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Abstract

A second-order leapfrog finite difference scheme in time is proposed and developed for solving the first-order
necessary optimality system of the distributed parabolic optimal control problems. Different from available
approaches, the proposed leapfrog scheme for the two-point boundary optimality system is shown to be
unconditionally stable and provides a second-order accuracy, though the classical leapfrog scheme usually
is unstable. Moreover the proposed leapfrog scheme provides a feasible structure that leads to an effective
implementation of a fast solver under the multigrid framework. A detailed mathematical proof for the stability
of the proposed scheme is provided in terms of a new norm that is more suitable and stronger to characterize
the convergence than the L2 norm often used in literature. Numerical experiments show that the proposed
scheme significantly outperforms the widely used second-order backward time differentiation approach and
the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity.
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1. Introduction

Optimal control problems governed by evolutionary partial differential equations (PDEs) [1, 2, 3, 4] have
recently gained dramatically increasing attention from the scientific computing community. This trend is
driven not only by its broader applications in different fields but also by the computational challenges it
brings on the stage. Among those applications, one of representative examples is the real-time optimal control
[5] of reaction-diffusion systems in cardiac electrophysiology [6]. The performance of these systems usually
relies on the efficiency and accuracy of numerical algorithms in order to achieve desirable control response,
which requires substantial efforts across related disciplines, in particular, from the community of numerical
optimization.

We exemplify our proposed approach through discussing a prototype parabolic distributed optimal control
problem. Let Ω = (0, 1)d (1 ≤ d ≤ 3) be the spatial domain with boundary Γ := ∂Ω. Given a finite period
of time T > 0, define Q = Ω× (0, T ) and Σ = Γ× (0, T ). We consider the following optimal control problem
[1, 3] of minimizing a tracking-type quadratic cost functional

J(y, u) = 1
2∥y − g∥2L2(Q) +

γ
2 ∥u∥

2
L2(Q) (1.1)

subject to a linear parabolic PDE system −∂ty +∆y = f + u in Q,
y = 0 on Σ,

y(·, 0) = y0 in Ω,
(1.2)
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where u ∈ U := L2(Q) is the distributed control function, g ∈ L2(Q) is the desired tracking trajectory, γ > 0
represents either the weight of the cost of control or the Tikhonov regularization parameter, f ∈ L2(Q),
and the initial condition y0 ∈ L2(Ω). The existence and uniqueness of solution to the above optimal control
problem (1.1-1.2) is well understood (see, for example, [1, 3]).

Current state-of-art numerical methods [7, 8, 4] for solving this class of optimal control problems (1.1–
1.2) generally fall into either discretize-then-optimize approach or optimize-then-discretize approach. In this
paper, we will focus on the second category by making use of its first-order optimality system. However,
our proposed approach is also suitable for the first category when the discretization has a similar structure.
More specifically, our proposed discretization scheme and multigrid solver are numerically shown to work
very well under the framework of discretize-then-optimize approach.

By defining an appropriate Lagrange functional, making use of the strong convexity of the original
optimization problem, the optimal solution pair (y, u) to (1.1-1.2) is shown to be completely characterized
by the unique solution triplet (y, p, u) to the following optimality system

−∂ty +∆y − u = f in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω,

∂tp+∆p+ y = g in Q,
p = 0 on Σ, p(·, T ) = 0 in Ω,

γu− p = 0 in Q,

(1.3)

where the state y evolves forward in time and the adjoint state p marches backward in time. According to [9],
suitable regularity for y and p can hold under appropriate assumptions on y0, f , and g. The special relation
γu− p = 0 implies that u has the same regularity as p. For the purpose of simplified analysis and practical
implementation, the control u = p/γ can be eliminated from the optimality system as following

−∂ty +∆y − p/γ = f in Q,
y = 0 on Σ, y(·, 0) = y0 in Ω,

∂tp+∆p+ y = g in Q,
p = 0 on Σ, p(·, T ) = 0 in Ω.

(1.4)

This is a standard two-point boundary-value problem (with respect to t) that appears often in optimal
control of parabolic PDEs. The main challenge for solving (1.4) results from the fact that the state y and
the adjoint state p are marching in opposite directions. Its numerical discretizations will create a large-scale
sparse system of algebraic equations as we have to resolve all time steps simultaneously [10].

In terms of finite difference discretization for time variable of (1.4), the backward Euler discretization
with respect to time t is favorable choice due to its unconditional stability (see, e.g.,[11]). The drawback
is the sloppy first-order accuracy in time t, compared with standard second-order spatial discretizations.
Constructing higher order finite difference schemes for the time variable t is a natural development to
improve the overall efficiency (for both time and spatial variables) since it allows us to attain the required
accuracy with much coarser mesh size that results in a smaller dimension of discretized linear system. Thus
much of efforts are devoted by many researchers to explore various second or higher-order numerical schemes
for (1.4) or similar-type systems. In [12], the authors introduced a family of second-order Crank–Nicolson
(CN) based time discretizations for state and adjoint state in unconstrained optimal control problems with
evolution equations, where a second-order accuracy in both time and space is proved under L2 norm setting.
In [13], the authors developed a second-order backward time differentiation formula (BDF2) in time with
CN scheme as an initialization step, which is also shown to be second-order accurate with discrete L2 norm
in the case where the constraints on the control are not active. Their BDF2 scheme requires a second-order
accurate approximation, such as the CN scheme, to the initial time step of the state equation as well as the
final time step of the adjoint equation, respectively. Under the framework of finite element discretizations,
similar efforts were also made to develop better convergent schemes. For instance, it was demonstrated in
[14, 15] under suitable conditions the optimality system is actually equivalent to a V-elliptic problem on
the space-time cylinder that leads to some rigorous error estimates [16, 17, 18, 19]. In addition to above
mentioned schemes, many other discretization strategies in time and space have been extensively studied
[20, 21].

Although several second-order schemes are available, they are not necessarily suitable for fast solver
development due to the complexity of discretization structures. For example, as the authors pointed out
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in [13, 22], the pure CN scheme is not a good choice for implementing a space-time multigrid algorithm
due to the lack of certain symmetric structures of discretization. In fact, past numerical experiences show
that some standard multigrid solvers, including the one we present in this paper, may not even converge
with CN scheme, and thus this stimulated us to seek more suitable schemes that can successfully facilitate
the multigrid solver development. Moreover, in order to improve the overall efficiency it is important and
necessary to equip a discretization scheme with some fast direct/iterative linear solvers [23, 24, 25, 26] so
that it can deal with large-scale degrees of freedom and higher dimension efficiently. Beginning with a few
early numerical endeavors [27, 28, 29], multigrid methods have started to play a more and more irreplaceable
character in the field of PDE optimization [30, 31, 32, 4, 33, 34] since the seminal introduction of space-time
multigrid for linear parabolic PDEs [35], where the semi-coarsening was shown to give better convergence
compared to standard coarsening. In the framework of finite difference discretization, some recent papers
[11, 36, 37, 38, 39, 40, 41, 13] are devoted to apply the idea of space-time multigrid to those forward-and-
backward coupled linear/nonlinear parabolic PDE systems similar to (1.4). But few research is seen between
the connection of numerical scheme design and fast solver implementation in current literature.

