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Abstract 

We develop a new mathematical model for optimizing the loading of double-stack container trains. 

We analyze the practical importance of multiple objectives reported in the literature and formulate 

two new objectives: maximizing profit and minimizing tardiness. The model accounts for containers 

of different types, weights, and heights, and their feasible loading combinations on a wagon 

satisfying real operational constraints. The model is solved optimally by CPLEX after exploiting the 

problem specific properties. A decision support system based on this optimization model has been 

deployed by a major train operator in India. Numerical cases show that our model can reduce the 

container haulage cost by about 3%. 
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1. Introduction 

1.1 Background 

Intermodal container transport is an efficient mode of freight transport, which is growing 

globally at 6.1% per year (Container Terminal Foresight, 2014). In India, container trains took up 

33% of the total land-based container transport in 2013 (RITES, 2014). Due to this huge demand, 

double-stack loading of containers on trains has become an important strategy to achieve more 

cost-efficient rail haulage. Containers on these trains are loaded two stacks high (one above the 

other) on the wagons as shown in Figure 1. Compared to the conventional single-stack loading, 

the use of double-stack trains enables: (i) faster processing of containers at terminals; (ii) less 

congestion in the rail network due to more containers per wagon; and (iii) more efficient 

container trains due to less requirement of locomotives, rakes, crew, and fuel consumption per 
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container. The collective economic and environmental gains obtained from the double-stack 

train operation can be huge. For example, the number of trains required for container 

movement in North Western and Western Railways in India has decreased by 20 to 48 % due to 

the double-stacking. 

 

Figure 1. A double-stack container train in India 

Thanks to the above sizable benefits, many countries are currently planning to build new 

railways or renovate their existing infrastructures to provide enough vertical clearance for 

operating double-stack trains. These countries include India, the US, Canada, China and Australia. 

For example, India is building dedicated freight corridors that have enough vertical clearance 

under the overhead catenary to operate double-stack trains (DFCCIL, 2016). Thus, double-stack 

container transport is expected to grow steadily in these countries for the next several years. 

Container train operator (CTO) and port (or terminal) operator are the two major entities in the 

container rail transport ecosystem. A CTO is responsible for the container to train assignment, 

train routing and fleet management in the rail network. The port operator’s business is limited 

to the container stevedoring, storage and ancillary services. Figure 2 shows the roles of the CTO 

and port operator in the entire process of container handling at a typical large seaport. Upon 

arrival, the containers are sorted and stacked in a container yard according to their types and 

destinations. Before a train is available for loading, the CTO chooses a set of containers from the 

container inventory at the port (which is termed “pendency”) and instructs the port operator to 

load them on the train. The CTO’s selection of containers is based mainly on the objective of 

maximizing profit, while other factors like timeliness of delivery are also taken into 

consideration. This set of containers is retrieved from the container yard by the port operator 
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using cranes (e.g. RTGs and RMGs1) and internal trucks (trailers). Using another set of cranes on 

the rail-side, these containers are loaded on the rail wagons while satisfying various technical 

criteria such as wagon payload limit and safety requirements. 

 

 Figure 2. Container stevedoring and storage at a seaport, and the focus of the DSLP 

The haulage cost charged by the railway company to the CTOs depends mainly on the containers’ 

type, weight, distance and the train route. To encourage double-stack loading, the railways 

offers discount on the haulage cost of the containers loaded in the upper-stack of a train; e.g. 

see Rates Circular (2014) for the detailed cost structure followed by Indian Railways. Considering 

the haulage cost structure, CTOs seek to optimize the container selection and container-to-

wagon assignment for double-stack trains with an objective of minimizing the container rail 

haulage. This problem, termed as the double-stack container train loading problem (DSLP), has 

not been adequately studied in the literature. 

In the next section, we review the literature related to the DSLP. We define the research 

problem and its scope in Section 1.3. 

1.2 Literature review 

The DSLP is complicated because each wagon can have multiple loading pattern options (e.g., 

one 40-ft container above two 20-fts, or one 40-ft above another 40-ft) given the varied 

 
1 RTG refers to Rubber Tyred Gantry, and RMG refers to Rail Mounted Gantry. 
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container sizes and heights. However, only a few studies were found to be related to this 

problem, despite an increase in the research on intermodal freight transport (Bontekoning et al., 

2004, Boysen et al. 2013). Among these studies, some relied on Monte Carlo simulation (Jahren 

and Pacanovsky, 1993; Pacanovsky et al., 1995) and thus were unable to furnish optimal double-

stack loading plans. Lai et al. (2008a, b) developed mathematical programs that focused on 

minimizing aerodynamic resistance of the intermodal trains, but ignored the more important 

objective of profit maximization and double-stack operational constraints. Other analytical 

works for double-stack train planning include Lang et al. (2011) and Chih et al. (1990)2, where 

heuristic approaches were employed to solve their models. Of note is that they did not multiple 

double-stack loading patterns, container heights, and necessary operational constraints. Hence, 

to our best knowledge, there is no mathematical model in the literature that can properly 

account for the realistic complexities and unique operating features of the DSLP, which is 

necessary for a successful real-world application of optimal double-stack container train loading. 

To furnish a comprehensive review of the literature on the DSLP, we further extend our review 

to include the studies on single-stack train loading that are relevant to the DSLP. Note that we 

are not intended to provide a comprehensive review of the container rail transport planning 

literature, since there already exist a number of reviews on that topic; for example, Steenken et 

al. (2004), Günther and Kim (2005), Kim and Günther (2006), Caris et al. (2008), Meisel (2009), 

Bierwirth and Meisel (2010), and Boysen et al. (2013). 

The single-stack train studies we have reviewed include Ambrosino and Siri (2015), Corry and 

Kozan (2006, 2008), Feo and Gonzaliez-Velarde (1995), Bruns and Knust (2012), Bruns et al. 

(2014), Bostel and Dejax (1998), and Lutter and Werners (2014). These studies formulated 

binary linear programming and mixed integer programming models for different objectives and 

sets of constraints; and the models were solved by CPLEX or heuristic algorithms (e.g. simulated 

annealing, GRASP, tabu-search). In short, these single-stacking works cannot be directly 

extended to solve the DSLP because the DSLP involves a distinct set of operational constraints 

such as safety and feasibility of different double-stack loading patterns. These constraints are 

either absent or unbinding for single-stack train loading. 

However, the review of the single-stacking studies can unveil what objectives should be 

included in the DSLP, since the CTOs have the similar interests for both single-stack and double-

 
2 Chih et al. (1990) focused on network-wide wagon and container distribution at an aggregate level. Their 
model is not suitable for the DSLP. 
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stack train operations. To this end, in Table 1, we summarize 11 objectives used in the 

optimization models of both the single- and double-stacking studies reviewed here. We further 

surveyed the management of four major CTOs in India, including two multinationals, on their 

opinions regarding the relative importance of the objectives in real-world operations. All the 

four companies claimed that haulage cost and timeliness of container delivery are the primary 

and secondary business goals for planning of container train loading in Indian Railways. Based 

upon the responses of the practitioners, we mark the relative importance of the 11 objectives in 

Table 1 in terms of their impacts on the total rail haulage cost and the timeliness of delivery; see 

columns 5 and 6 in the table. 

The first three objectives in Table 1 all target at maximizing the utilization of the train. Among 

them, maximizing slot utilization is the most commonly used objective in the literature, where 

the slot utilization is defined as the ratio of the total TEUs (twenty-feet equivalent units) loaded 

and the total loading capacity of the train (measured in TEUs). Clearly, these objectives3 are 

most closely aligned with the primary business goal, i.e. reducing the haulage cost. For example, 

in Indian Railways, the loading of one additional 40-ft container on a 1200-km distance train will 

result in a cost saving of about INR (Indian Rupee) 37000 for the CTO. This cost is at least 25 

times more than the total cost of crane and truck movements required for moving the same 

container from the container-yard to the train. Maximizing train utilization is also aligned with 

the second business goal: timely delivery. Note that the rail haulage of a container may take 

over 24 hours while the intra-terminal movement from the yard to the train takes only a few 

minutes. 

Objective 4 in the table minimizes the aerodynamic resistance4 of a train, which is equivalent to 

minimizing the air-gap between containers and/or trailers (Lai et al., 2008a, b). Reducing the 

aerodynamic resistance will result in less fuel consumption, and thus save the train’s fuel cost. 

However, this objective is more important for a train that carries a diverse mix of different 

containers, trailers, and swap-bodies. The cost saving from minimizing the aerodynamic 

resistance is small for trains carrying only standard-sized containers, as admitted in the cited 

works. Objective 5 aims to reduce the wear on the train’s breaking system by shifting the 
 

3 Precisely, the third objective, minimizing train length, is not suitable for the container train loading problem 
discussed in this paper. This is because the decision of the train’s length is a part of a more complicated train-
sizing problem that depends, among other factors, on the network-wide distributions of empty wagons and 
the demand. For more details of the train sizing problem formulated at the network scale, please refer to 
Powell and Carvalho (1998) and Chih et al. (1990) among others. 
4 For a fuller discussion on the aerodynamic resistance of freight trains, please refer to Lai and Barkan (2005), 
Di and Liu (2007) and Li et al. (2014). 
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horizontal center of mass towards the locomotive. This will reduce the maintenance cost of the 

breaking system, but the reduction is marginal as compared to the saving from improving the 

train’s utilization. 

Objectives 6 and 7 were proposed to maximize the stability of the train so as to reduce the risk 

of wagon derailment. They are not aligned with either the haulage cost reduction or 

improvement of the timeliness of container delivery. They are better modeled as constraints 

than objectives because railway guidelines always ensure that the safety of the train is never 

compromised by any subjective preferences of the CTO and port operator. For example, Indian 

Railways stipulates a threshold for the maximum vertical center of gravity of every wagon. 

Further, it prohibits the double-stacking of containers in case of heavy winds. 

Unlike objectives 1-7, the last four objectives reflect the concerns of the port operator regarding 

the efficiency of intra-terminal container handling. Port operators are interested in minimizing 

crane movements (objectives 8 and 9), truck movements (objective 10), and the setup time for 

changing the pin-configurations of the wagons5 (objective 11). These objectives are given a 

lower importance mainly due to the relatively much lower cost of intra-terminal container 

movements. Recall that the cost saving for loading an extra container to a train is about 25 

times the cost for its intra-terminal movement and loading operations. Thus these objectives are 

better formulated in a separate intra-terminal operations planning problem since it requires a 

full consideration of the terminal layout, height of stacks in the container yard, availability and 

assignment of internal-trucks and cranes; see for example (Murty et al., 2005) and Wang and 

Meng (2012) 6. This intra-terminal container operations planning problem accepts the results of 

train and vessel planning problems as the inputs. 

