. The regimes in which the formation of C₂-C₄ RONO₂ was NO_x-limited and 626 VOC-limited were identified namely when the ratio of TVOC/NO_x was higher and lower than 627 3.3/1 ppbv/ppbv, respectively, based on the air pollutant profiles at mountainous site. Since the 628 NO_x concentration was higher at the urban site, the formation of C₂-C₄ RONO₂ was limited by 629 NO_x when the ratio of TVOC/NO_x was higher than 8.1/1. However, these simulated thresholds 630 decreased to 1.8/1 and 3.0/1 ppbv/ppbv for the formation of CH₃ONO₂ at the mountainous and 631 urban site, respectively. This was mainly because CH_3ONO_2 produced from $CH_3O + NO_2$ 632 continued to increase with increasing NO_x when the ratios of TVOC/NO_x were relatively low 633 634 (high NO_x). Since O₃ formation was generally VOC limited at both sites, and RONO₂ formation 635 initially stabilized RO radicals in RONO₂ molecules, O₃ production was reduced by RONO₂ formation. On the other hand, the mechanisms of RONO₂ degradation influencing O₃ production 636 included NO₂ stimulating, NO₂ suppressing, and RO stimulating processes. At the mountainous 637 site, the impact of RONO₂ degradation on O₃ production was dominated by NO₂ suppression 638 639 under the condition of relatively high ratios of $TVOC/NO_x$, leading to the decrease of O_3 , while

- 640 RO stimulation occurred at relatively low ratios of TVOC/NO_x, resulting in the increase of O_3 .
- 641 However, the O₃ production always increased due to RO stimulation at the urban site.

Acknowledgements: This study was supported by the Research Grants Council of the Hong Kong Special Administrative Region via grants PolyU5154/13E, PolyU152052/14E, CRF/C5004-15E and CRF/C5022-14G, and the Hong Kong Polytechnic University PhD scholarships (project #RTUP). This study is partly supported by the Hong Kong PolyU internal grant (G-YBHT, 1-BBW4 and 4-ZZFW) and the National Natural Science Foundation of China (No. 41275122). The data are accessible at <u>https://drive.google.com/file/d/0B0r5QxfKPoyU</u>

648 <u>YTNyNUctcWNaeTg/view?usp=sharing</u>.

649 **References:**

- Archibald, A.T., Khan, M.A.H., Watson, L.A., Clemitshaw, K.C., Utembe, S.R., Jenkin, M.E.,
 and Shallcross, D.E., 2007. Comment on 'Long-term atmospheric measurements of C₁-C₅
 alkyl nitrates in the Pearl River Delta region of southeast China'by Simpson et al. Atmos.
 Environ. 41(34), 7369-7370.
- Arey, J., Aschmann, S.M., Kwok, E.S., and Atkinson, R., 2001. Alkyl nitrate, hydroxyalkyl nitrate, and hydroxycarbonyl formation from the NO_x-air photooxidations of C_5 - C_8 n-alkanes. J. Phys. Chem. A, 105(6), 1020-1027.
- Aruffo, E., Di Carlo, P., Dari-Salisburgo, C., Biancofiore, F., Giammaria, F., Busilacchio, M.,
 Lee, J., Moller, S., Hopkins, J., Punjabi, S., Bauguitte, S., O'Sullivan, D., Percival, C., Le
 Breton, M., Muller, J., Jones, R., Forster, G., Reeves, C., Heard, D., Walker, H., Ingham, T.,
 Vaughan, S., and Stone, D., 2014. Aircraft observations of the lower troposphere above a
 megacity: Alkyl nitrate and ozone chemistry. Atmos. Environ. 94, 479-488.
- Atkinson, R., 1990. Gas-phase tropospheric chemistry of organic compounds: a review. Atmos.
 Environ. Part A. General Topics, 24(1), 1-41.
- 664 Atkinson, R., Aschmann, S.M., Carter, W.P., and Winer, A.M., 1982b. Kinetics of the gas-phase 665 reactions of OH radicals with alkyl nitrates at 299 ± 2 K. Int. J. Chem. Kinet. 14(8), 919-926.
- 666Atkinson, R., Aschmann, S.M., Carter, W.P., Winer, A.M., and Pitts Jr, J.N., 1982a. Alkyl nitrate667formation from the nitrogen oxide (NO_x) -air photooxidations of C_2 - C_8 n-alkanes. J. Phys.668Chem. 86(23), 4563-4569.
- 669 Atkinson, R., Aschmann, S.M., and Winer, A.M., 1987. Alkyl nitrate formation from the 670 reaction of a series of branched RO_2 radicals with NO as a function of temperature and 671 pressure. J. Atmos. Chem. 5(1), 91-102.
- Atlas, E., Pollock, W., Greenberg, J., Heidt, L., and Thompson, A.M., 1993. Alkyl nitrates,
 nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during
 SAGA 3. J. Geophys. Res.: Atmos. 98(D9), 16933-16947.