In this paper we propose the leapfrog central difference scheme for time discretization. In classical theory,
it is well-known that leapfrog scheme is not stable for a single evolutionary equation although it is second-
order accurate [42, 43]. However, in this paper, we prove that leapfrog scheme in terms of time discretization
for the two point boundary-value problem (1.4) is unconditionally stable and delivers the second-order
accuracy of time variable, which has not been seen in current literature. The essential observation is that
the conventional instability of leapfrog scheme comes from errors propagation in each time step with an
amplification factor being strictly greater than one. In contrast, our approach solves for all time steps in
one shot by treating time as a new spatial variable, which will not amplify the temporal errors as there
are no explicit time-iteration operations. More importantly, our approach by using leapfrog scheme leads to
the implementation of a very efficient multigrid iterative solver. More specifically, this scheme provides a
feasible and practical approach in constructing the effective collective Jacobi smoother [39], as it was shown in
[44, 45] for the case of elliptic optimal control problems by using finite element discretization. This advantage
will become even more valuable when handling the problems with nonlinear parabolic PDEs associated with
higher dimensional domains. From the viewpoint of numerical development, it is important for us to discretize
the system in an ’optimal’ way so that it not only achieves the desired order of accuracy but also is able to
accommodate the later effective implementation of a fast solver with a predictable guaranteed converging
property.

This paper is organized as follows. In the next section, we propose leapfrog scheme (with a backward Euler
step) in time and a second-order five-point finite difference scheme in space for discretizing the optimality
system. The second-order accuracy of our proposed leapfrog scheme is proved under the discrete L2(L∞)
norm. In Section 3, a multigrid algorithm is designed for solving the discretized optimality system with some
favorable structures. In Section 4, results of numerical simulations are reported to demonstrate the second-
order accuracy of our leapfrog finite difference approximations and the mesh independent convergence of the
corresponding multigrid solver with linear time complexity. Numerical comparisons are performed among the
BDF2 scheme, the CN scheme, and our leapfrog scheme. Finally, the paper ends with concluding remarks in
Section 5.

2. Leapfrog scheme and its error estimate

In this section, we exemplify our analysis in the two dimensional case, the conclusions of which can
be easily generalized to one and three dimensions. We partition the time interval [0, T ] uniformly into
0 = t0 < t1 < · · · < tN = T with tk − tk−1 = τ = T/N , and discretize the space domain Ω = [0, 1]2

uniformly into 0 = ξ0 < ξ1 < · · · < ξM1
= 1 and 0 = ζ0 < ζ1 < · · · < ζM2

= 1, with h1 = ξi − ξi−1,
h2 = ζj − ζj−1. Let h = max(h1, h2). For a given 0 ≤ n ≤ N , we define the discrete inner product

(φn, ϕn) =
∑M1−1,M2−1

i,j=1 φn
ijϕ

n
ijh1h2 and the corresponding discrete L2(Ω) norm ∥ϕn∥ =

√
(ϕn, ϕn). We also

define the discrete gradient

∇hφ
n =

(
φn
i,j − φn

i−1,j

h1
,
φn
i,j − φn

i,j−1

h2

)M1,M2

i=1,j=1

,
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and the discrete Laplacian

(∆hY
n)ij =

Y n
i−1,j − 2Y n

i,j + Y n
i+1,j

h2
1

+
Y n
i,j−1 − 2Y n

i,j + Y n
i,j+1

h2
2

.

We shall use the discrete version of Poincaré inequality and Sobolev embedding inequality [46, 47], i.e. there
exists a positive constant C0, independent of h, such that if y = (yij) satisfies the boundary condition
y0,j = yM1,j = yi,0 = yi,M2 = 0 for i = 1, · · · ,M1 − 1 and j = 1, · · · ,M2 − 1, then

∥y∥ ≤ C0∥∇hy∥ and max
i,j

|ynij | ≤ C0∥∆hy
n∥.

We shall also use the discrete version of integration by parts:

(−∆hz, w) = (∇hz,∇hw)

when functions z, w are defined on the mesh points and vanish on the boundary ∂Ω.
We discretize the equations (1.4) by the leap-frog finite difference scheme

Y n+1 − Y n−1

2τ
−∆hY

n + Pn/γ = −fn, n = 1, 2, · · · , N − 1 (2.5)

Pn+1 − Pn−1

2τ
+∆hP

n + Y n = gn, n = 1, 2, · · · , N − 1 (2.6)

where Y n = (Y n
ij )

M1−1,M2−1
i=1,j=1 and Pn = (Pn

ij)
M1−1,M2−1
i=1,j=1 with Y n

ij and Pn
ij being the discrete approximation

of y(ξi, ζj , tn) and p(ξi, ζj , tn), respectively. Similar notations are used for fn and gn. Here Y 0 and PN are
from given initial conditions. At the last time step, we close the linear system by imposing two additional
equations by using the backward Euler scheme

Y N − Y N−1

τ
−∆hY

N + PN/γ = −fN , (2.7)

P 1 − P 0

τ
+∆hP

0 + Y 0 = g0. (2.8)

Such a treatment is significantly different from the traditional unstable leapfrog scheme which often uses a
backward Euler step for initializing the temporal advancing. Although we only use a first-order backward
Euler scheme in the final time step, we shall see that the finite difference approximations {Y n, Pn}Nn=0 has a
second-order accuracy in both time and space as shown in the following theorem. This extra flexibility of our
leapfrog scheme compared to the BDF2 scheme comes from our following more direct proof arguments. In
practical implementations, those second-order accurate BDF2 or CN schemes are also applicable to replace
the above first-order accurate backward Euler scheme for better accuracy, which is illustrated by the following
Example 2 in Section 4,

Let C4,3(Q) denote the space of functions with bounded continuous spatial partial derivatives up to order
4 and bounded continuous temporal partial derivatives up to order 3, i.e.,

C4,3(Q) = {w : ∂4−k
x1

∂k
x2
w and ∂3

tw are bounded and continuous, k = 0, 1, 2, 3, 4}.