 

 
5 Manual change of the pin-configuration, if required, takes hardly one minute per wagon to complete. 
6 This is also consistent with the status-quo of practice; i.e., the port operators do not interfere with the 
container selection process for vessels and trains. 
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Table 1. Comparison of objectives of optimization models for the container train loading problem 

S.N. Optimization objective Literature Target 
Impact on haulage 

Focus 
Cost Timeliness 

1 Max slot utilization 
Ambrosino and Siri (2015); Bruns and Knust (2012); 
Bruns et al. (2014); Jahren and Pacanovsky (1993); 
Pacanovsky et al. (1995) 

Train 
Utilization 

High High 

Train 
operations 

2 Max total TEUs loaded Lang et al. (2011) 

3 Min train length or number of wagons 
Corry and Kozan (2008); Feo and Gonzaliez-Velarde 
(1995) 

4 
Min total adjusted air-gap length (aerodynamic 
resistance) 

Lai et al. (2008a, b) 
Aerodynamic 
efficiency 

Moderate Low 

5 Min horizontal center of mass of train Corry and Kozan (2006) Maintenance Low Low 

6 Min vertical center of gravity of train Lang et al. (2011) Safety NA NA 

7 
Min weight difference of 20 ft containers loaded 
on the same wagon 

Lang et al. (2011) Safety NA NA 

8 Min container double-handling inside terminal 
Ambrosino and Siri (2015); Corry and Kozan (2006); 
Corry and Kozan (2008) 

Crane moves Low Low 

Intra-
terminal   
operations 

9 Min total distance travelled by cranes (gantries) Bostel and Dejax (1998); Corry and Kozan (2006) Crane moves Low Low 

10 
Min trucks movements (truck-km) between yard 
and train 

Ambrosino and Siri (2015); Bruns and Knust (2012); 
Bruns et al. (2014); Corry and Kozan (2008) 

Truck moves Low Low 

11 
Min setup time of changing wagons’ pin 
configurations 

Bruns and Knust (2012); Bruns et al. (2014); Corry and 
Kozan (2008) 

Labor cost Low Low 
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1.3 Research scope and overview of our work 

Based upon the literature survey presented above and the practical requirements of the CTOs, 

we define the DSLP as minimizing the rail haulage cost (or equivalently, maximizing the CTO’s 

profit since the revenue associated with the given containers is fixed), while ensuring timely 

delivery of the containers, by selecting the containers from a candidate set and assigning them 

to a set of wagons of a train in the feasible loading patterns. 

We hereby clarify that the network-wide train planning, including train routing, stops, schedules, 

and the associated empty wagon distribution are higher-level decisions, and are assumed to be 

given for the DSLP. These network-wide rail operations cannot be incorporated into the DSLP 

model because otherwise the model would be too complicated and mathematically intractable. 

For the same reason, we exclude the intra-terminal operations planning (e.g. optimizing truck 

and crane movements in the terminal) from the DSLP too, as already explained in the above 

section. Therefore, the scope of the DSLP is limited to container selection and container-to-

wagon assignment, as shown in Figure 2.7 

We further limit the DSLP to model a single train, albeit our proposed formulation can be easily 

extended to model multiple trains that depart from the same terminal (see Section 4.3). This is 

because practitioners prefer to optimize the loading plan of one train at a time mainly due to 

the multifarious uncertainties in real-life railway and intra-terminal operations. These 

uncertainties include changes in: i) the candidate set of containers available for loading due to 

new container arrivals and changes in the containers’ accessibility in the yard; ii) container 

priorities and urgency; iii) trains’ routes, stops, and schedules due to unexpected weather, 

network congestion, etc.; and iv) the arrival and departure times of ships, trains and trucks. Thus, 

an “optimal” multi-train loading plan which does not consider these uncertainties properly will 

become suboptimal or even infeasible as these uncertainties accumulate over time. In reality, 

often one train is loaded at a time8, and the train’s loading plan is finalized only shortly (less 

than one hour) before the train loading actually starts. Lai et al. (2008b) recommended iterative 

 
7 In the area of railway operations research, it is common to break down a multi-stage, mathematically 
intractable planning problem into several sub-problems and solve them in a sequential manner; see Ahuja et al. 
(2005). 
8 For example, in case of two trains to be loaded, the loading of one-train at a time expedites the dispatching 
of the first train (and its containers) and vacates the rail track for a new incoming train. On the other hand, 
loading of two or more trains simultaneously may result in reduced utilization of the trains, containers, and rail 
tracks at the terminal. 
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use of the multi-train optimization model on a rolling horizon for addressing the uncertainties. 

However, this rolling-horizon optimization approach does not guarantee a better loading plan 

compared to our proposed solution approach, especially when the uncertainties are large. 

Further, it is not embraced by the practitioners because the DSLP model, which is more complex 

than the one proposed by Lai et al. (2018), may take more than an hour to provide an optimal 

multi-train solution. Thus, in this paper, we develop a deterministic optimization model for a 

single train so that the above operational uncertainties can be ignored. Further, when planning 

for the present train, our DSLP model penalizes certain loading patterns to avoid potential 

adverse effects on the loading of future double-stack trains (see Section 2.3). 

In light of the literature review and the research scope defined above, we propose two new 

objectives for the DSLP: i) maximizing profit, which is a more general objective than maximizing 

train utilization; and ii) maximizing total tardiness of selected containers, which prioritizes the 

loading of the oldest containers. Maximizing profit is chosen as the objective instead of the 

equivalent minimizing the haulage cost for a single train because the latter may result in an 

empty train (which has the lowest haulage cost). The second objective (maximizing total 

tardiness) aims at improving customers’ satisfaction and minimizing customer grievances 

regarding the violation of the First-Come-First-Served (FCFS) order. This objective is not always 

needed. For example, at a rake-surplus terminal, all the containers will be served without delay. 

In any case, the profit maximization objective always dominates the second one, as is required 

by the CTOs; see Section 2.3. 

Objective 4 in Table 1, minimizing the aerodynamic resistance, is considered as a constraint in 

our DSLP model based on the following proposition: 

Proposition 1: For any double-stack container train, a near-minimal aerodynamic resistance can 

be achieved by simply grouping the double-stack loaded wagons in the front of the train (i.e. 

near the locomotive), and the empty wagons, if any, towards the tail. 

The objective 5, minimizing the horizontal center-of-gravity (HCG), can be considered as the 

third objective in our DSLP model. However, due to its lower importance and potential conflict 

with the other objectives, we consider this optional objective through a fast heuristic approach 

at the post-processing level. The heuristic is based on the following proposition: 

Proposition 2: The minimum HCG of the train can be nearly attained by arranging the wagon 

loads from the locomotive to the tail of train in a non-increasing order of their total weight. 
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By virtue of these simple properties, the objectives 4 and 5 can be addressed to great extents in 

the DSLP without compromising the two main objectives and without increasing the 

computation time. These properties were overlooked by previous studies (Corry and Kozan, 

2006). 

We incorporate practical constraints into the DSLP such as the limits for wagons’ payload, 

vertical center-of-gravity (VCG) and the weight difference between the two 20-ft containers 

loaded on a wagon, etc. Note too that most previous works have overlooked at least one of 

these practical constraints. 

We propose an exact solution approach to solve the DSLP problem via lexicographic 

optimization using CPLEX. Exact solution approaches are especially preferred over heuristics 

given the huge cost savings from loading just one additional container. The approach is able to 

find an optimal loading plan in practically acceptable computation times, as manifested by our 

extensive numerical cases. A decision support system based on our DSLP model and the solution 

approach has been implemented by a major CTO in India. To our best knowledge, this is the first 

ever real-life implementation of an optimization model for double-stack container train loading. 

The rest of the paper is structured as follows. The multi-objective DSLP is formulated in Section 

2. The solution approach is presented in Section 3. The model and the solution approach are 

validated using both real and hypothetical cases in Section 4. Section 5 introduces the decision 

support system and discusses key practical issues. Insights and future research opportunities are 

summarized in Section 6. 

 

2. Problem formulation 

We first introduce the container types and the feasible loading patterns for the DSLP in Section 

2.1, and describe the practical loading constraints in Section 2.2. Then, we furnish the 

mathematical formulation in Section 2.3. 

2.1 Container types and loading patterns 

In the real world, four types of containers are commonly allowed for the double-stack loading: 

20-ft and 40-ft ISO General (GEN) containers with a height of 8’6” (2.591 m), and 20-ft and 40-ft 

High-Cube (HQ) containers with a height of 9’6” (2.896 m). In Indian Railways, the GEN 
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containers account for about 97% of the double-stack containers and the HQ containers account 

for the rest. For brevity, we only consider these four types of containers in the DSLP model. 

Figure 3 illustrates the six practically feasible loading patterns for a wagon. Patterns 1-3 are 

double-stack: 1) one 40-ft container loaded on top of two 20-ft containers; 2) one 40-ft 

container on top of another 40-ft container; and 3) two 20-ft containers on top of another two 

20-ft containers. Note that the pattern with two 20-fts on top of a 40-ft is not feasible because 

there are no slots (similar to the corner castings) in the middle of the 40-ft container, which are 

needed to securely lock the 20-ft containers on the top. Further, even pattern 3 is quite rare in 

the practice (and prohibited in India) because it is much more unstable than patterns 1 and 2. 

For simplicity, this pattern is also not considered in the presented DSLP model9. In addition, 

patterns 4 and 5 are single-stack, and pattern 6 is an empty wagon. We also ignore the single-

stack pattern with only one 20-ft container on a wagon because it is extremely rare (and 

prohibited in India) due to safety reasons. Finally, the two 20-ft containers in the lower stack in 

pattern 1 must have the same height; i.e., they have to be both GEN or both HQ containers, 

which is not necessary in pattern 4. 

For the modeling purpose, we label the positions of the 20-ft containers on a wagon by A and B, 

and the positions of the 40-fts by E and F, as shown in Figure 3. We denote 𝑚 as the index of a 

container’s position: 𝑚 ∈ {𝐴, 𝐵, 𝐸, 𝐹} , and 𝑗  as the index of a loading pattern: 𝑗 ∈ 𝐽 =

{1, 2, 4, 5, 6}. 

 

Figure 3. Double-stack and single-stack container loading patterns 

 
9 With modest modifications, our DSLP model and solution approach can be applied to cases where pattern 3 is 
also included. 
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2.2 Double-stack loading constraints 

We consider the following key constraints for the double-stack loading: 

(1) Safety constraints. The railways stipulate that the total weight of the containers loaded in 

the upper stack of a wagon cannot exceed the total weight of those in the lower stack. 

Further, the VCG of a loaded wagon cannot exceed a given threshold. 

In the horizontal direction, if the load on a wagon is heavily biased towards one end of the 

wagon, the chance of lifting the wheels on the opposite end of the wagon increases (Lopez-

Gomez, 1987), which may cause wagon derailment when the train is moving. Thus, the 

railways require that the weight difference between the 20s loaded on the front and back of 

every wagon (for patterns 1 and 4) does not exceed a maximum allowable limit.10 

(2) Minimizing the aerodynamic resistance. We specify the following constraints to achieve this 

objective: 

i) The double-stack wagons should appear contiguously on the front side of the train; and 

they are followed by single-stack wagons, if any. 

ii) Empty wagons, if any, should be appended contiguously at the end of the train. However, 

empty wagons cannot coexist with double-stack wagons in the same train. 