- Becker, K.H., and Wirtz, K., 1989. Gas phase reactions of alkyl nitrates with hydroxyl radicals
 under tropospheric conditions in comparison with photolysis. J. Atmos. Chem. 9(4), 419-433.
- Bertman, S.B., Roberts, J.M., Parrish, D.D., Buhr, M.P., Goldan, P.D., Kuster, W.C., Fehsenfeld,
 F.C., Montzka, S.A., and Westberg, H., 1995. Evolution of alkyl nitrates with air mass age. J.
- 679 Geophys. Res.: Atmos. 100(D11), 22805-22813.
- Buhr, M.P., Parrish, D.D., Norton, R.B., Fehsenfeld, F.C., Sievers, R.E., and Roberts, J.M., 1990.
 Contribution of organic nitrates to the total reactive nitrogen budget at a rural eastern US site.
- 682 J. Geophys. Res.: Atmos. 95(D7), 9809-9816.
- Carter, W.P., and Atkinson, R., 1985. Atmospheric chemistry of alkanes. J. Atmos. Chem. 3(3),
 377-405.
- 685 Carter, W.P., and Atkinson, R., 1989. Alkyl nitrate formation from the atmospheric 686 photoxidation of alkanes; a revised estimation method. J. Atmos. Chem. 8(2), 165-173.
- Chameides, W.L., Lindsay, R.W., Richardson, J., and Kiang, C.S., 1988. The role of biogenic
 hydrocarbons in urban photochemical smog: Atlanta as a case study. Science (Washington),
 241(4872), 1473-1475.
- Chen, X., Hulbert, D., and Shepson, P.B., 1998. Measurement of the organic nitrate yield from
 OH reaction with isoprene. J. Geophys. Res. 103(D19), 25-563.
- Cheung, K., Guo, H., Ou, J.M., Simpson, I.J., Barletta, B., Meinardi, S., and Blake, D.R., 2014.
 Diurnal profiles of isoprene, methacrolein and methyl vinyl ketone at an urban site in Hong
 Kong. Atmos. Environ. 84, 323-331.
- Clemitshaw, K.C., Williams, J., Rattigan, O.V., Shallcross, D.E., Law, K.S., and Cox, R.A.,
 1997. Gas-phase ultraviolet absorption cross-sections and atmospheric lifetimes of several
 C2-C5 alkyl nitrates. J. Photoch. Photobio. A: Chem. 102(2), 117-126.
- 698 Darnall, K.R., Carter, W.P., Winer, A.M., Lloyd, A.C., and Pitts Jr, J.N., 1976. Importance of 699 RO₂+nitric oxide in alkyl nitrate formation from C_4 - C_6 alkane photooxidations under 700 simulated atmospheric conditions. J. Phys. Chem. 80(17), 1948-1950.
- Day, D.A., Dillon, M.B., Wooldridge, P.J., Thornton, J.A., Rosen, R.S., Wood, E.C., and Cohen,
 R.C., 2003. On alkyl nitrates, O₃, and the "missing NO_y". J. Geophys. Res.: Atmos. 108(D16).
- Dimitriades, B. (1977, January). An alternative to the appendix-J method for calculating oxidant and NO₂-related control requirements. In International Conference on Photochemical Oxidant
 Pollutant and Its Control: Proceedings (Vol. 2).
- Farmer, D.K., Perring, A.E., Wooldridge, P.J., Blake, D.R., Baker, A., Meinardi, S., Huey, L.G.,
 Tanner, D., Vargas, O., and Cohen, R. C., 2011. Impact of organic nitrates on urban ozone
 production. Atmos. Chem. Phys. 11(9), 4085-4094.
- Flocke, F., Atlas, E., Madronich, S., Schauffler, S.M., Aikin, K., Margitan, J.J., and Bui, T.P.,
 1998b. Observations of methyl nitrate in the lower stratosphere during STRAT: Implications
 for its gas phase production mechanisms. Geophys. Res. Lett. 25(11), 1891-1894.