Theorem 2.1. Let the dimension d = 2. Assuming that y, p ∈ C4,3(Q), the linear system defined by (2.5)-
(2.8) is invertible and the scheme has second-order accuracy in discrete L2(L∞) norm, i.e.,(

∥e∥2L2
τ (L

∞
h ) + ∥η∥2L2

τ (L
∞
h )

) 1
2

:=

( N∑
n=0

(max
i,j

|enij |2 +max
i,j

|ηnij |2)τ
) 1

2

≤ C(τ2 + h2)

for some positive constant C which does not depend on τ and h, where eni,j = Y n
i,j − y(ξi, ζj , tn) and ηni,j =

Pn
i,j − p(ξi, ζj , tn).
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Proof. Note that the exact solutions yn(x) = y(x, tn) and pn(x) = p(x, tn) satisfy the equations

yn+1 − yn−1

2τ
−∆hy

n + pn/γ = −fn − Fn, n = 1, 2, · · · , N − 1 (2.9)

pn+1 − pn−1

2τ
+∆hp

n + yn = gn −Gn, n = 1, 2, · · · , N − 1 (2.10)

and

yN − yN−1

τ
−∆hy

N + pN/γ = −fN − FN , (2.11)

p1 − p0

τ
+∆hp

0 + y0 = g0 −G0, (2.12)

where Fn and Gn denote the truncation errors [42, 43], which satisfy (by assuming y, p ∈ C4,3(Q))

∥Fn∥+ ∥Gn∥ ≤ C1(τ
2 + h2) for n = 1, 2, · · · , N − 1

and

FN
ij = ∂ty(ξi, ζj , tN )− y(ξi, ζj , tN )− y(ξi, ζj , tN−1)

τ
− (∆y(ξi, ζj , tN )− (∆hy

N )ij)

=

(
1

τ

∫ tN

tN−1

∫ tN

s

∂tty(ξi, ζj , s
′)ds′ds

)
− (∆y(ξi, ζj , tN )− (∆hy

N )ij) =: F
N

ij − F̃N
ij ,

G0
ij = ∂tp(ξi, ζj , 0)−

p(ξi, ζj , τ)− y(ξi, ζj , 0)

τ
+ (∆p(ξi, ζj , 0)− (∆hp

0)ij)

=

(
1

τ

∫ τ

0

∫ τ

s

∂ttp(ξi, ζj , s
′)ds′ds

)
+ (∆p(ξi, ζj , 0)− (∆hp

0)ij) =: G
0

ij + G̃0
ij ,

where

∥∇hF
N∥+ ∥∇hG

0∥ ≤ C1τ,

∥F̃N∥+ ∥G̃0∥ ≤ C1h
2,

for some positive constant C1, independent of τ and h. Here we define F
N

ij and G
0

ij to be zero on the boundary

(i ∈ {0,M1} or j ∈ {0,M2}) so that their discrete gradients are well-defined. The two terms ∥∇hF
N∥ and

∥∇hG
0∥ above are estimated in the following way. Let

∇h∂tty =

(
∂tty(ξi, ζj , s

′)− ∂tty(ξi−1, ζj , s
′)

h1
,
∂tty(ξi, ζj , s

′)− ∂tty(ξi, ζj−1, s
′)

h2

)
.

Then ∥∇h∂tty∥ ≤ C∥∇∂tty∥C(Ω) ≤ C, due to the regularity assumption y ∈ C4,3(Q). Consequently, we have

∥∇hF
N∥ =

∥∥∥∥∥1τ
∫ tN

tN−1

∫ tN

s

∇h∂tty ds
′ds

∥∥∥∥∥
≤ 1

τ

∫ tN

tN−1

∫ tN

s

∥∇h∂tty∥ ds′ds

≤ 1

τ

∫ tN

tN−1

∫ tN

s

C∥∇∂tty∥C(Ω) ds
′ds

≤ C∥∇∂tty∥C(Ω)τ.

∥∇hG
0∥ can be estimated similarly.
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Let en = Y n − yn and ηn = Pn − pn. Then the difference between (2.5)-(2.8) and (2.9)-(2.12) gives

en+1 − en−1

2τ
−∆he

n + ηn/γ = Fn, (2.13)

ηn+1 − ηn−1

2τ
+∆hη

n + en = Gn, (2.14)

and

eN − eN−1

τ
−∆he

N + ηN/γ = FN , (2.15)

η1 − η0

τ
+∆hη

0 + e0 = G0, (2.16)

with the initial conditions e0 = ηN = 0.
The discrete inner product of (2.13) and −τ ∆he

n is

(∇he
n+1,∇he

n)− (∇he
n,∇he

n−1)

2
+ τ∥∆he

n∥2 + τ(∇he
n,∇hη

n)/γ = −τ(Fn,∆he
n), (2.17)

and by summing up above equations for n = 1, · · · , N − 1, we get (note that (∇he
1,∇he

0) = 0)

(∇he
N ,∇he

N−1)

2
+

N−1∑
n=1

τ∥∆he
n∥2 +

N−1∑
n=1

τ(∇he
n,∇hη

n)/γ = −
N−1∑
n=1

τ(Fn,∆he
n). (2.18)

The discrete inner product of (2.15) and −τ ∆he
N/2 is (note that ηN = 0)

∥∇he
N∥2 − (∇he

N ,∇he
N−1)

2
+

τ

2
∥∆he

N∥2 = −τ

2
(FN ,∆he

N )

=
τ

2
(∇hF

N
,∇he

N ) +
τ

2
(F̃N ,∆he

N ). (2.19)

The sum of the last two equations gives
(by Cauchy’s inequality with ϵ [9]: ab ≤ a2/(4ϵ) + ϵb2 for a > 0, b > 0, ϵ > 0)

∥∇he
N∥2

2
+

N−1∑
n=1

τ∥∆he
n∥2 + τ

2
∥∆he

N∥2 +
N−1∑
n=1

τ(∇he
n,∇hη

n)/γ

= −
N−1∑
n=1

τ(Fn,∆he
n) +

τ

2
(∇hF

N
,∇he

N ) +
τ

2
(F̃N ,∆he

N )

≤
N−1∑
n=1

τ∥Fn∥∥∆he
n∥+ τ

2
(∥∇hF

N∥∥∇he
N∥+ ∥F̃N∥∥∆he

N∥)

≤ C1

N−1∑
n=1

τ(τ2 + h2)∥∆he
n∥+ C1

2
τ(τ∥∇he

N∥+ h2∥∆he
N∥)

≤ C2
1 (τ

2 + h2)2/(4ϵ)

N−1∑
n=1

τ + ϵ

N−1∑
n=1

τ∥∆he
n∥2 + C2

1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇he

N∥2 + ϵτ∥∆he
N∥2

≤ 2TC2
1 (τ

4 + h4)/(4ϵ) + ϵ

N−1∑
n=1

τ∥∆he
n∥2 + C2

1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇he

N∥2 + ϵτ∥∆he
N∥2

= C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) + ϵ

N−1∑
n=1

τ∥∆he
n∥2 + ϵ∥∇he

N∥2 + ϵτ∥∆he
N∥2,
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that is

(
1

2
− ϵ)∥∇he

N∥2 + (1− ϵ)

N−1∑
n=1

τ∥∆he
n∥2 + (

1

2
− ϵ)τ∥∆he

N∥2 +
N−1∑
n=1

τ(∇he
n,∇hη

n)/γ (2.20)