Figure 4 illustrates a case where a single-stack wagon is placed between two double-stack 

ones, which creates an air gap between the two double-stack wagons. In this case, swapping 

the loading patterns of this single-stack wagon and a rear-side double-stack wagon can 

reduce the aerodynamic resistance. For the same reason, empty wagons should also be 

arranged contiguously. In case a double-stack wagon appears together with an empty 

wagon in a rake, the upper-stack container of the double-stack wagon can be loaded on the 

empty wagon. This would reduce both the aerodynamic resistance and the VCG. 

 

Figure 4. An example for reducing the aerodynamic resistance 

 
10 Note that the railway authority has detailed guidelines for uniform and stable loading of the cargo in every 
container. Hence, we assume each container to have a uniform density of mass for the modeling purpose. 
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(3) Minimizing the HCG of the train. To achieve this objective, we can specify that the wagons 

are loaded in a non-increasing order of their total weight (including the containers), i.e. 

heavier sets of containers nearer to the locomotive. In most situations, this arrangement of 

the wagons is consistent with what is required above for minimizing the aerodynamic 

resistance (e.g., a double-stack wagon is usually heavier than a single-stack one). However, 

sometimes the two constraints may still conflict. Thus, in the solution approach we choose 

to relax this constraint, and consider this objective at the post-processing stage through a 

heuristic approach; see Section 3.4. 

(4) Group transport of containers. Some customers require that all their containers, booked 

through a common shipping bill, be sent together in one train. It helps the consignees to 

manage the logistics at the destination terminal even if the delivery of the containers is 

delayed.  

2.3 Model formulation 

The DSLP is formulated as a binary mathematical program. A complete list of notation is 

presented in Appendix A. The binary decision variables are defined as follows: 

𝑥𝑘
𝑗
 = 1 if wagon 𝑘 ∈ 𝐾 is loaded in pattern 𝑗 ∈ 𝐽, else 𝑥𝑘

𝑗
= 0; where 𝐾 is the set of wagons 

of the train, and 𝑘 is the wagon index counted from the locomotive. 

𝑦𝑖𝑘
𝑚 = 1 if a 20-ft container 𝑖 ∈ 𝐼20 is assigned position 𝑚 ∈ {𝐴, 𝐵} on wagon 𝑘 ∈ 𝐾,  else 

𝑦𝑖𝑘
𝑚 = 0; 

𝑧𝑖𝑘
𝑚 = 1 if a 40-ft container 𝑖 ∈ 𝐼40 is assigned position 𝑚 ∈ {𝐸, 𝐹} on wagon 𝑘 ∈ 𝐾, else 𝑧𝑖𝑘

𝑚 =

0; where 𝐼40 and 𝐼20 are the sets of all the 40-ft and 20-ft containers available for loading 

on the present train, respectively. 

𝑏𝑠 = 1 if all the containers booked through a shipping bill 𝑠 ∈ 𝑆 are assigned to the train, else 

𝑏𝑠 = 0; where 𝑆 is the set of all the shipping bills with the request of the group transport 

of containers. 

 

We further define the following intermediate binary variables for the assignment of 20- and 40-

ft containers to wagon 𝑘: 

𝑦𝑖𝑘 = 𝑦𝑖𝑘
𝐴 + 𝑦𝑖𝑘

𝐵 , ∀𝑖 ∈ 𝐼20, 𝑘 ∈ 𝐾         (1) 

𝑧𝑖𝑘 = 𝑧𝑖𝑘
𝐸 + 𝑧𝑖𝑘

𝐹 , ∀𝑖 ∈ 𝐼40, 𝑘 ∈ 𝐾         (2) 
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These binary variables also ensure that a container can occupy at most one position on a wagon.  

The primary objective function, viz. profit maximization, is formulated as follows: 

max 𝜋 ≡ ∑ [∑ 𝑃𝑖
𝐿(𝑦𝑖𝑘

𝐴 + 𝑦𝑖𝑘
𝐵 )𝑖∈𝐼20

+ ∑ (𝛼𝑃𝑖
𝐿𝑧𝑖𝑘

𝐸 + 𝑃𝑖
𝑈𝑧𝑖𝑘

𝐹 )𝑖∈𝐼40
]𝑘∈𝐾     (3) 

where 𝑃𝑖
𝐿 and 𝑃𝑖

𝑈 are the profits for assigning contain 𝑖 to the lower- and upper-stack positions 

of a wagon, respectively11. The parameter 𝛼 is employed just to penalize the 40-ft containers 

loaded in the lower stack. Note in the loading patterns 1 and 2 (see Figure 3) that the upper-

stack container must be a 40-ft. Thus, when the 40s are in shortage, we employ a small 𝛼 to 

discourage the loading of 40s in the lower stacks (i.e. position 𝐸 in patterns 2 and 5) so that the 

40s are not overused in the current train and the double-stack loading of future trains is not 

compromised. The 𝛼 can be any value satisfying the following condition: 

{
0 < 𝛼 <

2𝑃𝑚𝑖𝑛
20

𝑃𝑚𝑎𝑥
40 , if 

2𝑁̅40
𝐹

|𝐼20|+2|𝐼40|
≤ 𝜆

𝛼 = 1,                           otherwise
         (4) 

where 𝑃𝑚𝑖𝑛
20 = min{𝑃𝑖

𝐿|𝑖 ∈ 𝐼20}, 𝑃𝑚𝑎𝑥
40 = max{𝑃𝑖

𝐿|𝑖 ∈ 𝐼40}, and 𝑁40
𝐹  is the number of 40s that are 

suitable for loading in the upper stack. Here, 𝜆 is a user-defined parameter that indicates the 

user’s perception of the scarcity of 40s. A higher 𝜆 means the CTO expects a greater shortage of 

40s in the future. Typically 𝜆 takes a value between 0.6 and 1. Note that 𝛼 has to be greater 

than zero, because an available 40-ft should always be assigned to any empty wagon that may 

exist in the present train, even if the CTO expects a shortage of 40s in the future. Also, note that 

𝛼 should be set to 1 if there is no shortage of 40s or if the loading pattern 3 is allowed. 

The secondary objective, maximizing the total tardiness of selected containers at the time when 

the train is formed, is formulated as follows: 

max 𝜏 ≡ ∑ (∑ 𝑇𝑖𝑦𝑖𝑘𝑖∈𝐼20\𝐼20
𝐶 + ∑ 𝑇𝑖𝑧𝑖𝑘𝑖∈𝐼40\𝐼40

𝐶 )𝑘∈𝐾        (5) 

where 𝑇𝑖 is the tardiness of container 𝑖 , which is measured as the difference between the time 

of train formation and a reference time of container (e.g. In India, the reference time is the time 

of transshipment permit for the import containers). The 𝐼20
𝐶  and 𝐼40

𝐶  are sets of compulsory 20- 

 
11 These profit parameters are calculated without considering the revenue and cost components that are 
unrelated to the container train loading plan. Omission of these “irrelevant” components, such as container 
handling and stuffing costs, maintenance cost, and overheads, will not affect the optimality of the DSLP 

solution. Also note that if we set 𝑃𝑖
𝐿  and 𝑃𝑖

𝑈  equal to 1 for 20s and 2 for 40s, then the objective function (3) 
reduces to the maximization of slot utilization, which is the commonly used objective in the literature. 
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and 40-ft containers, respectively, which must be assigned to the present train. Note that the 

CTOs often omit this objective during off-peak demand seasons. 

The DSLP model is formulated as follows.  

max 𝜋  

and max 𝜏 (optional)  

subject to: 

∑ 𝑥𝑘
𝑗

= 1, ∀ 𝑘 ∈ 𝐾𝑗∈𝐽            (6) 

2 ∑ 𝑥𝑘
𝑗

𝑗∈{1,2}  +  ∑ 𝑥𝑘
𝑗
 𝑗∈{4,5} ≥  2 ∑ 𝑥𝑘+1

𝑗
𝑗∈{1,2} +  ∑ 𝑥𝑘+1

𝑗
𝑗∈{4,5} , ∀ 𝑘 ∈ {1, … , |𝐾| − 1}  (7) 

∑ 𝑦𝑖𝑘
𝑚 − 𝑥𝑘

1 − 𝑥𝑘
4

𝑖∈𝐼20
= 0, ∀ 𝑘 ∈ 𝐾, 𝑚 ∈ {𝐴, 𝐵}       (8) 

∑ 𝑧𝑖𝑘
𝐸 − 𝑥𝑘

2 − 𝑥𝑘
5

𝑖∈𝐼40
= 0, ∀ 𝑘 ∈ 𝐾         (9) 

∑ 𝑧𝑖𝑘
𝐹 − 𝑥𝑘

1 − 𝑥𝑘
2

𝑖∈𝐼40
= 0, ∀ 𝑘 ∈ 𝐾         (10) 

∑ 𝑦𝑖𝑘𝑘∈𝐾 ≤ 1, ∀ 𝑖 ∈ 𝐼20          (11) 

∑ 𝑧𝑖𝑘𝑘∈𝐾 ≤ 1, ∀ 𝑖 ∈ 𝐼40          (12) 

∑ 𝑊𝑖𝑦𝑖𝑘𝑖∈𝐼20
+ ∑ 𝑊𝑖𝑧𝑖𝑘𝑖∈𝐼40

≤ 𝐺𝑘 , ∀ 𝑘 ∈ 𝐾        (13) 

∑ 𝑊𝑖𝑦𝑖𝑘𝑖∈𝐼20
+ ∑ 𝑊𝑖𝑧𝑖𝑘

𝐸
𝑖∈𝐼40

≥ ∑ 𝑊𝑖𝑧𝑖𝑘
𝐹

𝑖∈𝐼40
, ∀ 𝑘 ∈ 𝐾       (14) 

|∑ 𝑊𝑖(𝑦𝑖𝑘
𝐴 − 𝑦𝑖𝑘

𝐵 )𝑖∈𝐼20
| ≤ ∆𝑘 , ∀ 𝑘 ∈ 𝐾         (15) 

∑ 𝐻𝑖(𝑦𝑖𝑘
𝐴 − 𝑦𝑖𝑘

𝐵 )𝑖∈𝐼20
≥ 𝑥𝑘

1 − 1, ∀ 𝑘 ∈ 𝐾        (16) 

∑ 𝐻𝑖(𝑦𝑖𝑘
𝐴 − 𝑦𝑖𝑘

𝐵 )𝑖∈𝐼20
≤ 1 − 𝑥𝑘

1, ∀ 𝑘 ∈ 𝐾        (17) 

𝐶𝐺𝑘 ≤ 𝑅𝑘 , ∀ 𝑘 ∈ 𝐾          (18) 

∑ (∑ 𝑦𝑖𝑘𝑖∈𝐼20
𝑠 + ∑ 𝑧𝑖𝑘𝑖∈𝐼40

𝑠 )𝑘∈𝐾 = 𝑏𝑠(|𝐼40
𝑠 | + |𝐼20

𝑠 |), ∀ 𝑠 ∈ 𝑆      (19) 

∑ 𝑦𝑖𝑘 = 1, ∀ 𝑖 ∈ 𝐼20
𝐶

𝑘∈𝐾           (20) 

∑ 𝑧𝑖𝑘 = 1, ∀ 𝑖 ∈ 𝐼40
𝐶

𝑘∈𝐾           (21) 

𝑥𝑘
𝑗
, 𝑦𝑖𝑘

𝑗
, 𝑧𝑖𝑘

𝑗
, 𝑏𝑠  ∈ {0, 1}         (22) 
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Constraints (6) stipulate that a wagon can assume exactly one of the loading patterns. 

