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Driving a vehicle is a complex activity that requires high-level brain functions. This
study aimed to assess the change in effective connectivity (EC) between the prefrontal
cortex (PFC), motor-related areas (MA) and vision-related areas (VA) in the brain network
among the resting, simple-driving and car-following states. Twelve young male right-
handed adults were recruited to participate in an actual driving experiment. The
brain delta [HbO2] signals were continuously recorded using functional near infrared
spectroscopy (fNIRS) instruments. The conditional Granger causality (GC) analysis,
which is a data-driven method that can explore the causal interactions among different
brain areas, was performed to evaluate the EC. The results demonstrated that the
hemodynamic activity level of the brain increased with an increase in the cognitive
workload. The connection strength among PFC, MA and VA increased from the resting
state to the simple-driving state, whereas the connection strength relatively decreased
during the car-following task. The PFC in EC appeared as the causal target, while the
MA and VA appeared as the causal sources. However, l-MA turned into causal targets
with the subtask of car-following. These findings indicate that the hemodynamic activity
level of the cerebral cortex increases linearly with increasing cognitive workload. The
EC of the brain network can be strengthened by a cognitive workload, but also can be
weakened by a superfluous cognitive workload such as driving with subtasks.

Keywords: near-infrared spectroscopy, effective connectivity, Granger causality, actual driving, cognitive
workload

INTRODUCTION

Driving a vehicle is a complex activity that requires high-level brain functions, such as planning,
decision making, visual attention, motor control and high cognitive activity to make fast
cognitive decisions in a complex and rapidly changing environment (Derosière et al., 2014).
Some individuals may be able to drive under simple conditions, but may be incapable of
driving safely when cognitive workloads become heavier, such as following a proceeding car,
talking on the phone and performing other subtasks (Uchiyama et al., 2003; Schweizer et al.,
2013). Several studies have reported that some brain regions, such as the prefrontal cortex (PFC),
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motor-related areas (MA), parietal cortex, vision-related areas
(VA), thalamus and cerebellum, engage in high-level cognitive
activity during car driving with functional near-infrared
spectroscopy (fNIRS; Yoshino et al., 2013a,b; Orino et al., 2015).
However, little information is known on how the functional
networks are affected by the cognitive workload during actual
driving. Therefore, it makes sense to analyze driving data in a
manner that evaluates the brain activation among regions, which
enables us to study how the brain is functionally connected and
how these intrinsic networks are modulated by the cognitive
workload (Calhoun and Pearlson, 2012).

The brain activation was identified with functional magnetic
resonance imaging (fMRI) and their modulation with speed was
investigated during simulated driving (Calhoun et al., 2002). The
authors found that the signal in frontoparietal regions decreased
exponentially with a rate proportional to the driving speed. They
also found that increases in the cerebella and occipital areas,
presumably related to the complex visuomotor integration, were
activated during driving but not associated with the driving speed
(Calhoun et al., 2002).

The brain activation among cortex areas was found to differ
with familiar or unfamiliar routes. For example, significant
activation was found in the middle temporal and occipital cortex
and in the cerebellum for the unfamiliar route. A training period
and a familiar, monotonous route may lead to a reduction in
attention and perception (Mader et al., 2009). Furthermore, the
brain activity assessed in terms of regional response and regional
interactions in highly trained racing-car drivers was found to
differ from that of subjects with an ordinary driving experience
(Bernardi et al., 2014).

The brain activation during actual car-driving on the road was
demonstrated to be similar to that of simulated driving and visual
perception and visuomotor coordination were the main brain
functions while driving (Jeong et al., 2006). However, autonomic
and emotional responses such as attention and autonomic
arousal should be considered using actual driving (Jeong et al.,
2006).

fNIRS has been proven to be a reliable method to
represent the cortical activities of the brain network during
driving (Tsunashima and Yanagisawa, 2009; Yoshino et al.,
2013b; Lin and Lin, 2016), which monitors spontaneous
hemodynamic oscillations from cortical regions. Compared with
other neuroimaging methods such as fMRI, fNIRS requires
relatively few physical constraints and is suitable for measuring
moving subjects. Moreover, fNIRS exhibits a higher sampling
rate (approximately 10 Hz) than fMRI (approximately 1 Hz),
implying a better time resolution.