≤ C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) (2.21)

for arbitrary ϵ > 0. By choosing ϵ = 1/4 so that (1 − ϵ) ≥ 1/4 and (1/2 − ϵ) ≥ 1/4, the last inequality is
reduced to

1

4
∥∇he

N∥2 + 1

4

N−1∑
n=1

τ∥∆he
n∥2 + 1

4
τ∥∆he

N∥2 + 1

γ

N−1∑
n=1

τ(∇he
n,∇hη

n)

≤ 2C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4),

which implies (by dropping 1
4∥∇he

N∥2 and absorbing the higher-order term τh4 into C2)

N∑
n=1

τ∥∆he
n∥2 + 4

γ

N−1∑
n=1

τ(∇he
n,∇hη

n) ≤ C2(τ
4 + h4). (2.22)

Following above analogous arguments, the discrete inner product of (2.14) and τ ∆hη
n is

− (∇hη
n+1,∇hη

n)− (∇hη
n−1,∇hη

n)

2
+ τ∥∆hη

n∥2 − τ(∇he
n,∇hη

n) = τ(Gn,∆hη
n), (2.23)

and by summing up above equations for n = 1, · · · , N − 1, we get (note that (∇hη
N ,∇hη

N−1) = 0)

(∇hη
0,∇hη

1)

2
+

N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n) =

N−1∑
n=1

τ(Gn,∆hη
n). (2.24)

The discrete inner product of (2.16) and τ ∆hη
0/2 is (note that e0 = 0)

− (∇hη
1,∇hη

0)− (∇hη
0,∇hη

0)

2
+

τ

2
∥∆hη

0∥2 =
τ

2
(G0,∆hη

0)

= −τ

2
(∇hG

0
,∇hη

0) +
τ

2
(G̃0,∆hη

0). (2.25)

Similarly, the sum of the last two equations gives (by Cauchy’s inequality with ϵ)

∥∇hη
0∥2

2
+

τ

2
∥∆hη

0∥2 +
N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n)

= −τ

2
(∇hG

0
,∇hη

0) +
τ

2
(G̃0,∆hη

0) +

N−1∑
n=1

τ(Gn,∆hη
n)

≤ τ

2
(∥∇hG

0∥∥∇hη
0∥+ ∥G̃0∥∥∆hη

0∥) +
N−1∑
n=1

τ∥Gn∥∥∆hη
n∥

≤ C1

2
τ(τ∥∇hη

0∥+ h2∥∆hη
0∥) + C1

N−1∑
n=1

τ(τ2 + h2)∥∆hη
n∥

≤ C2
1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇hη

0∥2 + ϵτ∥∆hη
0∥2 + C2

1 (τ
2 + h2)2/(4ϵ)

N−1∑
n=1

τ + ϵ

N−1∑
n=1

τ∥∆hη
n∥2

≤ C2
1

4
(τ4 + τh4)/(4ϵ) + ϵ∥∇hη

0∥2 + ϵτ∥∆hη
0∥2 + 2TC2

1 (τ
4 + h4)/(4ϵ) + ϵ

N−1∑
n=1

τ∥∆hη
n∥2
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= C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) + ϵ∥∇hη

0∥2 + ϵτ∥∆hη
0∥2 + ϵ

N−1∑
n=1

τ∥∆hη
n∥2,

that is

(
1

2
− ϵ)∥∇hη

0∥2 + (
1

2
− ϵ)τ∥∆hη

0∥2 + (1− ϵ)

N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n) (2.26)

≤ C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4)/(2ϵ) (2.27)

for arbitrary ϵ > 0. By choosing ϵ = 1/4 so that (1− ϵ) ≥ 1/4 and (1/2− ϵ) ≥ 1/4, then the last inequality
becomes

∥∇hη
0∥2

4
+

1

4
τ∥∆hη

0∥2 + 1

4

N−1∑
n=1

τ∥∆hη
n∥2 −

N−1∑
n=1

τ(∇he
n,∇hη

n)

≤ 2C2
1 ((T +

1

8
)τ4 + Th4 +

1

8
τh4),

which further indicates that

N−1∑
n=0

τ∥∆hη
n∥2 − 4

N−1∑
n=1

τ(∇he
n,∇hη

n) ≤ C3(τ
4 + h4). (2.28)

Adding γ×(2.22) with (2.28) gives

γ

N∑
n=1

τ∥∆he
n∥2 +

N−1∑
n=0

τ∥∆hη
n∥2 ≤ (γC2 + C3)(τ

4 + h4), (2.29)

which also shows (recall that ∥∆he
0∥ = 0 and ∥∆hη

N∥ = 0)

N∑
n=0

τ∥∆he
n∥2 +

N∑
n=0

τ∥∆hη
n∥2 ≤ C4(τ

4 + h4). (2.30)

Since max
i,j

|enij | ≤ C0∥∆he
n∥ for some positive constant C0, the last inequality implies that

N∑
n=0

(max
i,j

|enij |2 +max
i,j

|ηnij |2)τ ≤ C5(τ
4 + h4), (2.31)

which completes the proof.
From the proof we can also see that, if we set Fn = Gn = 0 in (2.11)-(2.14), then (2.11)-(2.14) imply

that en = ηn = 0. This substantiates the invertibility of the discretized linear system (2.5)-(2.8) in our
conclusions.

Remark 2.1. In our approach, we focus on the establishment of an effective numerical scheme. Thus for
the purpose of transparency, we directly assume the regularity C4,3(Q). Since the system is parobolic-type,
one can always assume that the initial condition x0 and the source f to be sufficiently smooth, assuming
the compatible condition at the boundaries ∂Ω × {0} and ∂Ω × {T} is met ([9, Page 388]), to achieve
this regularity requirement. Here our estimation is based on retangular domain. Some revision or additinal
assumptions may be needed for other types of domain to maintain the regularity requirement.

Remark 2.2. From the proof of Theorem 2.1 we see that the proposed scheme for the KKT system is
unconditional stable. In particular, Theorem 2.1 holds with h and τ arbitrary (i.e., not assumed to be
sufficiently small, or dependent of each other). Moreover, by letting p ≡ 0 and g ≡ y, the above proof also
implies that our leapfrog scheme achieves a second-order accuracy for solving the heat equation.
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Remark 2.3. It is worthy of pointing out that our proved error estimate in terms of discrete L2(L∞) norm
is stronger than the often used discrete L2(Q) norm estimate in literature [11, 13]. The approach technique
for L∞ norm in space also holds for dimensions d = 1 and d = 3 with minor modification of the proof. With
d > 3 the estimate (2.31) from (2.30) may not hold due to the failure of the discrete Sobolev embedding
inequality. However, a similar error estimate in discrete L2(Q) norm is still valid due to (2.30).