Constraints (7) ensure that the double-stack patterns are assigned to contiguous wagons 

towards the front and empty wagons, if any, are contiguous towards the tail of the train; see the 

2nd point in Section 2.2. Constraints (8-10) ensure that each wagon is properly loaded according 

to the assigned loading pattern; for example, constraints (8) stipulate that two 20s must occupy 

positions 𝐴 and 𝐵 respectively if loading pattern 1 or 4 is applied. Constraints (11) and (12) 

specify that each container can be assigned to at most one position on at most one wagon. 

Constraints (13) ensure that the total weight of the containers loaded on wagon 𝑘 does not 

exceed its payload limit 𝐺𝑘, where 𝑊𝑖 denotes the gross weight of container 𝑖 ∈ 𝐼. 

Constraints (14) ensure that the weight of the upper-stack container does not exceed the total 

weight of the lower-stack container(s) on the same wagon. Constraints (15) require that the 

weight difference between the two 20s loaded on each wagon in patterns 1 and 4 does not 

exceed a specified limit, ∆𝑘. Constraints (16) and (17) specify that the two 20s loaded on a 

wagon in pattern 1 should be of the same type (either GEN or HQ), where 𝐻𝑖 is the height of 

container 𝑖. Recall that the height difference between the two container types is one foot. 

Constraints (18) specify that the VCG of wagon 𝑘, 𝐶𝐺𝑘, must not exceed a specified CG threshold 

denoted by 𝑅𝑘, where 𝐶𝐺𝑘 is calculated by the following equation, assuming that the CG of each 

container is at its geometrical center:  

𝐶𝐺𝑘 =
𝑅̅𝑘𝑊̅𝑘+(𝐻̅𝑘+

𝐻𝑘
𝐿

2
)𝑊𝑘

𝐿+(𝐻̅𝑘+𝐻𝑘
𝐿+𝐻𝑜+

𝐻𝑘
𝑈

2
)𝑊𝑘

𝑈

𝑊̅𝑘+𝑊𝑘
𝐿+𝑊𝑘

𝑈 , ∀𝑘 ∈ 𝐾       (23) 

where 𝑊̅𝑘 and 𝑅̅𝑘 denote the tare weight and the CG height, respectively, of the empty wagon 𝑘; 

𝐻̅𝑘 the height of the wagon platform measured from the rail surface; 𝐻𝑘
𝐿 and 𝑊𝑘

𝐿 the height and 

(total) weight of the lower-stack container(s); 𝐻𝑘
𝑈 and 𝑊𝑘

𝑈 the height and weight of the upper-

stack container; and 𝐻𝑜 the height of the interbox twist-lock used for locking the upper-stack 

container on the top of the lower-stack container(s). The weight of the twist-lock is small and 

thus ignored here. The 𝐻𝑘
𝐿, 𝑊𝑘

𝐿, 𝐻𝑘
𝑈 and 𝑊𝑘

𝑈 are calculated by the following equations: 

𝑊𝑘
𝐿 = ∑ 𝑊𝑖𝑦𝑖𝑘𝑖∈𝐼20

+ ∑ 𝑊𝑖𝑧𝑖𝑘
𝐸

𝑖∈𝐼40
, ∀𝑘 ∈ 𝐾        (24) 

𝑊𝑘
𝑈 = ∑ 𝑊𝑖𝑧𝑖𝑘

𝐹
𝑖∈𝐼40

, ∀𝑘 ∈ 𝐾          (25) 

𝐻𝑘
𝐿 =

1

2
∑ 𝐻𝑖𝑦𝑖𝑘𝑖∈𝐼20

+ ∑ 𝐻𝑖𝑧𝑖𝑘
𝐸

𝑖∈𝐼40
, ∀𝑘 ∈ 𝐾        (26) 
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𝐻𝑘
𝑈 = ∑ 𝐻𝑖𝑧𝑖𝑘

𝐹
𝑖∈𝐼40

, ∀𝑘 ∈ 𝐾          (27) 

Constraints (19) guarantee that all the containers of a particular shipping bill 𝑠 ∈ 𝑆 are sent 

together in one train. Here 𝐼20
𝑠  and 𝐼40

𝑠  denote the sets of 20-ft and 40-ft containers belonging to 

𝑠 , respectively; and |𝐼40
𝑠 | + |𝐼20

𝑠 |  is the total number of containers booked in 𝑠 . Finally, 

constraints (20) and (21) ensure that the sets of compulsory containers, denoted by 𝐼20
𝐶  and 𝐼40

𝐶 , 

are assigned to the train. 

 

3. Solution approach 

We have a priori preference information from the CTOs that we should never compromise the 

primary objective (3) for the sake of the secondary objective (5). Further, since the train loading 

plan is required within 10-15 minutes12, we use the lexicographic optimization approach that is 

widely used for similar multi-objective problems. 

We first discuss how to convert the nonlinear DSLP program formulated in Section 2 (which is 

difficult to solve) to a linear one (Section 3.1), and pre-processing steps needed to further 

simplify the program (Section 3.2). We then employ the lexicographic optimization method to 

find an optimal DSLP solution (Section 3.3). Finally a heuristic algorithm is developed to post-

process the solution for minimizing the HCG of the train (Section 3.4). 

3.1 Problem linearization 

Note that the DSLP model becomes linear if we can linearize or remove the balanced-loading 

constraints (15) and the VCG constraints (18). 

First, constraints (15) can be replaced by the following linear constraints: 

∑ 𝑊𝑖(𝑦𝑖𝑘
𝐴 − 𝑦𝑖𝑘

𝐵 ) ≤ ∆𝑘 , ∀ 𝑘 ∈ 𝐾𝑖∈𝐼20
         (28) 

∑ 𝑊𝑖(𝑦𝑖𝑘
𝐴 − 𝑦𝑖𝑘

𝐵 ) ≥ −∆𝑘 , ∀ 𝑘 ∈ 𝐾𝑖∈𝐼20
         (29) 

However, this can be simplified further. Note that by swapping the two 20s loaded in positions 

𝐴 and 𝐵 of any wagon in an optimal loading plan, we create multiple optima. These solutions 

can be safely ruled out by stipulating that the weight of the container loaded in position A is 

 
12 Generating a Pareto frontier for the two objectives is neither required by the CTOs nor possible in the short 
time available. 
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never less than that in position B of the same wagon. Hence, (29) can be further replaced by the 

following constraint: 

∑ 𝑊𝑖𝑦𝑖𝑘
𝐴

𝑖∈𝐼20
≥ ∑ 𝑊𝑖𝑦𝑖𝑘

𝐵
𝑖∈𝐼20

, ∀ 𝑘 ∈ 𝐾         (30) 

These symmetry-breaking constraints (30) will reduce the size of the search space by eliminating 

symmetric solutions. Practically, it also helps in reducing the HCG of the train. 

Regarding the VCG constraints (18), first, we argue that these constraints are redundant for 

Indian Railways, and then discuss the general case. For example, for a single-stack wagon 𝑘, 𝐶𝐺𝑘 

is less than 𝐻̅𝑘 +
𝐻̂

2
, where 𝐻̂ is the largest possible container height. Real data show that for the 

flat wagons commonly used in India, 𝐻̅𝑘 = 1.009 m and 𝑅𝑘 = 3.139 m (RDSO Drawing, 2013). 

Considering that 𝐻̂ = 𝐻𝐻𝑄 = 2.896 m (for HQ containers), it is easy to verify that 𝐶𝐺𝑘 < 𝐻̅𝑘 +

𝐻̂

2
< 𝑅𝑘. Further, we derive a general condition to assess the redundancy of the VCG constraints 

for double-stack wagons, which can be modified for single-stack wagons as well. We start by 

presenting the following lemma. 

Lemma 1: In presence of the payload limit constraint (13) and the safety constraint (14), the 

VCG constraint (18) is redundant for wagon 𝑘 if the following condition is satisfied: 

𝐺𝑘(𝐻̅𝑘+𝐻̂+
𝐻𝑜

2
)+𝑊̅𝑘𝑅̅𝑘

𝐺𝑘+𝑊̅𝑘
≤ 𝑅𝑘           (31) 

Proof: For a wagon 𝑘 loaded in a double-stack pattern, it is clear from the VCG formula (23) that 

for the VCG to reach its maximum, the heights of both the upper- and lower-stack containers 

should be maximum (i.e. 𝐻𝑘
𝐿 = 𝐻𝑘

𝑈 = 𝐻̂) and 𝑊𝑘
𝑈 should also attains its maximal value (i.e., 

𝑊𝑘
𝑈 = 𝑊𝑘

𝐿 =
𝐺𝑘

2
 due to the constraints (13) and (14)). Plugging the above conditions into the 

definition of VCG (23), we have that the maximum 𝐶𝐺𝑘 is equal to the left-hand-side of (31).   ■ 

The VCG constraints can be dropped for all the wagons that satisfy (31). Specifically for the flat 

wagons used by Indian Railways, we have 𝐺𝑘 = 61 tonnes, 𝑊̅𝑘 = 19.1 tonnes, 𝑅̅𝑘 = 0.551 m, 

𝐻𝑂 = 0.03  m, 𝐻̂ = 2.896  m, 𝐻̅𝑘 = 1.009  m, and 𝑅𝑘 = 3.139  m (RDSO Drawing, 2013). 

Calculation shows that the condition (31) is always satisfied, and thus constraints (18) can be 

dropped. 



19 
 

Finally, in case there are still wagons that do not satisfy (31), the VCG constraints (18) may be 

binding. For those wagons, (18) can be replaced with four linear constraints presented in (32-35). 

These constraints are based upon a finer classification of double-stack loading patterns, 

illustrated in Figure 5, that considers different heights of the lower-stack containers. Note that 

the different heights of the upper-stack container is not an issue here. 