Several studies show that functional connectivity (FC) can
be assessed using fNIRS data in drivers (Wang W. et al., 2016;
Xu et al., 2017). FC is generally inferred by the correlation
between nodal activities on the basis of blood oxygenation
level-dependent fMRI or coherence in electro- or magneto-
encephalogram signals acquired during task performance or
the resting state (Park and Friston, 2013). However, FC
does not provide the mechanisms of neuronal coupling.
Effective connectivity (EC) is defined as the influence that a
node exerts over another under a network model of causal

dynamics and is inferred from a model of neuronal integration,
which defines the mechanisms of neuronal coupling (Friston,
2011).

EC is usually computed using several methods, including
dynamic causal modeling (DCM; Friston et al., 2003), Granger
causality (GC; Granger, 1969), and structural equation modeling
(SEM; Anderson and Gerbing, 1988). The basic idea of GC
was proposed by Wiener and was then successively formalized
by Granger using an autoregressive model (Granger, 1969;
Bressler and Seth, 2011). Subsequently, Geweke introduced the
conditional GC (CGC) algorithm to extend GC to a conditional
case (Geweke, 1982). Recently, GC has been used to assess the
directionality of neuronal interactions in both the frequency
and the time domain (Im et al., 2010; Sitaram et al., 2014;
Anwar et al., 2016; Cai et al., 2016). Compared with GC,
SEM becomes unstable when the data is presented as a time
series, while DCM always requires the selection of a prior
model in advance, which may prove to be a very complex
process because of the presence of multiple variables. The EC
networks among overlapping core regions recruited by motor
execution and motor imagery were explored by using CGC and
on fMRI data. It was demonstrated that more circuits of EC
among the selected seed regions were activated during right-hand
performance than during left-hand performance (Gao et al.,
2011).

This study hypothesizes that driving as a complex activity
would activate a brain interaction among different brain areas
and strengthen the EC of the brain network compared to
the resting state. Given that PFC significantly contributes to
cognitive behavior (Miller and Cohen, 2001), MA is highly
associated with sensation and movement control (Peterka,
2002), and VA plays an important role in processing visual
information (Uchiyama et al., 2003). Understanding the
cooperation mechanism of these brain areas during driving
can help explain how the cognitive workload influences
the brain network. In this study, EC was measured using
CGC, which is deemed suitable for multivariate time series
data and requires no prior knowledge of the directions of
connectivity among different brain areas (Gao et al., 2011).
This study aimed to achieve the following goals: (1) to
investigate the activation status between actual driving and
the resting state; and (2) to assess the EC among different
brain areas and examine how cognitive workload affects such
connectivity.

MATERIALS AND METHODS

Subjects
Twelve young male subjects were recruited from the university
for this study (age: 24.5 ± 2.8 years, BMI: 23.6 ± 2.3).
The subjects were not under psychotropic medication
(e.g., stimulants, anti-depressants and anxiolytics) and had
no history of neurological injury or disease, seizure disorder,
or psychiatric diagnosis based on an interview. All subjects
were right-handed according to the Edinburgh Handedness
Inventory (Oldfield, 1971) and were clear of the following
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FIGURE 1 | Experiment location. The driving route is cycling as A-B-C-D-E-A.

characteristics: hypertension, neurological or psychiatric
diseases, smoking or drinking habits and abnormal heart,
lung, and kidney functions. All subjects were paid for their
participation. The experimental procedure was approved
by the Human Ethics Committee of the National Research
Center for Rehabilitation Technical Aids and was conducted
in accordance with the ethical standards specified by the
Helsinki Declaration of 1975 (revised in 2008). Written
informed consent was obtained from all subjects before study
enrollment.