- Flocke, F., Volz-Thomas, A., Buers, H.J., Patz, W., Garthe, H.J., and Kley, D., 1998a. Long-term measurements of alkyl nitrates in southern Germany: 1. General behavior and seasonal and diurnal variation. J. Geophys. Res.: Atmos. 103(D5), 5729-5746.
- Giacopelli, P., Ford, K., Espada, C., and Shepson, P.B., 2005. Comparison of the measured and
 simulated isoprene nitrate distributions above a forest canopy. J. Geophys. Res.: Atmos.
 110(D1).
- Guo, H., Jiang, F., Cheng, H.R., Simpson, I.J., Wang, X.M., Ding, A.J., Wang, T.J., Saunders,
 S.M., Wang, T., Lam, S.H.M., Blake, D.R., Zhang, Y.L., and Xie, M., 2009. Concurrent
 observations of air pollutants at two sites in the Pearl River Delta and the implication of
 regional transport. Atmos. Chem. Phys., 9(19), 7343-7360.
- Guo, H., Ling, Z.H., Cheung, K., Jiang, F., Wang, D.W., Simpson, I.J., Barletta, B., Meinardi, S.,
 Wang, T.J., Wang, X.M., Saunders, S. M., and Blake, D.R., 2013. Characterization of
 photochemical pollution at different elevations in mountainous areas in Hong Kong. Atmos.
 Chem. Phys. 13(8), 3881-3898.
- Hurley, P.J., Blockley, A., and Rayner, K., 2001. Verification of a prognostic meteorological and
 air pollution model for year-long predictions in the Kwinana industrial region of Western
 Australia. Atmos. Environ. 35, 1871-1880.
- Khan, M.A.H., Cooke, M.C., Utembe, S.R., Morris, W.C., Archibald, A.T., Derwent, R.G.,
 Jenkin, M.E., Orr-Ewing, A.J., Higgins, C.M., Percival, C.J., Leather, K.E., and Shallcross,
 D.E., 2015. Global modeling of the C₁-C₃ alkyl nitrates using STOCHEM-CRI. Atmos.
 Environ. 123, 256-267.
- Lam, K.S., Wang, T.J., Wu, C.L., and Li, Y.S., 2005. Study on an ozone episode in hot season in
 Hong Kong and transboundary air pollution over Pearl River Delta region of China, Atmos.
 Environ. 39, 1967-1977.
- Lam, S.H.M., Saunders, S.M., Guo, H., Ling, Z.H., Jiang, F., Wang, X.M., and Wang, T.J., 2013.
 Modelling VOC source impacts on high ozone episode days observed at a mountain summit in Hong Kong under the influence of mountain-valley breezes. Atmos. Environ. 81, 166-176.
- Lewis, A.C., Carslaw, N., Marriott, P.J., Kinghorn, R.M., Morrison, P., Lee, A.L., Bartle, K.D.
 and Pilling, M.J., 2000. A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature, 405(6788), 778-781.
- Lightfoot, P.D., Cox, R.A., Crowley, J.N., Destriau, M., Hayman, G.D., Jenkin, M.E., Moortgat,
 G.K., and Zabel, F., 1992. Organic peroxy radicals: kinetics, spectroscopy and tropospheric
 chemistry. Atmos. Environ. Part A. General Topics, 26(10), 1805-1961.
- Ling, Z.H., Guo, H., Lam, S.H.M., Saunders, S.M., and Wang, T., 2014. Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model. J. Geophys. Res.: Atmos. 119(17), 10567-10582.
- Ling, Z.H., Guo, H., Simpson, I.J., Saunders, S.M., Lam, S.H.M., Lyu, X.P., and Blake, D.R., 2016. New insight into the spatiotemporal variability and source apportionments of C_1 - C_4 alkyl nitrates in Hong Kong. Atmos. Chem. Phys. 16, 8141-8156.