 

Figure 5: Double-stack loading patterns considering variable heights of lower-stack containers 

𝑀1(1 − 𝑥𝑘
1𝑎 − 𝑥𝑘

2𝑎) + 𝑅𝑘(𝑊̅𝑘 + ∑ 𝑊𝑖𝑦𝑖𝑘𝑖∈𝐼20
+ ∑ 𝑊𝑖𝑧𝑖𝑘𝑖∈𝐼40

) ≥ 𝑅̅𝑘𝑊̅𝑘 + (𝐻̅𝑘 +

𝐻𝐺𝐸𝑁

2
) (∑ 𝑊𝑖𝑦𝑖𝑘𝑖∈𝐼20

+ ∑ 𝑊𝑖𝑧𝑖𝑘
𝐸

𝑖∈𝐼40
) + ∑ (𝐻̅𝑘 + 𝐻𝐺𝐸𝑁 + 𝐻𝑜 +

𝐻𝑖

2
) 𝑊𝑖𝑧𝑖𝑘

𝐹
𝑖∈𝐼40

, ∀ 𝑘 ∈ 𝐾   (32) 

𝑀2(1 − 𝑥𝑘
1𝑏 − 𝑥𝑘

2𝑏) + 𝑅𝑘(𝑊̅𝑘 + ∑ 𝑊𝑖𝑦𝑖𝑘𝑖∈𝐼20
+ ∑ 𝑊𝑖𝑧𝑖𝑘𝑖∈𝐼40

) ≥ 𝑅̅𝑘𝑊̅𝑘 + (𝐻̅𝑘 +

𝐻𝐻𝑄

2
) (∑ 𝑊𝑖𝑦𝑖𝑘𝑖∈𝐼20

+ ∑ 𝑊𝑖𝑧𝑖𝑘
𝐸

𝑖∈𝐼40
) + ∑ (𝐻̅𝑘 + 𝐻𝐻𝑄 + 𝐻𝑜 +

𝐻𝑖

2
) 𝑊𝑖𝑧𝑖𝑘

𝐹
𝑖∈𝐼40

, ∀ 𝑘 ∈ 𝐾   (33) 

𝑥𝑘
1𝑎 + 𝑥𝑘

1𝑏 = 𝑥𝑘
1           (34) 

𝑥𝑘
2𝑎 + 𝑥𝑘

2𝑏 = 𝑥𝑘
2           (35) 

where 𝑥𝑘
1𝑎, 𝑥𝑘

1𝑏, 𝑥𝑘
2𝑎, 𝑥𝑘

2𝑏 are the new binary loading pattern variables (which will replace the 

variables 𝑥𝑘
1, 𝑥𝑘

2 ) indicating whether wagon 𝑘 is loaded in double-stack pattern 1a-2b; and 𝑀1 

and 𝑀2 are big constants whose minimum values are given by (36) and (37), respectively. We 

recommend these values because larger values will increase the computation time due to the 

resulting weaker LP relaxation. 

𝑀1
𝑚𝑖𝑛 = (𝑅̅𝑘 − 𝑅𝑘)𝑊̅𝑘 + (𝐻̅𝑘 +

3𝐻𝐺𝐸𝑁

4
+

𝐻𝑜

2
+

𝐻𝐻𝑄

4
− 𝑅𝑘) 𝐺𝑘      (36) 

𝑀2
𝑚𝑖𝑛 = (𝑅̅𝑘 − 𝑅𝑘)𝑊̅𝑘 + (𝐻̅𝑘 + 𝐻𝐻𝑄 +

𝐻𝑜

2
− 𝑅𝑘) 𝐺𝑘       (37) 

With the above linearization, now the program can be solved by CPLEX. However, the 

computation time for obtaining an optimal solution for any real-life instance is still too long. 

Typically, there can be about one thousand candidate containers, and the maximum train size is 

about 30 wagons in Europe and 45 wagons in India, which means the DSLP model can have 
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about 100,000 binary variables (5|𝐾| + 2|𝐾||𝐼20| + 2|𝐾||𝐼40|). Numerical experiments show 

that CPLEX can take about 1 to 6 hours to find an optimal solution, even if constraints (18) are 

relaxed. To further reduce the computation time, we next explore valid inequalities and pre-

processing steps. 

3.2 Pre-processing and valid inequalities 

First, double-stack loading is needed only if the total number of TEUs in the input set of 

containers (𝐼) is greater than the maximum number of TEUs that can be loaded in the single 

stack train, i.e. 2|𝐾|. Similarly, an empty wagon exists only if the total number of TEUs is less 

than 2|𝐾|. These necessary conditions can be used for preprocessing the decision variables as 

follows. 

If |𝐼20| + 2|𝐼40| ≤ 2|𝐾|, {
𝑧𝑖𝑘

𝐹 = 0,      ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼40

𝑥𝑘
𝑗

= 0, ∀ 𝑘 ∈ 𝐾, 𝑗 ∈ {1,2}
      (38) 

If |𝐼20| + 2|𝐼40| ≥ 2|𝐾|, 𝑥𝑘
6 = 0, ∀ 𝑘 ∈ 𝐾       (39) 

Second, following constraints (13) and (14), the weight of a 40-ft container loaded in the upper 

stack of wagon 𝑘 cannot exceed 
𝐺𝑘

2
; i.e., 

𝑧𝑖𝑘
𝐹 = 0, ∀ 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐼40|𝑊𝑖 ≥

𝐺𝑘

2
         (40) 

Moreover, the payload constraints (13) further infer that there is an upper limit for the total 

weight of the 20-ft containers loaded on a wagon in pattern 1: 

∑ ∑ 𝑊𝑖𝑦𝑖𝑘
𝑚

𝑚∈{𝐴,𝐵}𝑖∈𝐼20
≤ 𝐺𝑘 − 𝑊40

𝑚𝑖𝑛𝑥𝑘
1, ∀𝑘 ∈ 𝐾       (41) 

where 𝑊40
𝑚𝑖𝑛 = min{𝑊𝑖|𝑖 ∈ 𝐼40}. Adding the above valid inequalities to the DSLP will further 

reduce the computation cost. 

For the same reason, the safety constraints (14) are replaced with (42) and (43) as follows: 

∑ ∑ 𝑊𝑖𝑦𝑖𝑘
𝑚

𝑚∈{𝐴,𝐵}𝑖∈𝐼20
≥ 𝑀3(𝑥𝑘

1 − 1) + ∑ 𝑊𝑖𝑧𝑖𝑘
𝐹

𝑖∈𝐼40
, ∀𝑘 ∈ 𝐾      (42) 

∑ 𝑊𝑖𝑧𝑖𝑘
𝐸

𝑖∈𝐼40
≥ 𝑀3(𝑥𝑘

2 − 1) + ∑ 𝑊𝑖𝑧𝑖𝑘
𝐹

𝑖∈𝐼40
, ∀𝑘 ∈ 𝐾       (43) 

where 𝑀3 is a big constant, whose minimum value is 
𝐺𝑘

2
. 
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With the above pre-processing and valid inequalities added, the computation time of the DSLP is 

reduced to about 10 minutes, which is acceptable for real-world implementation. 

3.3 Lexicographic optimization 

In general, given a multi-objective program with a sequence of objective functions: {𝑓𝑖, 𝑖 =

1, … , 𝑛} , a lexicographically optimal solution is obtained by first optimizing 𝑓1  , next 

optimizing 𝑓2 without compromising the optimal value of objective function 𝑓1, and so on; i.e., 

for each 𝑖 = 2, … , 𝑛, we optimize 𝑓𝑖 under the constraining condition that the optimal values 

obtained in previous steps for 𝑓1, 𝑓2, … , 𝑓𝑖−1 are not compromised. For more details on the 

theory of lexicographic optimization, please refer to Rentmeesters et al. (1996). 

For the DSLP, we solve a similar sequence of single-objective optimization problems, where the 

objectives are selected, one at a time, in the order of their importance. In the first stage, we 

optimize only objective (3) to obtain the optimal train-loading plan. If objective (5) is also 

desired by the CTO, then we optimize it in the second stage without compromising the optimal 

profit13. The details are as follows: 

Step 1. The DSLP with only the primary objective (3) is solved using CPLEX. The resulting optimal 

loading plan is denoted by 𝛿1, and the corresponding maximum profit by 𝜋0. Note that in the 

case of a large candidate container set, multiple optima may exist with the same profit value 𝜋0. 

Step 2. We choose a solution from the potential multiple optima of Step 1 by maximizing 

objective (5). To this end, we fix the values of the loading pattern variables 𝑥𝑘
𝑗
 (∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽) to 

be equal to their values in solution 𝛿1, so that the double-stack loading of the next train is not 

unduly compromised and the number of decision variables at this step is also reduced. With the 

following constraint added to the original DSLP model, and a warm-start using solution 𝛿1, the 

DSLP is solved with objective (5) only. The new constraint ensures that the optimal profit value 

is not compromised. 

∑ [∑ 𝑃𝑖
𝐿(𝑦𝑖𝑘

𝐴 + 𝑦𝑖𝑘
𝐵 )𝑖∈𝐼20

+ ∑ (𝛼𝑃𝑖
𝐿𝑧𝑖𝑘

𝐸 + 𝑃𝑖
𝑈𝑧𝑖𝑘

𝐹 )𝑖∈𝐼40
]𝑘∈𝐾 ≥ 𝜋0     (44) 

 
13 We have also experimented with the alternative weighted sum method, i.e. converting the DSLP to an 
equivalent single-objective optimization problem by assigning suitable weights to both the objectives. 
However, empirically, we found it to take more computation time than the lexicographic method. 
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The resulting optimal loading plan, denoted by 𝛿2, ensures the global optimality of the profit. It 

is also Pareto optimal as none of the two objectives can be improved further without degrading 

the other one. 

3.4 Post-processing for minimizing the HCG of the train 

In case, a CTO also desires to minimize the HCG of the train, it can be added as the third step of 

the above lexicographic method. However, due to the computation time constraints, we 

propose the following heuristic algorithm to minimize the HCG at the post-processing level. This 

heuristic begins with the optimal solution obtained in the previous section and takes hardly a 

second to run. 

In the given DSLP solution (𝛿2), we denote the set of containers that are assigned to wagon 𝑘 by 

𝑉𝑘, and the set of wagons loaded in single- and double-stack loading patterns by 𝐾1 and 𝐾2 

respectively. The heuristic algorithm reassigns the container sets 𝑉𝑘 for all the 𝑘 ∈ 𝐾𝑖 (𝑖 = 1,2) 

to all the wagons in 𝐾𝑖, such that the containers’ positions (i.e., 𝐴, 𝐵, 𝐸, or 𝐹) within each set 

remain unchanged. Only the container-set-to-wagon assignments are changed within 𝐾1 and 

within 𝐾2. The HCG can be minimized by reassigning these sets of containers in a non-increasing 

order of their total weight; i.e., a heavier set of containers is assigned to a wagon nearer to the 

locomotive if the payload limit constraints (13) are not violated. Note that this approach will not 

compromise objectives (3) and (5) because they do not depend on the container-set-to-wagon 

assignments. The reassignment will also not change whether a wagon is single- or double-stack 

loaded, so constraints (7), which ensure the near-minimal aerodynamic resistance, are not 

violated. One could easily verify that other constraints of the DSLP are not violated too. The 

details of the greedy heuristic are presented below. 
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Algorithm 1: Greedy heuristic for minimizing the HCG 

Begin 

Sort the sets of containers (𝑉𝑘, ∀𝑘 ∈ 𝐾2) in the descending order of their total weight 

Set wagon_status = empty  ∀𝑘 ∈ 𝐾 

For (𝑗 = 1 to |𝐾2|) {    // for the sets of double-stack containers 

For (𝑘 = 1 to |𝐾2|)  {      // for the sets of double-stack wagons 

if wagon_status(𝑘) = empty 

if 𝐺𝑘 ≥ total weight of 𝑉𝑗 14 

Assign 𝑉𝑗 to wagon 𝑘; 

wagon_status = loaded; 

BREAK 

end-if 

end-if 

} 

} 

Sort the sets of containers (𝑉𝑘, ∀𝑘 ∈ 𝐾1) in the descending order of their total weight 

For (𝑘 = |𝐾2| + 1 to |𝐾2| + |𝐾1|) {  // for the sets of single-stack containers 

Assign 𝑉𝑘 to wagon 𝑘; 

wagon_status = loaded; 

} 

Print the revised container loading plan 

End 

 

4. Model applications 

The DSLP model and solution approach described above have been implemented in the real 

practice for a major CTO in India (henceforth referred by CTOX). To validate the applicability and 

effectiveness of our model and solution approach, we first apply it to a number of historical 

cases of CTOX in which the train loading plans were manually determined. Comparisons 

between the actual, manually planned results and the optimal results generated by the DSLP are 

furnished in Section 4.1. More cases generated using real data with varied key parameters are 

examined in Section 4.2. A special case of simultaneously planning multiple trains using our 

DSLP model and solution approach is discussed in Section 4.3. The effect of the value of 𝛼 on the 

performance of the DSLP is explored in Section 4.3.1. 