3. Multigrid solver for the linear system

To illustrate our multigrid linear solver for the discretized system, we reformulate our leapfrog scheme
(2.5,2.6,2.7,2.8) in a two-by-two block structured linear system

Lhwh :=

[
Ah Bh

Ch Dh

] [
yh
ph

]
=

[
fh
gh

]
=: bh, (3.32)

where

Ah =



I 0 0 · · · 0 0
−I/2τ −∆h I/2τ · · · 0 0

0 −I/2τ −∆h I/2τ · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · −I/2τ −∆h I/2τ
0 0 · · · 0 −I/τ (−∆h + I/τ)


, (3.33)

Bh =



0 0 · · · 0 0
0 I

γ 0 · · · 0 0

0 0 I
γ 0 · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · 0 I
γ 0

0 0 · · · 0 0 I
γ


, Ch =



I 0 0 · · · 0 0
0 I 0 · · · 0 0
0 0 I 0 · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · 0 I 0
0 0 · · · 0 0 0


, (3.34)

Dh =



(−I/τ +∆h) I/τ 0 · · · 0 0
−I/2τ ∆h I/2τ · · · 0 0

0 −I/2τ ∆h I/2τ · · · 0

0 0
. . .

. . .
. . . 0

0 0 · · · −I/2τ ∆h I/2τ
0 0 · · · 0 0 I


, (3.35)

fh =



y0
−f1

−f2

...
−fN−1

−fN


, gh =



g0

g1

g2

...
gN−1

0


, yh =



y0

y1

y2

...
yN−1

yN


, and ph =



p0

p1

p2

...
pN−1

pN


. (3.36)

Here I is an identity matrix of appropriate size and the vectors y0, f
n, gn, and pn are the lexicographic

ordering (vectorization) of the corresponding approximations over mesh grids. Also notice that we include
the given initial conditions y0 = y0 and pN = 0 as unknowns for the unified formulation purpose.

Now, we proceed to propose a multigrid algorithm [48] for solving (3.32). Given a linear system such as
(3.32) that is discretized with finest mesh-size h

Lhwh = bh,

one V-cycle linear multigrid iteration is recursively delineated in Algorithm 1 [30, 32], where we have to
provide the coarsest mesh size h0, the smoothing algorithm smooth, the restriction operator IHh , the pro-
longation operator IhH , as well as the coarse grid operator LH .
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Algorithm 1: V-cycle multigrid iteration
wh := MG(h,Lh, w

0
h, bh)

IF (h == h0)
Solve exactly: wh = L−1

h bh
ELSE

Pre-smooth ν1 times: wh := smoothν1(Lh, w
0
h, bh)

Restriction: rH := IHh (bh − Lhwh)
Initialize correction:δH := 0
Recursion : δH := MG(H,LH , δH , rH)
Prolongation: δh := IhHδH
Correction: wh := wh + δh
Post-smooth ν2 times: wh := smoothν2(Lh, wh, bh)

ENDIF
RETURN wh.

For our implementation, we only use semi-coarsening in space (no coarsening in time) for its fast convergence.
The coarse grid operator LH is derived from the finite difference discretization with a coarse step-size H
in space. For the smoother smooth, considering its lower computational costs, we make use of a damped
collective Jacobi (C-JAC) smoother given in [45]. Numerical simulations indicate that the C-JAC smoother
works better than conventional Gauss-Seidel (G-S) smoother, especially when the regularization parameter γ
is small. In particular, a single smoothing iteration can be represented in a compact formula (with a damping
factor ω ∈ (0, 1]) [

y
(k+1)
h

p
(k+1)
h

]
=

[
y
(k)
h

p
(k)
h

]
+ ωJ−1

h

(
bh − Lh

[
y
(k)
h

p
(k)
h

])
,

with

Jh :=

[
diag(Ah) diag(Bh)
diag(Ch) diag(Dh)

]
, (3.37)

where diag(·) stands for the diagonal part of the input matrix block, respectively. Notice that we have
diag(Bh) = Bh and diag(Ch) = Ch since they are diagonal matrices. Here, the matrix-vector multiplication
J−1
h v can be computed very efficiently based on the partitioned inverse formula [49] since these blocks are

all diagonal. Indeed, the time complexity of calculating J−1
h v is of O(N). A obviously necessary condition

for above smoother is the invertibility of Jh, which trivially holds for our proposed leapfrog scheme.
Similar to [50], in 2D case, we define the restriction operator IHh from the full-weighting averaging with

the following stencil form

IHh =
1

16

 1 2 1
2 4 2
1 2 1


and the prolongation operator IhH from bilinear interpolation with a corresponding stencil form

IhH =
1

4

 1 2 1
2 4 2
1 2 1

 .

For 1D case, we also have similar restriction and prolongation operators [30].

4. Numerical experiments

In this section, we will provide several numerical examples to validate the obtained theoretical results
and to demonstrate the high efficiency of our proposed approach. All simulations are implemented using
MATLAB R2014a on a laptop PC with Intel(R) Core(TM) i3-3120M CPU@2.50GHz and 12GB RAM. The
CPU time is estimated by timing functions tic/toc.
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For simplicity, we will denote the discrete L2 norm on Q in short by ∥ · ∥, that is ∥ · ∥ := ∥ · ∥L2
h(Q). Based

on our error estimates, we also defined the discrete L2(L∞) norm ∥ · ∥L2
τ (L

∞
h ). We first compute the discrete

L2(L∞) norms of state and adjoint state approximation errors

ehy = ∥yh − y∥L2
τ (L

∞
h ) and ehp = ∥ph − p∥L2

τ (L
∞
h )

and then estimate the experimental order of accuracy by computing the logarithmic ratios of the approxi-
mation errors between two successive refined meshes, i.e.,

Order = log2(e
2h/eh),

which should be close to two for a second-order accuracy. Theoretically, our leapfrog scheme, the BDF2
scheme, and the CN scheme should exhibit the same second-order accuracy. However, the absolute approxi-
mation errors of our leapfrog scheme are expected to be smaller than that of BDF2 scheme since the leapfrog
scheme is based on central finite difference approximations instead of one-sided finite difference formulas as
in the BDF2 scheme (see Appendix A). This anticipation is verified by the following numerical simulations.

In our multigrid implementation, we choose the damping factor ω = 1/2 for d = 1 and ω = 4/5 for d = 2,
the coarsest mesh size h0 = 4d−3, and the spatial coarsening mesh size H = 2h. In each V-cycle iterations
two pre- and post- smoothing steps are performed. For initialization, the state y and the adjoint state p are
set to be zero, and the stopping criterion based on relative residuals is chosen to be

Rel. Res. :=

√
∥r(k)y ∥2 + ∥r(k)p ∥2√
∥r(0)y ∥2 + ∥r(0)p ∥2

≤ 10−7,

where r
(k)
y and r

(k)
p denote the residuals after k-th V-cycle iteration.