Experimental Procedure and
Measurements
This experiment was performed on an annular route in the
Xinglong Mountain Campus of Shandong University, Jinan,
China (Figure 1). This experimental route is approximately
1400 m long and covers five corners (A-E), where the A-B-C
section is slightly downhill, the C-D-E section is flat, and the E-A
section is slightly uphill.

A Toyota Yaris-2011 subcompact car and a Toyota E’Z-2011
FUV were used for this experiment. The former was used as
the test car and the latter was used as the leading car. For the
test car, a 2000W inverter was used to convert the 12V DC
of the vehicle battery to 220V AC for the power supply of the

TABLE 1 | Distribution of the channels in the six brain areas.

Brain regions Channels

Right prefrontal cortex (r-PFC) FP2, AF4
Left prefrontal cortex (l-PFC) FP1, AF3
Right motor area (r-MA) FC2, FC4, C2, C4
Left motor area (l-MA) FC1, FC3, C1, C3
Right visual area (r-VA) PO4, O2
Left visual area (l-VA) PO3, O1

NIRS instrument and laptop. Amulti-channel tissue oxygenation
monitor (NirSan Danyang Huichuang Medical Equipment Co.
Ltd.) was utilized to record the delta [HbO2] of the subjects.
The optodes were positioned over left PFC (l-PFC: FP1 and
AF3), right PFC (r-PFC: FP2 and AF4), left MA (l-MA: FC1,
FC3, C1 and C3), right MA (r-MA: FC2, FC4, C2 and C4),
left VA (l-VA: O1 and PO3), and right VA (r-VA: O2 and
PO4) with 16 channels in accordance with the International
10/10 System (Table 1, Figure 2). The sampling rate was set to
10 Hz.

FIGURE 2 | Optode placement of 16 channels. Red dots denote the source
optodes, green dots denote the detector optodes, and blue dashed circles
represent the corresponding brain areas. The measurement channels (black
circles) in the prefrontal cortex (PFC), motor-related areas (MA) and
vision-related areas (VA) are in accordance with the international
10/10 system.
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The experiment was divided into three sessions, namely,
resting, task_1 (simple-driving) and task_2 (car-following) states.
Each session lasted 5 min following a 5-min rest after each
session. The subjects were instructed to familiarize themselves
with the protocol for performing the tasks prior to the
experiment. In the resting state, the subjects were instructed
to remain still and relaxed with their eyes open, hands on the
steering wheel and feet on the pedals while remaining seated on
the driver’s seat. In the task_1 state, the subjects were required
to drive in the right lane within a speed of around 25 km/h.
In the task_2 state, the driver in the leading car was asked to
drive at a constant speed of 25 km/h. The subjects in the test car
were asked to drive at a safe distance from the leading car and
maintain the distance as far as possible. In the resting state, the

engine was turned on as air conditioning was needed to maintain
a comfortable temperature in the car. After each session, subjects
were asked to complete the NASA Task Load Index (NASA-
TLX), whose rating range was from 0 (no cognitive workload) to
100 (heavy cognitive workload), to rate the subjective cognitive
workload (Hart and Staveland, 1988). Two persons (the subject
and the recorder) were in the car during the entire experiment
session.

Data Processing
Pre-Processing
The data pre-processing and wavelet-based coherence analysis
methods have been described in our previous studies

TABLE 2 | Comparison in the connection strength of the subjects among three states (A; resting-task_1-task_2), (B; resting-task_1), (C; resting- task_2) and (D;
task_1-task_2).