 
14  For a more general case, where VCG constraints (18) may be binding, another if-condition can be used here 
to ensure that constraints (18) are not violated. 
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4.1 Validation of the DSLP with real cases 

All the numerical cases discussed in this section are based upon a simple rail network shown in 

Figure 6, which represents part of the real rail network in India. The rail network in Figure 6 has 

three terminals: P, Q, and R. Only the link between Q and R (plotted as the double lines) allows 

double-stack trains. For a given demand set, CTOX decides the routing of the empty, single-stack 

and double-stack trains, which is an input for the DSLP. Figure 6 illustrates an example routing 

plan for transporting 270 TEUs from R to P. This plan consists of a single-stack train carrying 90 

TEUs dispatched directly from R to P, and a double-stack train carrying the remaining 180 TEUs 

from R to Q, plus two single-stack trains to transport those 180 TEUS from Q to P. 

 
Figure 6: An illustrative small network with single- and double-stack rail lines 

To be conservative, we limit the set of candidate containers of the DSLP, 𝐼, to only those 

containers that were actually loaded onto the trains in a given routing plan. Take the routing 

plan in Figure 6 as an example, we assume the set of candidate containers, 𝐼, includes only the 

270 TEUs to be transported from R to P. Namely, for each case studied in this section, we 

assume the smallest possible 𝐼. Note that in reality, a terminal often holds a much larger 

pendency of containers that are ready to be loaded on a train, and a larger 𝐼 would usually lead 

to a higher profit obtained from the DSLP. Still, considerable profit increases are achieved by 

optimally reassigning the containers 𝐼 to the wagons of the given trains, as we shall see shortly. 

In this section, we present the results for 10 select real instances that involve 23 actual trains in 

total. Each of the 10 instances has a fixed routing plan, which includes one double-stack train 

and 0-to-5 single-stack trains dispatched on the same day. Each train has 45 wagons (|𝐾| = 45) 

having the same DSLP parameters (although different wagon designs), with 𝐺𝑘 = 61 tonnes, 

and ∆𝑘= 20 tonnes ∀ 𝑘. Thus, a maximum of 180 TEUs can be loaded on a double-stack train. 

The VCG constraints are not binding because inequalities (31) are always satisfied, as explained 

in Section 3.1. We further assume |𝐼20
𝐶 | = |𝐼40

𝐶 | = |𝑆| = 0 . While the container-specific 

parameters 𝑇𝑖 , 𝑊𝑖 , 𝐻𝑖 are too voluminous to mention in the paper, the details of parameters 𝑃𝑖
𝐿 
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and 𝑃𝑖
𝑈are available on the website of the CTOs15 and in the Rates Circular (2014). We choose 

𝛼 = 1 to ignore any potential shortage of the 40s because all the candidate containers will be 

assigned to the same trains.  

Other key parameters and the results of the 10 instances are summarized in Table 2, where the 

numbers of candidate 40s and 20s for each OD pair (as specified in the parentheses) are 

presented in columns 2 and 3, respectively. The total tonnage (in tonne) of the containers is 

mentioned in column 4. The train routing plan is furnished in columns 5 (for the double-stack 

train) and 6 (for the single-stack trains if any). The number of TEUs transported by each train is 

given in the parentheses. Columns 7, 8, and 9 show the total profit, total tardiness (𝜏, as the 

secondary objective), and the HCG of the actual loading plan, respectively. Note that the total 

profit is summed up for all the trains in each instance, while the total tardiness and the HCG are 

calculated for the double-stack train only. They are compared against columns 10, 14, and 15, 

respectively, for the total profit, tardiness, and HCG of the optimal DSLP loading plan. In addition, 

columns 11 and 12 show the profit increase in Indian Rupees and the percentage increase, 

respectively, if our DSLP model was used instead of the manual planning. Column 13 displays 

the computation time (via CPLEX 12.6.2 installed on an Intel® Core™ i7 4790 CPU, 16 GB RAM, 

3.60-GHz system) for each instance. 

Details of the 10 instances are discussed as follows. In instance 1, 6 trains were used to 

transport 448 TEUs in total on the same day: one double-stack train from R to Q plus two 

connecting single-stack trains from Q to P, and three single-stack trains directly from R to P. In 

instance 2, 5 trains (one less direct train from R to P as compared to instance 1) are used to 

transport 356 TEUs. Since terminal R is rake-deficit in both instances, almost all the trains are 

loaded to their full capacity. For these instances, the DSLP selects the containers to be loaded in 

the double-stack train, and the remaining containers are assigned to the single-stack trains. The 

results of both instances show that the optimal double-stack loading plan increases the profit 

considerably by INR 113204 (1.67%) for instance 1, and INR 107336 (2.23%) for instance 2. Note 

that 1% increase in the total profit means an annual increase of hundreds of million INR for a big 

CTO in India. 

The total tardiness shown in columns 8 and 14 are for illustrative purpose only. In fact, the total 

tardiness for all the containers should be equal between the actual and optimal loading plans 

because all the containers are assigned in both the plans. However, it is noteworthy for instance 

 
15 http://www.actoindia.org/members/ 

http://www.actoindia.org/members/
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2 that the total tardiness of the double-stack train actually decreases (from 1579 to 1026 

container-days) after optimizing the loading plan. This is because the primary objective of profit 

maximization, having the absolute dominance, may conflict with the tardiness maximization 

objective. Finally, comparison of the HCG values in columns 9 and 15 (in the unit of wagons 

because all the wagons have almost the same length) manifests the effectiveness of the 

heuristic algorithm for minimizing the HCG of the train. 
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Table 2. Comparison of actual and optimal loading plans  

 Set of candidate containers                   Train Plan 

 
 

Actual loading plan  Optimal loading plan 

S.N. 
# 40s  
(OD) 

# 20s  
(OD) 

Total 
tonnage 

 Double-
stack 

train (TEUs) 

Single-stack 
train (TEUs) 

Total profit  
(INR) 

Double-stack train 
 Total profit (INR) 

Profit increase 
Runtime 

 (Sec) 

Double-stack train 

 
𝜏 (container-

days) 
HCG (INR) % 

𝜏 (container-
days) 

HCG 

1 135 (RP) 178 (RP) 6212  i. RQ (178) 

ii. RP (90) 
iii. RP (90) 
iv. RP (90) 
v. QP (90) 
vi. QP (88) 

 6,789,874 1745 22.91 6,903,078 113,204 1.67 59 1826 20.14 

2 116 (RP) 124 (RP) 4582  i. RQ (176) 

ii. RP (90) 
iii. RP (90) 
iv. QP (90) 
v. QP (86) 

 4,803,213 1579 22.77 4,910,549 107,336 2.23 61 1026 19.83 

3 
50 (PR) 
32 (QR) 

18 (PR) 
54 (QR) 

3991  i. QR (146) 
ii. PR (90) 
iii. PQ (28) 

 3,131,538 NA 22.66 3,228,651 97,113 3.10 29 NA 17.82 

4 
51 (PR) 
13 (QR) 

80 (QR)  3224  i. QR (118) 
ii. PR (90) 
iii. PQ (12) 

 2,630,496 NA 21.82 2,714,952 84,456 3.21 22 NA 19.07 

5 88 (RQ) 4 (RQ) 1950  i. RQ (180) NA  1,254,917 NA 21.11 1,296,340 41,423 3.30 39 NA 19.11 

6 74 (RQ) 28 (RQ) 2123  i. RQ (176) NA  1,224,591 NA 23.24 1,280,307 55,716 4.55 80 NA 19.78 

7 74 (RQ) 30 (RQ) 1982  i. RQ (178) NA  1,185,254 NA 22.97 1,262,794 77,540 6.54 106 NA 18.22 

8 84 (RQ) 4 (RQ) 1666  i. RQ (172) NA  1,153,103 NA 21.56 1,230,643 77,540 6.72 134 NA 18.06 

9 88 (RQ) 0 (RQ) 1589  i. RQ (176) NA  1,114,890 NA 22.52 1,170,606 55,716 5.00 45 NA 18.17 

10 59 (RQ) 60 (RQ) 2255  i. RQ (178) NA  1,379,050 NA 23.19 1,445,293 66,243 4.80 16 NA 19.92 
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Instances 3 and 4 each consists of two OD pairs: PR and QR. In the real situation for these 

instances, both terminals P and Q are rake-surplus; i.e., they have more inbound container train 

traffic than outbound. Hence most trains of the two instances are not fully loaded. It also 

implies that the secondary objective can be dropped because there are always enough trains to 

transport all the containers held at the terminal. Therefore, the DSLP is solved only for the 

primary objective for these two instances. For each instance, the DSLP is first applied to select 

90 TEUs at terminal P to load the single-stack train from P to R.16 The remaining PR containers 

are assigned to another single-stack train from P to Q. Then the DSLP is applied again to 

optimize the loading plan of the double-stack train from Q to R. We again observe significant 

profit increases (over 3%) for both instances. The computation times shown in column 13 (for 

solving the double-stack train problem only) are less than half a minute. And the HCG’s are again 

reduced by the heuristic at the post-processing stage. 

The last six instances each has a single OD pair, which is served by a double-stack train. For 

these instances, as all the candidate containers will be loaded on the same train, the benefit of 

the DSLP would only come from the optimal re-assignment of the containers to the upper- and 

lower-stacks of the wagons. Still, significant profit increases (about INR 60000) are observed for 

all the six instances. Again, the total tardiness is irrelevant and the HCG is reduced for these 

instances. 

Overall, the above instances show that the DSLP yields a sizable profit growth of about 3% as 

compared to the manual planning results. Similar profit increases were observed for numerous 

other instances, which are not shown here in the interest of brevity. To understand how 

conservative our estimate for the DSLP benefit are, note that many trains originating from a 

rake-deficit terminal R in Table 2 are not fully loaded. This is due to the potential inefficiency 

and human errors in the loading plans generated through the cumbersome manual planning 

process. Thus, still greater profit can be expected from the DSLP, ensuring optimal train 

utilization, due to the loading of a few extra containers. Recall that loading one additional 40-ft 

container on a train would result in a profit increase of about INR 37000. 