4.1. Example 1.

Let Ω = (0, 1) and T = 2. Let

f = π sin(πx) sin(πt)− π2 sin(πx) cos(πt)− sin(πx) sin(πt)/γ

and
g = π sin(πx) cos(πt)− π2 sin(πx) sin(πt) + sin(πx) cos(πt)

in (1.4) such that the exact solution is

y(x, t) = sin(πx) cos(πt) and p(x, t) = sin(πx) sin(πt).

Here the initial condition is set as y0(x) = sin(πx). We test with different parameters γ = 10−1 and γ = 10−3.
We report in Tables .1 and .2 the errors, the experimental order of accuracy, the required multigrid

iteration numbers, and the CPU time of our proposed leapfrog scheme with different parameters. Clearly,
the finite difference approximations achieve a second-order accuracy for both state y and adjoint state p,
which validates our theoretical conclusions. The mesh-independent number of iterations in column ‘Iter’
indicates our proposed multigrid solver has a roughly linear time complexity with respective to the number
of degrees of freedom. Notice the CPU time increases about four times as the mesh size is halved. The
almost unchanging iteration numbers for different parameters in our numerical experiments indicates that
our multigrid solver is very robust with respect to the regularization parameter γ, which is very attractive
to those practical applications with a possible large range of regularization parameters. At this point, we left
the theoretical justification of this nice robust convergence property as future work.

As the first comparison, we report in Table .3 and Table .4 the corresponding results of the BDF2 scheme.
Because the BDF2 scheme shares a similar structure with our leapfrog scheme, as a by-product, numerical
experiments show that our multigrid solver also works quite well with the BDF2 scheme. This allows us to
conduct an adequate comparison between these different schemes using the same multigrid solver. Comparing
Tables .1 and .2 with Tables .3 and .4, our proposed leapfrog scheme delivers more accurate approximations
than the BDF2 scheme with less CPU time. In particular, the multigrid solver shows better mesh-independent
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convergence when applied to our leapfrog scheme. In particular, our leapfrog scheme outperforms the BDF2
scheme in terms of efficiency as well as accuracy.

For a further comparison, we also report in Table .5 and Table .6 the corresponding results of the CN
scheme, which is anticipated to be problematic for our multigrid solver framework. Although the CN scheme
gives a comparable second-order accuracy, the required multigrid iteration numbers to fulfill the convergence
criterion are almost doubled as the mesh size is halved, which will greatly degrade the computational ef-
ficiency of the CN scheme. Therefore, based on our numerical experiences and as also mentioned in [13],
the CN scheme is not recommended when solving the underlying problem with the standard multigrid algo-
rithm implementations. Nevertheless, it is still possbile to design efficient multigrid algorithms with different
smoothers that work well with the CN scheme, which again will be left as our future work. In this regard,
our proposed leapfrog scheme demonstrates the desired advantage in both provable second-order accuracy
and fast iterative system solver.

4.2. Example 2.

Let Ω = (0, 1)2 and T = 2. Let

f =
(
π sin(πt)− 2π2 cos(πt)− sin(πt)

)
sin(πx1) sin(πx2)

and
g =

(
γπ cos(πt)− 2γπ2 sin(πt) + cos(πt)

)
sin(πx1) sin(πx2)

in (1.4) such that the exact solution is

y(x, t) = cos(πt) sin(πx1) sin(πx2)

and
p(x, t) = γ sin(πt) sin(πx1) sin(πx2).

Here the initial condition is set as y0(x) = sin(πx1) sin(πx2). We test with different parameters γ = 10−2

and γ = 10−4. This example is inspired by [11], where p(x, t) is chosen to be depend on γ.
We give in Tables .7-.8 and Tables .9-.10 the corresponding numerical results of our proposed leapfrog

scheme (using CN scheme at the last time step) and the BDF2 scheme with different parameters, respectively.
Similar as in Example 1, we observe a satisfactory second-order accuracy for our leapfrog scheme as mesh
refines. Moreover, our multigrid solver achieves a desired mesh-independent convergence for our leapfrog
scheme. Again, our proposed leapfrog scheme delivers more accurate approximations than the BDF2 scheme
with less CPU time. Notice the performance of our multigrid solver with the BDF2 scheme is slightly getting
worse when the mesh refines, as shown in columns ‘Iter’ of Tables .9-.10.

Finally, we choose not to present the numerical results of the CN scheme since our multigrid solver
becomes divergent quickly for this example. In this case, the CN scheme could be solved by the backslash
sparse direct solver within MATLAB, of which the CPU time will soar up very fast as the mesh refines.
For example, it takes about 35 seconds for just a 32× 32× 32 mesh. Hence it would be scientifically unfair
to compare its computational CPU time with our multigrid iterative solver since the sparse direct solver is
based on a different philosophy. How to come up with an efficient iterative solver for the CN scheme is a
quiet open problem deserving further investigations, which is beyond the scope of our current paper.

4.3. Example 3: γ → 0 as a regularization parameter.

In this example, we will show how our proposed algorithm performs as the regularization parameter
γ → 0, which corresponds to those practical applications expecting the best goal without concerning the
control costs. Inspired by [51], let Ω = (−1, 1)2, T = 5, f ≡ 0, and choose a non-attainable discontinuous
target function

g(x, t) =

{
2
5 t(1− x12

1 )(1− x12
2 ), t ≤ 5

2 ,

( 25 t− 2)(1− x12
1 )(1− x12

2 ), t > 5
2 .

Here the initial condition is set as y0(x) = 0 such that it fits the value g(x, 0). In this case, since the
exact solutions are not known, we will report the relative residuals of computed approximations to verify
the convergence of our multigrid solver. We also compute the difference norm ∥yh − g∥ to show how the
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computed optimal state yh approaches the desired target g, as the regularization parameter γ approaches to
zero. With a fixed γ = 10−2, Table .11 presents a very similar mesh-independent convergence as in previous
examples.

With varing γ, the computational results with a fixed mesh M1 = M2 = N = 64 are given in Table .12.
The column “Iter” has a almost constant iteration number, which numerically shows the high robustness
of our multigrid solver with respect to the regularization parameter γ. The decreasing numbers in column
“∥yh − g∥” indicates that a smaller regularization parameter γ provides a better control for more accurately
tracking the target g. Theoretically, the difference ∥yh − g∥ has a uniform lower bound since g is non-
attainable due to discontinuity, which explains the staggering (or convergence) of the numbers in the column
“∥yh − g∥”. For practical purpose, one may be satisfied with γ ≈ 10−9, considering the derived control
uh = ph/γ becomes very sensitive if γ is too small. Our algorithm shows to be very stable even when the
value of γ reaches the scale of machine round-off error. Moreover, Fig. .1 illustrates the target state g as well
as the computed optimal state yh and optimal control uh = ph/γ at the fixed point (x1, x2) = (0, 0) with
γ = 10−2, γ = 10−4, and γ = 10−6, respectively. Clearly, a smaller γ leads to smaller tracking errors with no
extra computational costs. It is worthwhile to remark that many standard preconditioned Krylov subspace
iterative methods show a clearly deteriorated convergence as the parameter γ goes to zero, which may render
those methods inefficient for such type of applications. In fact, a smaller γ leads to a linear system with
larger condition number. We refer to [25] for further discussion on regularization-robust preconditioners.