(A) resting-task_1-task_2

From r-PFC l-PFC r-MA l-MA r-VA l-VA
/ To

r-PFC (∗) (∗)
l-PFC (∗)
r-MA
l-MA
r-VA
l-VA

(B) resting-task_1

From r-PFC l-PFC r-MA l-MA r-VA l-VA
/ To

r-PFC (∗) +
l-PFC
r-MA
l-MA appear appear
r-VA appear appear appear
l-VA appear appear

(C) resting-task_2

From r-PFC l-PFC r-MA l-MA r-VA l-VA
/ To

r-PFC
l-PFC
r-MA
l-MA appear appear
r-VA appear appear lost appear
l-VA appear appear

(D) task_1-task_2

From r-PFC l-PFC r-MA l-MA r-VA l-VA
/ To

r-PFC (∗) − (∗) −

l-PFC (∗) −

r-MA
l-MA
r-VA lost
l-VA

“Appear” denotes that the connection does not exist in the former state but appears in the following state and “lost” indicates vice versa. “∗” Denotes that the average
Granger causality (GC) values changes significantly among the states in comparison. “+” Indicates that the change is a significant increase. “−” Denotes that the change
is a significant decrease. Abbreviations: r-PFC, right prefrontal cortex; l-PFC, left prefrontal cortex; r-MA, right motor-related areas; l-MA, right motor-related areas; r-VA,
right vision-related areas; l-VA, left vision-related areas.
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(Bu et al., 2016; Tan et al., 2016; Wang B. et al., 2016). In
the present study, first, a five-order Butterworth band-pass
filter was used: the frequency elements below 0.021 Hz,
which were mainly physiological noises of endothelial
activities, and the elements above 0.145 Hz, which mainly
reflected the respiration and cardiac activities, were removed
(Shiogai et al., 2010). Then the moving average method
was used to remove the outlier terms in the delta [HbO2]
signals.

Wavelet Amplitude
Wavelet transform is a common method for transforming time
series data from the time domain to the time-frequency domain
with appropriate time and frequency resolution. The Morlet
wavelet, which is a Gaussian function modulated by a sine wave
with basic frequency, was used as a mother wavelet to detect
the frequency content. The wavelet amplitude (WA) was the
time-averaged wavelet transform amplitude of delta [HbO2],
which can also indicate the frequency properties over the time
domain.

Conditional Granger Causal Analysis
The following procedure was mainly accomplished with the
GCCA toolbox (Seth, 2010). The basic idea of GC is that for
time series X and Y, if knowing the past information of X helps
to predict the future Y, X is assumed to ‘‘cause’’ Y, which is
shown as FX→Y. CGC is an extension of GC in multivariate
autoregressivemodels by ‘‘conditioning out’’ the influences of the
other time series (Barnett and Seth, 2014; Wang L. et al., 2016).
For time series X and Y chosen as the source and the target,
respectively, all the other time series are composed of Z values,
shown as FX→Y|Z. Each step of this method is described in detail
as follows.

The data was first detrended and demeaned; then, the
Augmented-Dickey-Fuller test and the Kwiatkowski-Phillips-
Schmidt-Shin test were performed to check the covariance
stationarity (Chatfield and Fuller, 1977; Kwiatkowski et al., 1990).
The model order was identified using the Akaike information
criterion and Bayesian information criterion (Akaike, 1974;
Schwarz, 1978).

Second, a multivariate autoregression model was established
to calculate the CGC of the data. The GC values of each
connection between two channels were calculated under a
Bonferroni-corrected significance threshold of p = 0.01 (Seth,
2010).

Three tests were performed to test the validity of the
proposed model: the Durbin-Watson test checked whether
the residuals were serially uncorrelated (Durbin and Watson,
1950), the consistency test was applied to assess the portion
of data captured by this model (Ding et al., 2000), and
a third test was performed as a supplementary test for
consistency to analyze the adjusted sum square error (Seth,
2010).

The existence and the strength of a connection must be
ensured to construct a connectivity graph. On the one hand,
for a single subject, the existence of one connection between
two channels was determined by the GC values under a

FIGURE 3 | Comparison of the NASA-task load index (TLX) among three
states. “∗” Indicates a statistically significant change.

Bonferroni-corrected significance threshold of p = 0.01. At
group level, if the connections between two channels exist over
75% of subjects (Park and Friston, 2013), it was considered
to have a connection between these two channels. In the
connectivity graph, if the connections between two brain areas
exist over 75% of connections between any two channels
from these two brain areas, a connection was considered
to exist a connection between these two brain areas in this
study. On the other hand, the strength of each connection is
defined as the average GC values between two brain areas.
The GC values of the subjects in the three states were
then averaged to establish three matrices, whose elements
denoted the average GC values from one brain area to
another.