- Lyu, X.P., Ling, Z.H., Guo, H., Saunders, S.M., Lam, S.H.M., Wang, N., Wang, Y., Liu, M.,
 Wang, T., 2015. Re-examination of C₁-C₅ alkyl nitrates in Hong Kong using an observationbased model. Atmos. Environ. 120, 28-37.
- Madronich, S., and Flocke, S., 1997. Theoretical estimation of biologically effective UV
 radiation at the Earth's surface. In: Zerefos, C. (Ed.), Solar Ultraviolet Radiation-Modeling,
 Measurements and Effects, NATO ASI Series, vol. I52. Springer-Verlag, Berlin.
- Moore, R.M., and Blough, N.V., 2002. A marine source of methyl nitrate. Geophys. Res. Lett.
 29(15).
- Muthuramu, K., Shepson, P.B., Bottenheim, J.W., Jobson, B.T., Niki, H., and Anlauf, K.G.,
 1994. Relationships between organic nitrates and surface ozone destruction during Polar
 Sunrise Experiment 1992. J. Geophys. Res.: Atmos. 99(D12), 25369-25378.
- Ou, J., Yuan, Z., Zheng, J., Huang, Z., Shao, M., Li, Z., Huang, X., Guo, H., and Louie, P., 2016.
 Ambient ozone control in a photochemically active region: short-term despiking or long-term attainment? Environ. Sci. Technol. 50(11), 5720-5728.
- Perring, A.E., Bertram, T.H., Farmer, D.K., Wooldridge, P.J., Dibb, J., Blake, N.J., Blake, D.R.,
 Singh, H.B., Fuelberg, H., Diskin, G., and Sachse, G., 2010. The production and persistence
 of ΣRONO₂ in the Mexico City plume. Atmos. Chem. Phys. 10(15), 7215-7229.
- Perring, A.E., Pusede, S.E., and Cohen, R.C., 2013. An observational perspective on the atmospheric impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol. Chem. Rev. 113(8), 5848-5870.
- Roberts, J.M., and Fajer, R.W., 1989. UV absorption cross sections of organic nitrates of
 potential atmospheric importance and estimation of atmospheric lifetimes. Environ. Sci.
 Technol. 23(8), 945-951.
- Rosen, R.S., Wood, E.C., Wooldridge, P.J., Thornton, J.A., Day, D.A., Kuster, W., Williams,
 E.J., Jobson, B.T., and Cohen, R.C., 2004. Observations of total alkyl nitrates during Texas
 Air Quality Study 2000: Implications for O₃ and alkyl nitrate photochemistry. J. Geophys.
 Res.: Atmos. (1984–2012), 109(D7).
- Saunders, S.M., Jenkin, M.E., Derwent, R.G., and Pilling, M.J., 2003. Protocol for the
 development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric
 degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3(1), 161-180.
- Shao, M., Zhang, Y., Zeng, L., Tang, X., Zhang, J., Zhong, L., and Wang, B., 2009. Groundlevel ozone in the Pearl River Delta and the roles of VOC and NO_x in its production. J.
 Environ. Manage. 90(1), 512-518.
- Sillman, S., and He, D., 2002. Some theoretical results concerning O₃-NO_x-VOC chemistry and
 NO_x-VOC indicators. J. Geophys. Res.: Atmos. 107(D22).
- Simpson, I.J., Meinardi, S., Blake, D.R., Blake, N.J., Rowland, F.S., Atlas, E., and Flocke, F.,
 2002. A biomass burning source of C₁-C₄ alkyl nitrates. Geophys. Res. Lett. 29(24).

- Simpson, I.J., Wang, T., Guo, H., Kwok, Y.H., Flocke, F., Atlas, E., Meinardi, S., Sherwood
 Rowland, F., and Blake, D. R., 2006. Long-term atmospheric measurements of C₁-C₅ alkyl
 nitrates in the Pearl River Delta region of southeast China. Atmos. Environ. 40(9), 1619-1632.
- Simpson, I.J., Akagi, S.K., Barletta, B., Blake, N.J., Choi, Y., Diskin, G.S., Fried, A., Fuelberg,
- H.E., Meinardi, S., Rowland, F.S., Vay, S.A., Weinheimer, A.J., Wennberg, P.O., Wiebring,
- P., Wisthaler, A., Yang, M., Yokelson, R.J., Blake, D.R., 2011. Boreal forest fire emissions
- in fresh Canadian smoke plumes: C_1 - C_{10} volatile organic compounds (VOCs), CO_2 , CO_2 , CO
- 796 NO₂, NO, HCN and CH₃CN. *Atmos. Chem. Phys.*, 11, 6445–6463.
- Thornton, J.A., Wooldridge, P.J., Cohen, R.C., Martinez, M., Harder, H., Brune, W.H., Williams,
 E.J., Roberts, J.M., Fehsenfeld, F.C., Hall, S.R., Shetter, R.E., Wert, B.P., and Fried, A., 2002.
 Ozone production rates as a function of NO_x abundances and HO_x production rates in the
 Nashville urban plume. J. Geophys. Res.: Atmos. 107(D12).
- Wang, N., Guo, H., Jiang, F., Ling, Z.H., and Wang, T., 2015. Simulation of ozone formation at
 different elevations in mountainous area of Hong Kong using WRF-CMAQ model. Sci. Total
 Environ. 505, 939-951.
- Williams, J.E., Le Bras, G., Kukui, A., Ziereis, H., and Brenninkmeijer, C.A.M., 2014. The
 impact of the chemical production of methyl nitrate from the NO+CH₃O₂ reaction on the
 global distributions of alkyl nitrates, nitrogen oxides and tropospheric ozone: a global
 modelling study. Atmos. Chem. Phys. 14(5), 2363-2382.
- Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bull. Am.
 Meteorol. Soc. 63(11), 1309-1313.
- Zhang, L., Moran, M.D., Makar, P.A., Brook, J.R., and Gong, S., 2002. Modelling gaseous dry
 deposition in AURAMS: a unified regional air-quality modelling system. Atmos. Environ.
- 812 36(3), 537-560.