5. Conclusions

Although several second-order temporal schemes are proposed for the optimal control problems in order
to improve the efficiency and accuracy of numerical approximations, little attention is paid to the suitability
of the underlying discretization structure for the establishment of fast solvers. Due to the high dimensions
of discretized data set resulting from solving PDE-constrained optimization problems, the design of a fast
solver would be very difficult or even impossible if the given scheme has a poor structure, such as a direct
use of the classical Crank–Nicolson scheme. An ideal scheme should be not only designed to achieve high
order accuracy but also make the later implementation of fast linear system solvers approachable.

In this paper, we have established the second-order accuracy of a leapfrog central difference scheme in
time for a forward-and-backward coupled parabolic PDE systems arising from standard parabolic optimal
control problems. The proposed scheme is unconditionally stable and the discretized structure allows us
to establish a fast iterative solver under the framework of multigrid method. The proposed scheme can
be further used to study semilinear parabolic optimal control problems with control constraints using semi-
smooth Newton method without the periodic state assumption in [52]. In a recent following-up paper [53], our
proposed algorithm has been successfully applied to optimal control of parabolic PDEs with Robin boundary
conditions, where the convergence analysis is accomplished through alternative matrix analysis techniques.
Furthermore our leapfrog scheme in time and the developed multigrid algorithm should work seamlessly with
finite element discretizations in space, and thus provides an approachable implementation of fast solvers to
further study this type of problems. Our future work include the application of our proposed methods to
nonlinear PDE models arising in image segmentation [54], image denoising [55], image registration [56, 57],
and flow control [58, 59].
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Appendix A: A BDF2 scheme with a Crank–Nicolson initialization step.

For the purpose of completeness, the BDF2 scheme with a Crank–Nicolson (CN) initialization step [13]
for the system (1.4) using the same notations is included below. As we discussed in the introduction, the CN
initialization step here is necessary for the BDF2 scheme to achieve a second-order accuracy. It is worthwhile
to notice that the resultant discretized coefficient matrix of the whole BDF2 scheme (.1,.2,.3,.4) has more
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complicated structures compared to our proposed leapfrog scheme. Especially, we only used the first-order
backward Euler scheme at the finalization step.

• BDF2 scheme for time-stepping: For 2 ≤ n ≤ N , the state equation is discretized as

3Y n − 4Y n−1 + Y n−2

2τ
−∆hY

n +
Pn

γ
= −fn. (.1)

Similarly, for 0 ≤ n ≤ (N − 2), the adjoint equation is approximated as

− 3Pn − 4Pn+1 + Pn+2

2τ
+∆hP

n + Y n = gn. (.2)

• Crank–Nicolson scheme for initialization: For n = 1, the state equation is discretized as

Y n − Y n−1

τ
− ∆hY

n +∆hY
n−1

2
+

Pn + Pn−1

2γ
= −fn + fn−1

2
(.3)

with Y 0 is given by the initial condition y0. Similarly, for n = N , the adjoint equation is approximated
as

Pn − Pn−1

τ
+

∆hP
n +∆hP

n−1

2
+

Y n + Y n−1

2
=

gn + gn−1

2
(.4)

with PN is given by the terminal condition p(·, T ) = 0.
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[3] F. Tröltzsch, Optimal control of partial differential equations, AMS, Providence, RI, 2010.

[4] A. Borz̀ı, V. Schulz, Computational optimization of systems governed by partial differential equations,
SIAM, Philadelphia, PA, 2012.

[5] L. T. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes, B. van Bloemen Waanders (Eds.), Real-time
PDE-constrained optimization, Vol. 3 of Comput. Sci. Eng., SIAM, Philadelphia, PA, 2007.

[6] C. Nagaiah, K. Kunisch, G. Plank, Numerical solution for optimal control of the reaction-diffusion
equations in cardiac electrophysiology, Comput. Optim. Appl. 49 (1) (2011) 149–178.

[7] K. Ito, K. Kunisch, Lagrange multiplier approach to variational problems and applications, SIAM,
Philadelphia, PA, 2008.

[8] M. Ulbrich, Semismooth Newton methods for variational inequalities and constrained optimization
problems in function spaces, SIAM, Philadelphia, PA, 2011.

[9] L. C. Evans, Partial differential equations, 2nd Edition, Vol. 19 of Graduate Studies in Mathematics,
AMS, Providence, RI, 2010.

[10] M. Heinkenschloss, A time-domain decomposition iterative method for the solution of distributed linear
quadratic optimal control problems, J. Comput. Appl. Math. 173 (1) (2005) 169–198.

[11] A. Borz̀ı, Multigrid methods for parabolic distributed optimal control problems, J. Comput. Appl. Math.
157 (2) (2003) 365–382.

[12] T. Apel, T. G. Flaig, Crank-Nicolson schemes for optimal control problems with evolution equations,
SIAM J. Numer. Anal. 50 (3) (2012) 1484–1512.

14
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Table .1: Results for Example 1 with our leapfrog scheme (γ = 10−1).

(M,N) ehy Order ehp Order Iter CPU

(32,32) 4.22e-03 – 1.66e-03 – 3 0.024
(64,64) 1.04e-03 2.02 4.14e-04 2.00 3 0.034
(128,128) 2.57e-04 2.02 1.03e-04 2.00 4 0.108
(256,256) 6.38e-05 2.01 2.58e-05 2.00 4 0.309
(512,512) 1.59e-05 2.00 6.45e-06 2.00 4 0.987

(1024,1024) 3.96e-06 2.00 1.61e-06 2.00 5 4.676
(2048,2048) 9.90e-07 2.00 4.03e-07 2.00 5 20.491

Table .2: Results for Example 1 with our leapfrog scheme (γ = 10−3).

(M,N) ehy Order ehp Order Iter CPU

(32,32) 1.88e-02 – 2.90e-04 – 4 0.028
(64,64) 4.77e-03 1.98 5.68e-05 2.35 4 0.046
(128,128) 1.20e-03 1.99 1.31e-05 2.12 4 0.112
(256,256) 3.00e-04 2.00 3.19e-06 2.04 4 0.304
(512,512) 7.50e-05 2.00 7.89e-07 2.01 4 0.992

(1024,1024) 1.88e-05 2.00 1.96e-07 2.01 4 3.938
(2048,2048) 4.70e-06 2.00 4.83e-08 2.02 4 15.608

Table .3: Results for Example 1 with the BDF2 scheme (γ = 10−1).