Additionally, the DSLP reduces the HCG of a double-stack train by 10% or more, and ensures 

that the oldest containers are loaded first if the profit is not compromised. The aerodynamic 

resistance of the train is also reduced to near minimum, thanks to constraints (7). Finally, the 

 
16 Note that the proposed DSLP model and solution approach can also be used for optimizing the loading plan 
of a single-stack train, which usually takes just a few seconds via CPLEX. 
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CPLEX computation time is within 5 minutes for all the 10 instances, which is quite satisfactory 

for real-world implementation. We next analyze the performance of the DSLP w.r.t. key 

operating parameters including 𝐺𝑘, ∆𝑘, and |𝐼|. 

4.2 Parametric case studies 

Table 3 presents the key parameters and results for 48 larger-size numerical experiments. We 

randomly generate the candidate container sets of these instances based upon the real data set 

of CTOX. Each instance involves the demand of a single OD pair to be served by one double-

stack train only. The total TEUs, total numbers of 20s and 40s in the set of candidate containers 

are given in columns 2-4 respectively. The wagon payload limit (𝐺𝑘) and the weight difference 

limit (∆𝑘) are furnished in columns 5 and 6, respectively. We assume |𝐾| = 90 (i.e., a train’s 

capacity is 360 TEUs) since the maximum train size is not likely to exceed this value. The same as 

in Section 4.1, we assume|𝐼20
𝐶 | = |𝐼40

𝐶 | = |𝑆| = 0, and 𝛼 = 1. For brevity, only the primary 

objective is optimized for these instances.17 The optimal results, including the total tonnage and 

TEUs loaded, the total profit, and the CPLEX runtime are furnished in columns 7-10, respectively. 

Instances 1-12 are summarized in the first row of Table 3. These are (likely rake-deficit) 

instances with very large sets of candidate containers (about four times the train’s capacity), but 

with various numbers of 20s and 40s, 𝐺𝑘 and ∆𝑘. Also see the last row of the table, which 

summarizes the key parameters and results of 12 rake-surplus instance. Note for all these 24 

instances the computation time is always less than a minute. Thus, the very large and very small 

sizes of 𝐼 seem not to be a concern for the DSLP computation time. 

The remaining instances (numbered 13-36) in Table 3 span over all the combinations of |𝐼20| +

2|𝐼40| ∈ {720, 360}, 𝐺𝑘 ∈ {78, 68, 61} tonnes, and ∆𝑘∈ {20, 17, 14, 10} tonnes. Comparison of 

these instances reveals that the DSLP runtime tends to (but not always) increase as the payload 

limit 𝐺𝑘 or the balanced-load limit ∆𝑘 diminishes. For most of these instances, the runtime is 

less than 100 seconds. However, for instances 34-36 with a candidate container set of 360 TEUs, 

the runtimes are much longer. This is possibly because when the candidate set size almost 

equals the train capacity (i.e. no extra containers for selection), it is more difficult to find an 

optimal solution that satisfies the tight limits of 𝐺𝑘 and ∆𝑘. Nevertheless, the runtime for the 

 
17 A note regarding the computation time for optimizing the secondary objective: in our extensive numerical 
experiments (not shown in this paper), optimizing the total tardiness always takes less than a minute using 
CPLEX. 
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worst case in Table 3 is only about 10 minutes, which is still acceptable for real-world 

implementation. 

Finally, note that all the trains in Table 3 are loaded to their full capacity. This manifests the 

effectiveness of the DSLP. Recall that in real practice many trains were not fully loaded due to 

human errors in manual planning (see Section 4.1). 

Table 3. Randomly generated large instances 

 Inputs   Optimal loading plan  

S.N. 
Total 

TEUs 
# 20s # 40s 

𝐺𝑘  

(tonnes) 

∆𝑘 

(tonnes) 
 

Tonnage 

loaded 

Total 

TEUs 

Total profit 

 (INR) 

Runtime 

(seconds) 

         

 

 

1-12 >1400 - - 61-78 10-20  - 360 - <60 

13 720 408 156 78 20  4809.4 360 2265198 15 

14     17  4901.8 360 2265198 9 

15     14  4865.4 360 2265198 15 

16     10  4837.8 360 2265198 37 

17 720 408 156 68 20  4574.8 360 2126669 19 

18     17  4674.3 360 2161946 17 

19     14  4863.3 360 2217440 38 

20     10  4710.4 360 2155938 49 

21 720 408 156 61 20  4574.8 360 2119592 20 

22     17  4666.4 360 
2197504 17 

23     14  4863.3 360 2315024 27 

24     10  4224.1 360 2144528 32 

25 360 148 106 78 20  4603.1 360 2156444 10 

26     17  4603.1 360 2156444 19 

27     14  4603.1 360 2156444 10 

28     10  4603.1 360 2156444 30 

29 360 148 106 68 20  4603.1 360 2156444 26 

30     17  4603.1 360 2156444 20 

31     14  4603.1 360 2156444 13 

32     10  4603.1 360 2156444 99 

33 360 148 106 61 20  4603.1 360 2156444 90 

34     17  4603.1 360 2156444 303 

35     14  4603.1 360 2156444 501 
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36     10  4603.1 360 2156444 619 

37-48 <200 - - 61-78 10-20  - <200 - <60 

 

4.3 Simultaneous optimization of loading plans for multiple trains 

As explained in Section 1.3, practitioners desire to jointly optimize the loading plans of multiple 

trains only if those trains are dispatched at nearly the same time on the same route. However, in 

case that multiple double-stack trains for a same route are being loaded at a terminal, we can 

simply apply our DSLP model to a “virtual train” that consists of the wagons of all the trains that 

are being planned simultaneously. For example, two 45-wagon trains can be treated as a virtual 

train of 90 wagons and optimized using the DSLP. The optimally-loaded 90-wagon “train” can be 

split into two real trains, with the first 45 wagons being the first train, and the remaining wagons 

being the second. This way ensures that the total profit and the container-tardiness of the 

multiple trains are optimized, and a near-optimal aerodynamic-resistance and HCG are obtained 

for each train. 

The joint optimization of the planning for multiple trains can bring more profit for the CTO. The 

computation time is not an issue if the virtual train is not too long (e.g. when two 45-wagon 

trains are planned simultaneously). However, the joint optimization of more trains would likely 

require more efficient solution algorithms. In this paper, considering the computation time 

constraints, the uncertainties, and the importance of loading of one train at a time (explained in 

Section 1.3), our DSLP model has taken the double-stacking of future trains into account through 

a simple parameter 𝛼 (see Section 2.3). Next we examine how this parameter affects the DSLP 

solution. 

4.3.1 Effect of 𝛼 on the DSLP solution 

We test the effect of the value of 𝛼 on the DSLP solution through eight randomly generated 

instances, as summarized in Table 4. In each instance, the total number of TEUs of the candidate 

container set is always greater than the double-stack train’s capacity (which is 180 TEUs for 45 

wagons) because otherwise 𝛼 should always be equal to 1. The total TEUs of 40s and 20s, and 

the total tonnage of the candidate container set are presented in columns 2, 3, and 4 of the 

table 4, respectively. Other detailed input parameters are omitted. To simplify the analysis, we 

assume that assigning a 40-ft container to a lower-stack position yields the same profit as 
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assigning two 20s instead. Thus any value of 𝛼 < 1 would make the assignment of two 20s to 

the lower stack more preferable than the assignment of one 40-ft. 

The optimal loading plans for three different values of 𝛼 (1, 0.9, and 0.2) are presented in 

columns 5-16. The output of each loading plan includes the total TEUs of 40s and 20s loaded on 

the double-stack train, the total tonnage loaded, and the computation time via CPLEX. 

For instances 1-3 and 5-7, the train is loaded to its full capacity regardless of 𝛼, but using an 𝛼 

less than 1 (no matter what the exact value is) does reduce the number of 40s loaded on the 

train to the minimum possible. For example, for instance 1 with 𝛼 = 1, the DSLP assigns 170 

TEUs of 40s to the train, while with 𝛼 = 0.9 and 0.2, only 160 TEUs of 40s are assigned. This 

number cannot be reduced further because only 20 TEUs of 20s are available in the candidate 

container set, and thus at least 160 TEUs of 40s should be loaded to make the train full. For 

instances 4 and 8, on the other hand, all the 40s are loaded regardless of the 𝛼 because there 

are not enough 40s to even fill up the upper stacks (i.e., fewer than 90 TEUs of 40s). In these 

two instances the train’s slot utilization is less than 100%, and the 𝛼 is irrelevant. These 

instances validated the effectiveness of using 𝛼 to save the 40s for loading upper-stack of future 

trains without compromising the utilization of the present train (recall the saving from even one 

extra container loading is huge). This is especially useful when the CTO anticipates a shortage of 

40s in the future. 

Finally, note in all the instances presented in Table 4 that assigning 𝛼 = 0.9 and 0.2 yield almost 

the same loading plan in very similar runtimes. In reality (i.e. without the assumption that the 

profit of assigning one 40-ft to the lower stack is the same as assigning two 20-fts), the optimal 

loading plan and the resulting total profit would be moderately more sensitive to  𝛼. Moreover, 

extreme values of 𝛼 (i.e., those that are very close to zero or one) should be avoided, since they 

may affect the numerical accuracy of the solution and potentially lead to an unintended solution. 
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Table 4. The effect of 𝛼 

 INPUTS  Optimal loading plan (𝜶 = 𝟏)  Optimal loading plan (𝜶 = 𝟎. 𝟗)  Optimal loading plan (𝜶 = 𝟎. 𝟐) 

S.N. 
Total 

TEUs of 
40s 

Total 
TEUs of 

20s 

Total 
Tonnage 

 
Total  

TEUs of 
40s 

Total  
TEUs of 

20s 

Total 
Tonnage 

Runtime 
(seconds) 

Total 
TEUs of 

40s 

Total 
TEUs of 

20s 

Total 
Tonnage 

Runtime 
(seconds) 

Total 
TEUs of 

40s 

Total 
TEUs of 

20s 

Total 
Tonnage 

Runtime 
(seconds) 

                   

1 340 20 3557.53  170 10 2163.9 102  160 20 2289.57 91  160 20 2311.54 97 

2 290 70 3943.15  120 60 2530.79 88  110 70 2633.89 88  110 70 2595.58 92 

3 220 140 4510.72  126 54 2166.19 11  90 90 2521.86 8  90 90 2490.18 9 

4 70 290 5824.38  70 90 2278.17 8  NA  NA 

                   

5 250 20 2709.53  166 14 2003.12 110  160 20 2130.18 116  160 20 2047.22 125 

6 200 70 3140.57  120 60 2318.66 91  110 70 2433.68 98  110 70 2399.46 90 

7 130 140 3750.73  124 56 2354.61 10  90 90 2391.70 10  90 90 2431.12 11 

8 70 200 4204.20  70 90 2212.69 6  NA  NA 
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5. A decision support system 

Built upon the DSLP model, an interactive decision support system (DSS) has been developed to 

assist the assignment clerks in generating efficient double-stack train loading plans. This DSS, 

named the “Double-Stack Loading Planner”, has been successfully implemented by the CTOX. 