Causal Flow
One additional index, causal flow, was applied after establishing
an EC graph. The causal flow of a brain area, which
is denoted as node i in a connectivity graph, is defined
as the difference between its in-degree and its out-degree
(Seth, 2009). A brain area with a positive causal flow exerts
a strong causal influence on a causal network and can
be referred to as a causal source. By contrast, a node
with negative causal flow can be referred to as a causal
target.

Statistical Analysis
The Kolmogorov-Smirnov test and the Levene test were
performed in this study to ensure that the obtained values
met the assumption required by the analysis of variance
(ANOVA) analysis. One-way repeated ANOVA was performed
to assess the main differences in the NASA-TLX scores,
WA, matrices of average GC values, and causal flows
among the resting, task_1 and task_2 states. Then the
post hoc test was performed. The statistical significance was
set to p < 0.05 with Bonferroni-correction for pair-wise
comparisons.
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FIGURE 4 | Delta [HbO2] signals of one subject. The distribution of the channels is the same as that in Table 1 and Figure 2. For each channel, the horizontal X-axis
shows the time and the vertical Y-axis shows the delta [HbO2] signals. The signals of different colors represent different delta [HbO2] signals in different states.

RESULTS

Cognitive Workload
Figure 3 shows the comparison of the cognitive workload
among three states through NASA-TLX. The NASA-TLX scores
significantly increased as the states changed from the resting state
to the task_2 state. Significant changes were observed among the
three states (resting-task_1-task_2: p < 0.05, F(2,33) = 45.3305;
resting-task_1: p < 0.05, F(1,22) = 55.5834; resting-task_2:
p < 0.05, F(1,22) = 92.2196; and task_1-task_2: p = 0.0428,
F(1,22) = 4.6235).

Wavelet Amplitude
Figure 4 gives an example of the delta [HbO2] signals of one
subject after pre-processing. As shown in the picture, for most
channels, especially the channels in VA, the fluctuations of delta
[HbO2] signals in the task_2 state were larger than in the other
two states. Figure 5 shows a comparison of the WA of the
subjects in six brain areas among the three states. The WA of
right MA and VA was higher than that of the left part of the
brain in MA and VA. The WA increased with an increase in
the cognitive workload. According to the ANOVA test results,
statistically significant differences were observed in bilateral PFC
among the three states (resting-task_1-task_2; r-PFC: p = 0.0071,
F(2,33) = 5.7682; l-PFC: p = 0.0298, F(2,33) = 3.9172), resting-
task_1 state (r-PFC: p = 0.0072, F(1,22) = 8.7867; l-PFC: p = 0.0157,
F(1,22) = 6.8510), and resting-task_2 state (r-PFC: p = 0.0028,
F(1,22) = 11.3614 ; l-PFC: p = 0.0102, F(1,22) = 7.8985).

FIGURE 5 | Comparison of the WA in the six brain areas among the three
states. “∗” Indicates a statistically significant change. Abbreviations: r-PFC,
right prefrontal cortex; l-PFC, left prefrontal cortex; r-MA, right motor-related
areas; l-MA, right motor-related areas; r-VA, right vision-related areas; l-VA, left
vision-related areas; WA, wavelet amplitude.

EC Graphs
Figures 6A–C presents the GC connectivity graphs of six brain
areas in the three states, respectively. Figures 7A–C presents the
average GC value matrices of six brain areas in the three states,
respectively. Table 2 compares the connection strength among
the three states.