(M,N) ehy Order ehp Order Iter CPU

(32,32) 4.95e-03 – 3.18e-03 – 5 0.047
(64,64) 1.20e-03 2.05 8.29e-04 1.94 5 0.112
(128,128) 2.93e-04 2.03 2.12e-04 1.97 5 0.229
(256,256) 7.22e-05 2.02 5.34e-05 1.99 6 0.605
(512,512) 1.79e-05 2.01 1.34e-05 1.99 6 2.121

(1024,1024) 4.47e-06 2.00 3.36e-06 2.00 7 6.351
(2048,2048) 1.12e-06 2.00 8.41e-07 2.00 8 31.799
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Table .4: Results for Example 1 with the BDF2 scheme (γ = 10−3).

(M,N) ehy Order ehp Order Iter CPU

(32,32) 3.41e-02 – 4.58e-04 – 4 0.038
(64,64) 8.74e-03 1.96 1.07e-04 2.10 4 0.065
(128,128) 2.22e-03 1.98 2.63e-05 2.02 4 0.158
(256,256) 5.59e-04 1.99 6.56e-06 2.01 4 0.392
(512,512) 1.40e-04 1.99 1.64e-06 2.00 5 1.615

(1024,1024) 3.51e-05 2.00 4.11e-07 2.00 5 4.615
(2048,2048) 8.79e-06 2.00 1.03e-07 2.00 6 22.788

Table .5: Results for Example 1 with the CN scheme (γ = 10−1).

(M,N) ehy Order ehp Order Iter CPU

(32,32) 5.60e-04 – 1.20e-03 – 23 0.146
(64,64) 1.38e-04 2.02 2.96e-04 2.01 43 0.587
(128,128) 3.45e-05 2.00 7.37e-05 2.01 79 2.511
(256,256) 8.61e-06 2.00 1.84e-05 2.00 140 12.121
(512,512) 2.15e-06 2.00 4.59e-06 2.00 267 75.268

Table .6: Results for Example 1 with the CN scheme (γ = 10−3).

(M,N) ehy Order ehp Order Iter CPU

(32,32) 1.14e-02 – 1.51e-04 – 32 0.208
(64,64) 2.83e-03 2.01 3.58e-05 2.08 54 0.696
(128,128) 7.05e-04 2.00 8.72e-06 2.04 99 3.317
(256,256) 1.76e-04 2.00 2.15e-06 2.02 163 14.016
(512,512) 4.40e-05 2.00 5.35e-07 2.01 254 71.130

Table .7: Results for Example 2 with our leapfrog scheme (γ = 10−2).

(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 1.62e-02 – 6.44e-04 – 8 0.02
(16,16,16) 4.23e-03 1.9 1.61e-04 2.0 9 0.04
(32,32,32) 1.07e-03 2.0 4.02e-05 2.0 9 0.19
(64,64,64) 2.67e-04 2.0 1.01e-05 2.0 9 1.26

(128,128,128) 6.67e-05 2.0 2.51e-06 2.0 9 10.65
(256,256,256) 1.67e-05 2.0 6.28e-07 2.0 9 99.67

Table .8: Results for Example 2 with our leapfrog scheme (γ = 10−4).

(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 1.83e-03 – 3.69e-05 – 8 0.03
(16,16,16) 2.96e-04 2.6 9.56e-06 1.9 8 0.04
(32,32,32) 8.21e-05 1.9 2.43e-06 2.0 8 0.17
(64,64,64) 1.66e-05 2.3 6.11e-07 2.0 8 1.31

(128,128,128) 3.59e-06 2.2 1.53e-07 2.0 8 9.32
(256,256,256) 8.58e-07 2.1 3.83e-08 2.0 8 89.82
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Table .9: Results for Example 2 with the BDF2 scheme (γ = 10−2).

(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 2.22e-02 – 1.11e-03 – 7 0.02
(16,16,16) 6.22e-03 1.8 3.25e-04 1.8 8 0.04
(32,32,32) 1.62e-03 1.9 8.91e-05 1.9 8 0.17
(64,64,64) 4.14e-04 2.0 2.32e-05 1.9 9 1.26

(128,128,128) 1.04e-04 2.0 5.93e-06 2.0 9 10.23
(256,256,256) 2.62e-05 2.0 1.50e-06 2.0 10 114.18

Table .10: Results for Example 2 with the BDF2 scheme (γ = 10−4).

(M1,M2, N) ehy Order ehp Order Iter CPU

(8,8,8) 1.94e-03 – 5.40e-05 – 8 0.03
(16,16,16) 3.58e-04 2.4 1.50e-05 1.9 8 0.04
(32,32,32) 9.17e-05 2.0 3.97e-06 1.9 8 0.16
(64,64,64) 2.11e-05 2.1 1.02e-06 2.0 9 1.28

(128,128,128) 5.14e-06 2.0 2.58e-07 2.0 9 10.51
(256,256,256) 1.28e-06 2.0 6.48e-08 2.0 10 113.01

Table .11: Results for Example 3 with our leapfrog scheme (γ = 10−2).

(M1,M2, N) ∥yh − g∥ Rel. Res. Iter CPU
(8,8,8) 1.86858 9.43e-08 8 0.037

(16,16,16) 1.92293 9.32e-08 9 0.060
(32,32,32) 1.92859 2.86e-08 10 0.225
(64,64,64) 1.93244 3.50e-08 10 1.513

(128,128,128) 1.93743 3.78e-08 10 11.937
(256,256,256) 1.94083 3.91e-08 10 119.122

Table .12: Results for Example 3 with our leapfrog scheme (M1 = M2 = N = 64).

γ ∥yh − g∥ Rel. Res. Iter CPU
1e-01 2.244321766405156 7.85e-08 9 1.298
1e-02 1.932437053618098 3.50e-08 10 1.435
1e-03 1.135176797865582 6.61e-08 11 1.586
1e-04 0.676364539674578 1.86e-08 12 1.749
1e-05 0.325299055954976 1.63e-08 12 1.763
1e-06 0.122678554464732 2.59e-08 12 1.816
1e-07 0.035976113323683 1.74e-08 11 1.607
1e-08 0.008838570306190 7.90e-09 10 1.452
1e-09 0.004034521514918 2.98e-08 8 1.175
1e-10 0.003867444880618 2.99e-08 8 1.174
1e-11 0.003865475149814 2.99e-08 8 1.162
1e-12 0.003865455147979 2.99e-08 8 1.154
1e-13 0.003865454949440 2.99e-08 8 1.157
1e-14 0.003865454947635 2.99e-08 8 1.144
1e-15 0.003865454947635 2.99e-08 8 1.197
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Figure .1: Computed yh and uh at (x1, x2) = (0, 0) in Example 3 (with γ = 10−2 (top), 10−4 (middle), and 10−6 (bottom),
M1 = M2 = N = 128)
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