Some other Indian CTOs have also expressed their interest in this application. 

The overall architecture of the DSS is shown in Figure 7. The DSS is linked to the CTO’s 

management information system to access the container data from every terminal. The DSS 

itself is hosted on Microsoft® Windows and CPLEX® (version 12.5) is used as the optimization 

solver. The application is connected with a centralized Oracle 11g database. It can also work 

with Microsoft® Excel in a standalone mode. The DSS provides efficient train loading plans with 

key details such as the total profit, haulage cost, total tonnage, total TEUs loaded, and slot 

utilization. These data can be used to generate the train summary report, which is required by 

the Indian Railways. 

 

Figure 7. The architecture of the DSS 

Figure 8 shows the main window of the simple and user-friendly graphical user interface (GUI) 

of the DSS. Most of the DSLP parameters are extracted from the connected database or set to 

their default values. The remaining inputs take only one minute to enter. An ordinary clerk can 

easily operate this application after some basic training. 
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Figure 8. The main window of the Double-Stack Loading Planner 

In addition to the input parameters of the DSLP described in Section 2, the DSS also retrieves the 

following key information to assist the users in making proper decisions: i) the network’s 

congestion status, the trains’ current positions, expected arrival and departure times (retrieved 

from the railway company); ii) the trains’ routing plan and the criteria for shortlisting containers 

at the terminals (from the CTO); and iii) containers’ positions in the yard and their accessibility 

(from the terminal operator). Depending on the above information, we make the following 

recommendations for using the DSS. 

(i) Choosing between forming a single- and a double-stack train. The DSLP does not decide 

whether a single- or a double-stack train should be formed. However, the following rules of 

thumb are recommended for this issue: 

a) If a terminal is rake-deficit, i.e., there are more outbound containers than inbound 

containers, then a double-stack train should be formed and loaded to its fullest capacity. 

For a rake-surplus terminal, this decision mainly depends on the empty rake distribution 

among other factors. 

b) For a congested route, double-stack trains should be formed and loaded to their fullest 

capacity, which will reduce the rail traffic. 

c) For small terminals with light container traffic, the decision depends on whether 

delaying the delivery of some containers can enable a double-stack train at a later time 

and reduce the container haulage cost. 

(ii) Selection of candidate containers. In addition to designating the sets of compulsory 

containers ( 𝐼40
𝐶 , 𝐼20

𝐶 ) and group-containers ( 𝐼40
𝑠 , 𝐼20

𝑠 ), the following thumb-rules are 

recommended for determining the candidate container set: 
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a) In case of a large container pendency, it is good enough to specify a cut-off reference 

time (𝑇𝑖) to shortlist the older containers as 𝐼. The cut-off time should be selected so 

that |𝐼| is about 2-3 times more than the train capacity. 

b) In most of the time, the selected candidate containers should have the same destination. 

This is consistent with the practice in India because most of the freight trains are 

through-trains without any intermediate stop18. The remaining few trains have only one 

intermediate stop where some of the containers carried by the train will be unloaded. 

To minimize the container handling and train delay at the intermediate stop for these 

trains, one can arrange to: 1) place the containers destined for the intermediate stop in 

the upper stacks; and/or 2) place the containers destined for the final stop in the lower 

stacks. This special requirement can be entertained in the pre-processing stage of the 

DSLP by specifying relevant sets of containers in the constraints (8-10). 

c) Occasionally, a few candidate containers stored in the yard might be inaccessible when 

the train is being loaded. In such last minute changes, the train loading supervisor can 

replace them with some accessible containers. 

In addition, the train loading planner should make sure that a sufficient inventory of the twist-

locks is maintained at all times, because a shortage of even one twist-lock may cause one less 

container to be loaded on the train. The resulting profit loss can be more than ten times the 

purchase cost of the twist-lock. Finally, the train loading plan generated by the DSS should be 

shared with the terminal manager well before the train loading starts for better intra-terminal 

operations planning and timely container retrieval. 

6. Conclusions 

Our work has contributed to both the academia and the industry. We develop a new 

deterministic model, DSLP, for optimizing the loading plan of double-stack container trains with 

the main objective of maximizing the CTO’s profit. The DSLP is, to our best knowledge, the first 

container train loading optimization model that accounts for many realistic features, including 

multiple double-stack loading patterns, different heights, lengths, and weights of the containers, 

and safety limits for the wagons’ payload and load-balance. The model is also the first to analyze 

and jointly consider a number of practically important objectives. These objectives include: i) 

maximizing the CTO’s profit, which is a more general (and practically preferred) objective than 

the commonly used ‘maximize train utilization’; ii) maximizing selection of the oldest containers 

 
18 Even for the US case studied by Lai et al. (2008a), 80% of the container trains have no intermediate stop. 
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for improving the customers’ satisfaction; iii) minimizing the aerodynamic resistance for saving 

the fuel; and iv) minimizing the horizontal center-of-gravity of the train for reducing the 

maintenance cost. 

Despite the above complexity, we manage to develop an efficient CPLEX based solution 

approach by exploiting key mathematical properties of the DSLP. (Recall that the practitioners 

strongly prefer an exact optimal solution due to the significant potential gains over any 

suboptimal solution.) With this efficient solution approach and a user-friendly decision-support-

system built upon the DSLP, our work has been implemented to assist the daily load planning of 

double-stack container trains for a major CTO in India. Note that this is, to our knowledge, the 

first real-life implementation of an optimization model for double-stack container train loading. 

Thus, it represents a notable progress towards bridging the gap between research and practice. 

The real-world application has shown that the DSLP can increase the profit generated by an 

individual train by about 2-3% as compared to the previous manual planning results. In addition, 

implementation of the DSS expedites the train planning process and rules out any inadvertent 

human errors that may cause high extra cost, hassles, and customer dissatisfaction. Thus, this 

will improve the overall efficiency of container train operations. 

In the future, we will seek to extend the DSLP model for the joint optimization of multiple trains. 

Although it is desirable, it is quite challenging to model and solve this new problem due to the 

additional uncertainties and complexities associated with the routing and scheduling of multiple 

trains and containers. Further, the present DSLP model ignores the intra-terminal planning of 

truck and crane movements, mainly because the potential cost savings are small as compared to 

the potential savings from the DSLP. However, a terminal operator is interested in minimizing 

the intra-terminal container handling cost without increasing the cost of train operations. We 

are seeking to develop a realistic model for minimizing the intra-terminal container handling 

cost for given DSLP loading plans, which account for the terminal layout, position of containers 

in the yard, and the availability of trucks and cranes. 
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Appendix A: List of notation 

Parameters 

𝐺𝑘 Payload limit (maximum permissible payload) for wagon 𝑘 ∈ 𝐾 

𝐻𝑖 Height of container 𝑖 ∈ 𝐼 

𝐻̅𝑘  Height of the wagon platform measured from the rail surface, 𝑘 ∈ 𝐾 

𝐻𝑘
𝐿 , 𝐻𝑘

𝑈  Heights of the lower- and upper-stack container(s) loaded on wagon 𝑘 ∈ 𝐾 

𝐻𝑜 Height of interbox twist-lock  

𝐻̂ Highest possible height of a container (9.5 feet for the Indian case) 

𝐼 Set of candidate containers; index 𝑖 ∈ 𝐼 

𝐼20 , 𝐼40 Sets of 20-ft and 40-ft containers, respectively (𝐼 = 𝐼20 ∪ 𝐼40) 

𝐼20
𝐶  , 𝐼40

𝐶  
Sets of 20-ft and 40-ft compulsory containers, respectively, which must be loaded in the train 

(𝐼20
𝐶 ⊆ 𝐼20,  𝐼40

𝐶 ⊆ 𝐼40)  

𝐼20
𝑠  , 𝐼40

𝑠  Sets of 20-ft and 40-ft containers belonging to a shipping bill 𝑠 ∈ 𝑆 (𝐼20
𝑠 ⊆ 𝐼20,  𝐼40

𝑠 ⊆ 𝐼40) 

𝐽 Set of allowed container loading patterns; index 𝑗 ∈ 𝐽 ≡ {1,2,4,5,6} 

𝐾 
Set of rail wagons for the train; index 𝑘 ∈ 𝐾 refers to the position of a wagon counted from 

the locomotive. 

𝐾1 ,𝐾2 Sets of wagons loaded in single- and double-stack loading patterns, respectively 

𝑚 Index to refer to a position of a container loaded on a wagon, 𝑚 ∈ {𝐴, 𝐵, 𝐶, 𝐷} 

𝑀1  , 𝑀2  Big constants 

𝑁40
𝐹  Number of total 40-ft containers suitable for loading in the upper-stack positions of the train 

𝑃𝑖
𝐿  , 𝑃𝑖

𝑈 
Profit parameters for the assignment of container 𝑖 to the lower- and upper-stack position of 

the train, respectively 

𝑅𝑘  Maximum limit on the vertical center-of-gravity (CG) of a loaded wagon 𝑘 

𝑅̅𝑘 CG height of an empty wagon 𝑘 

𝑆 
Set of shipping bills with a special request to load either all or none of the containers on the 

train; index 𝑠 ∈ 𝑆. 
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𝑇𝑖  Time of booking of container 𝑖 

𝑉𝑘 Set of containers that are assigned to wagon 𝑘 

𝑊𝑖  Gross weight of container 𝑖 

𝑊̅𝑘 Tare weight of wagon 𝑘 

𝑊𝑘
𝐿 , 𝑊𝑘

𝑈  (Total) weight of the lower- and upper-stack container(s) on wagon 𝑘, respectively 

𝑊40
𝑚𝑖𝑛 Weight of the lightest 40-ft container in 𝐼40 

∆𝑘  Maximum limit for the weight difference between the two 20s loaded on the same wagon 𝑘 

𝛼 Parameter to address the relative shortage of 40-ft containers for future double-stack trains 

𝜋 Total container haulage profit of the train 

𝜏 Total container haulage tardiness of the train 

 

Binary decision variables 

𝑥𝑘
𝑗
 if  wagon 𝑘 ∈ 𝐾 is loaded in pattern 𝑗 ∈ 𝐽, 𝑥𝑘

𝑗
= 1; else  𝑥𝑘

𝑗
= 0 

𝑦𝑖𝑘
𝑗

 
if a 20-ft container 𝑖 ∈ 𝐼20 is loaded in position 𝑚 ∈ {𝐴, 𝐵} of wagon 𝑘 ∈ 𝐾, 𝑦𝑖𝑘

𝑗
= 1; else 

 𝑦𝑖𝑘
𝑗

= 0  

𝑧𝑖𝑘
𝑗

 
if a 40-ft container 𝑖 ∈ 𝐼40 is loaded in position 𝑚 ∈ {𝐸, 𝐹} of wagon 𝑘 ∈ 𝐾,  𝑧𝑖𝑘

𝑗
= 1; else 

 𝑧𝑖𝑘
𝑗

= 0 

𝑏𝑠  if all the containers in 𝑠 ∈ 𝑆 are assigned to the train,  𝑏𝑠 = 1; else  𝑏𝑠 = 0   

 

 

 