There were more connections among brain areas in the task
states than in the resting state. The connections from bilateral
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FIGURE 6 | EC graphs of six brain areas in the (A) (resting), (B) (task_1) and
(C) (task_2) states, respectively. The connection with double-headed arrows
denotes the connection in EC is bidirectional. The connection with single head
arrow denotes the connection in EC is unidirectional. Different colors represent
different connection strength. The colder color represents the stronger
connection strength. Abbreviations: r-PFC, right prefrontal cortex; l-PFC, left
prefrontal cortex; r-MA, right motor-related areas; l-MA, right motor-related
areas; r-VA, right vision-related areas; l-VA, left vision-related areas; EC,
effective connectivity.

FIGURE 7 | Average GC value matrices of six brain areas in the (A) (resting),
(B) (task_1) and (C) (task_2) states, respectively. Each element in the matrix
denotes the average GC values across all subjects. The causal line is from
bottom row to the left column. The darker color of the block represents the
higher GC values of the connection. Abbreviations: r-PFC, right prefrontal
cortex; l-PFC, left prefrontal cortex; r-MA, right motor-related areas; l-MA, right
motor-related areas; r-VA, right vision-related areas; l-VA, left vision-related
areas; GC, granger causality.
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FIGURE 8 | Comparison of the causal flows in the six brain areas among the
three states. “∗” Indicates a statistically significant change. Abbreviations:
r-PFC, right prefrontal cortex; l-PFC, left prefrontal cortex; r-MA, right
motor-related areas; l-MA, right motor-related areas; r-VA, right vision-related
areas; l-VA, left vision-related areas.

PFC to bilateral VA, from bilateral VA to l-MA, and from l-MA
to r-VA ‘‘appeared’’ from the resting state to the task_1 state. The
connection from r-MA to r-VA was ‘‘lost’’ from the task_1 state
to the task_2 state. For the connection strength, among the
three states (resting-task_1-task_2), the connection strength of
connections from l-PFC to r-PFC (p = 0.0184, F(2,33) = 4.5173),
from r-VA to r-PFC (p = 0.0375, F(2,33) = 3.6327), and l-PFC
(p = 0.0423, F(2,33) = 3.4863) showed significant difference. From
the resting state to the task_1 state, the connection strength
of the connection from l-PFC to r-PFC increased significantly
(p = 0.0158, F(1,22) = 6.8365). From the task_1 state to the
task_2 state, the connection strength of the connection from
l-PFC to r-PFC (p = 0.0137, F(1,22) = 7.1812), from r-VA to
r-PFC (p = 0.0152, F(1,22) = 6.9311) and l-PFC (p = 0.0109,
F(1,22) = 7.7326) decreased significantly.

Causal Flow
The granger causal flows are shown in Figure 8. In the resting
state, the bilateral PFC can be considered as causal targets while
bilateral MA and VA can be considered as causal sources. In the
task_1 state, the status remained the same. In the task_2 state,
the l-MA became a causal target and the in-out degree of l-MA
decreased significantly from the task_1 state to the task_2 state
(p = 0.0114, F(1,22) = 7.6337).

DISCUSSION

The changes in the EC of the brain network among PFC,
MA and VA in the resting, simple-driving and car-following
states were assessed in this study using CGC. Several interesting
findings were obtained: (1) the WA changes showed the same
trend as that of the cognitive workload from the resting state
to the task states. The WA of left MA and VA was higher
than that of the right brain areas, and the WA of the bilateral
PFC changed statistically significantly along with the change
in the cognitive workload; (2) the connection strength of EC
increased in the task_1 state as compared with that in the resting
state, whereas it decreased in the task_2 state as compared
with that in the task_1 state; and (3) the bilateral PFC were

causal targets, and the bilateral VA and MA were causal sources
except for l-MA became a causal target in the task_2 state.
These findings suggest that the EC of the brain network can be
strengthened by a cognitive workload, and can also be weakened
by a superfluous cognitive workload such as driving with a
car-following task.

The typical hemodynamic response to brain activation is
the basis for NIRS measurement. When a specific brain area is
activated, neural metabolism is supported through a localized
vascular response that causes an influx of oxygen-rich blood to
the active area and the surrounding tissue. This phenomenon
leads to an increase in [HbO2] and a decrease in [HbR] in
the active brain area (Matthews et al., 2008). The functional
hyperemia mechanism adjusts the distribution of cerebral blood
flow on the basis of the functional activities of different brain
regions (Iadecola, 2004). Therefore, when the activity level of the
cerebral cortex region increases or decreases, the blood flow in
this area changes accordingly, and this change can be reflected by
the fNIRS signals ([HbO2]).

It was considered that the cerebral NIRS signals originated
from neurovascular coupling and systemic activity components
(Holper et al., 2014). The sympathetic nervous system and
vascular myogenic responses could play a part in neurovascular
coupling (Schroeter et al., 2004; Hamner et al., 2010). The signals
originate from the intrinsic myogenic activity of smooth muscle
cells in resistance vessels and are regulated by the neurogenic
activity in the vessel wall (Shiogai et al., 2010). A change in the
WA reflects a change in the brain hemodynamic activity level in
the neurovascular systemic activity components among different
cognitive driving workloads.

Previous studies have highlighted the important role that PFC
plays in executive attentional control, eye movement generation,
cognitive control and other abstract reasoning functions (Miller
and Cohen, 2001). MA have been correlated with the planning,
control, and execution of body movements (Zhang et al., 2010).
VA, as the visual processing center, receive visual information
stemming from the eyes and elicits visual stimuli as object
recognition and visuospatial guidance to the other cortex areas
(Uchiyama et al., 2003). The WA of bilateral PFC changed
significantly with the change of the cognitive workload indicated
by the NASA-TLX scores. The increases in the WA were
statistically significant from the resting state to the task states,
while the increase between the task_1 and the task_2 states did
not exhibit such change. This finding may be attributed to the
fact that PFC was more sensitive to the change of cognitive
work state. The car-following task needed more visuomotor
control than the simple-driving task, which was related more
to VA than to PFC and MA (Uchiyama et al., 2008). The
WA of VA was clearly higher than that of PFC and MA. The
significant right lateralization of the WA in VA was possibly
attributed to the fact that the left hemisphere directs attention
to the right space, but the right hemisphere directs attention
to both spaces (Heilman and Van Den Abell, 1980; Kashiwagi
et al., 1990). The right lateralization of the WA in MA was
probably due to the fact that all subjects were right-handed, and
therefore manipulation with their left hand was considerably
harder than that with their right hand. Furthermore, according
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to Chinese laws, the vehicle is driven in the right lane, thus
the visual stimuli come mainly from the left side of the
view. This may explain the significant right lateralization of
the WA in VA.

The directions and the connection strength of the connections
of EC can reflect the influence of one brain region on another
(Park and Friston, 2013). Some studies have revealed that
movement impulses generated by the supplementary motor
and premotor cortexes are induced by two sources: one is the
occipital-parietal lobes of the posterior attention system, which
correlates with the visual-spatial orientation and integration
functions; and the other is PFC from the anterior attention
system, which serves a relatively higher-level attention function
such as executive attentional control in more complex cognitive
tasks associated with problem-solving and decision-making
(Posner, 2012). For the visual motion information, it is
considered to be generated by VA, and then follows two main
streams: one follows the dorsal stream to the parietal lobe, and
the other follows the ventral stream to the temporal lobe, then
the two streams eventually converge in PFC. PFC generates the
stimuli for eye movements to obtain visual information (Schiller
and Chou, 1998; Rizzolatti and Matelli, 2003).

In this article, the existence of a group-level effective
connection between two areas was ensured by a threshold of
75% of subjects. As shown on the constructed EC graphs in
this study, the brain activity information transitions among
PFC, MA and VA were well connected in the task states.
Bilateral PFC to bilateral VA connections ‘‘appeared’’ as the
need for visual information increased from the resting state to
the task_1 state. This is the same reason that the connection
‘‘appeared’’ from l-MA to r-VA. The connections from bilateral
VA to l-MA ‘‘appeared’’ as driving manipulations were mainly
implemented by the right hand under the guidance of visual
information. During the task_2 state, the connection from r-MA
to r-VA became ‘‘lost’’, which implies that for the car-following
task, the feedback neural information transition from r-MA to
r-VA decreased, and the influence exertion from r-VA to l-MA
relatively increased.

The connection strength from r-VA to bilateral PFC
decreased significantly from the task_1 state to the task_2 state.
When performing the car-following task, the subjects would
concentrate more on the view in front of the car and less on
the view on the left and right sides, resulting in a decrease in
the influence strength from r-VA to bilateral PFC. Furthermore,
the connection strength from l-PFC to r-PFC increased from
the resting state to the task_1 state, whereas it decreased during
the task_2 state compared with that in the task_1 state. The
above mentioned increase implies that driving as an intense
cognitive behavior can help strengthen the connection between
the bilateral PFC for attention control, planning, decisionmaking
and other functions (Yoshino et al., 2013b). The car-following
task imposed a larger cognitive workload on subjects than the
simple-driving task. This increase in the cognitive level led to
a decrease in the coordination of bilateral PFC for attention
maintenance and cognitive control.

The positive in-out degree implies that brain area is a
causal source in the EC, and the negative degree implies

that the brain area served as a causal target. From the
resting state to the task states, the in-out degree of PFC
exhibited an increasing trend. This trend implies that with
an increase in the cognitive workload, the activity of PFC
for cognitive function also increases. Additionally, the increase
corresponded with the decreasing connection strength from
l-PFC to r-PFC. Furthermore, left dorsolateral PFC is necessary
for manipulating information in the working memory and
right dorsolateral PFC is critical for manipulating information
in a broader range of reasoning contexts (Barbey et al.,
2013). The in-out degree asymmetry between r-PFC and
l-PFC was consistent with the different levels of need for
spatial reasoning and visuomotor control for different cognitive
workload behaviors. As VA execute the function of receiving
visual information and eliciting visual stimuli to other areas
(Uchiyama et al., 2003), they always presented as causal
sources, and the in-out degree decrease of r-VA matched the
decrease in the connection strength from r-VA to bilateral
PFC. From the task_1 state to the task_2 state, the in-out
degree of l-MA, which controlled the movement function of
the contralateral part of the body, exhibited a statistically
significant decrease. In the task_2 state, the right foot performed
more manipulations for the throttle and brake than in the
task_1 state, and l-MA was influenced considerably by the visual
stimuli.

CONCLUSION

In this study, the EC was calculated and analyzed using CGC
for actual driving situations. The hemodynamic activity level of
brain areas showed an increasing trend with the increase in the
cognitive workload, particularly in bilateral PFC. The connection
strength of EC was enhanced from the resting state to the simple-
driving state, but it deteriorated during the car-following task.
The PFC in EC appeared as the causal targets while MA and
VA appeared as the causal sources. However, with a subtask of
car-following, l-MA turned into causal targets. These findings
indicate that the hemodynamic activity level of brain increases
linearly with an increase in the cognitive workload. Furthermore,
the EC of the brain network can be strengthened by a cognitive
workload, and can also be weakened by a superfluous cognitive
workload such as driving with a car-following task. This study
proposes a method for evaluating the effects of the cognitive
workload of drivers.

LIMITATIONS OF THE STUDY

One limitation of this study was the interference of Mayer waves
(0.08–0.1 Hz). Mayer waves are oscillations of arterial pressure
occurring spontaneously in conscious subjects at a frequency
lower than that of respiration and are tightly coupled with the
synchronized oscillations of the efferent sympathetic nervous
activity (Julien, 2006). As physiological noise induced by the
global systemic physiological processes in fNIRS measurement,
Mayer waves may affect the EC. Although the task-related
changes in connectivity mainly reflects the synchronization of
neurovascular coupling, the interference of Mayer waves should
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be taken into account in a future study. In addition, the
number of subjects included in the present work was relatively
limited in light of the current standards for neuroimaging
experiments (Friston, 2012). Third, future research will focus on
activation level in the standard space using NIRS-SPM (Ye et al.,
2009).
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