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Effects of wavelength and amplitude of a wavy
cylinder in cross-flow at low Reynolds numbers
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Three-dimensional numerical simulations of laminar flow around a circular cylinder
with sinusoidal variation of cross-section along the spanwise direction, named ‘wavy
cylinder’, are performed. A series of wavy cylinders with different combinations of
dimensionless wavelength (λ/Dm) and wave amplitude (a/Dm) are studied in detail at
a Reynolds number of Re = U∞Dm/ν = 100, where U∞ is the free-stream velocity and
Dm is the mean diameter of a wavy cylinder. The results of variation of mean drag
coefficient and root mean square (r.m.s.) lift coefficient with dimensionless wavelength
show that significant reduction of mean and fluctuating force coefficients occurs at
optimal dimensionless wavelengths λ/Dm of around 2.5 and 6 respectively for the
different amplitudes studied. Based on the variation of flow structures and force
characteristics, the dimensionless wavelength from λ/Dm = 1 to λ/Dm = 10 is classified
into three wavelength regimes corresponding to three types of wake structures. The
wake structures at the near wake of different wavy cylinders are captured. For all
wavy cylinders, the flow separation line varies along the spanwise direction. This leads
to the development of a three-dimensional free shear layer with periodic repetition
along the spanwise direction. The three-dimensional free shear layer of the wavy
cylinder is larger and more stable than that of the circular cylinder, and in some
cases the free shear layer even does not roll up into a mature vortex street behind
the cylinder. As a result, the mean drag coefficients of some of the typical wavy
cylinders are less than that of a corresponding circular cylinder with a maximum
drag coefficient reduction up to 18 %. The r.m.s. lift coefficients are greatly reduced to
practically zero at optimal wavelengths. In the laminar flow regime (60 � Re � 150),
the values of optimal wavelength are Reynolds number dependent.

1. Introduction
Flows past bluff bodies are important in many engineering applications, for example

in the designs for heat exchangers, offshore structures, high-rise buildings, chimneys,
and cables. The periodic vortex shedding and fluctuating velocity fields behind the
bluff bodies can cause structural damage as a result of periodic surface loading
which increases the vibration of the bodies and shortens the life of the structures. In
fundamental research, flow past cylindrical bodies has been extensively investigated.
It is a challenge to control the vortex-shedding phenomenon and hence to reduce the
potential for flow-induced vibration (FIV). Over the past years, many experimental
and numerical investigations had been carried out on the control of FIV of the
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Figure 1. Simple model types for different wavy cylinders.

AC-A1 AC-A2 AC-B1 AC-B2

U∞ U∞ U∞ U∞

x

y z

x

y z

x

y
z

x

y
z

Figure 2. Simple model types for active control of the flow induced vibrations.

cylindrical structures. It is well known that the free shear layers generated by bluff
bodies have a profound influence on the wake structure and hence on the force
characteristic of the bluff body. In the recent few years, several types of cylinders
with surface profile varying sinusoidally along their spanwise direction, named wavy
cylinders, were introduced (see figure 1). Ahmed & Bays-Muchmore (1992), Ahmed,
Khan & Bays-Muchmore (1993), Tombazis & Bearman (1997), Bearman & Owen
(1998), Owen, Szewczyk & Bearman (2000), Darekar & Sherwin (2001a, b), Keser et al.
(2001), Lam et al. (2004), Lam, Wang & So (2004), Zhang, Dai & Lee (2005), Dobre,
Hangan & Vickery (2006), Lee & Nguyen (2007) and Lam & Lin (2007, 2008) have
investigated various types of wavy objects experimentally and numerically under
different flow conditions. Their studies are summarized in table 1.

Tombazis & Bearman (1997) introduced a spanwise wavy surface to the trailing
face of the cylindrical bodies (figure 1; PC-A1), while Bearman & Owen (1998) and
Dobre et al. (2006) investigated the effects of a spanwise wavy surface at the leading
face (figure 1; PC-A2) of the cylindrical bodies. At Reynolds number Re =40 000, the
maximum drag reduction of about 30 % was obtained by Bearman & Owen (1998).
Owen et al. (2000) studied flow past a sinuous bluff body (figure 1; PC-B1), using
flow visualization method and found that the Kármán vortex shedding was effectively
suppressed, and a periodic variation in the wake width across the spanwise direction
was observed. Darekar & Sherwin (2001a, b) numerically investigated the flow past
a square cylinder with a wavy stagnation face at low Reynolds numbers (figure 1;
PC-B2, PC-B3). They showed that the unsteady and staggered Kármán vortex wake
could be suppressed to a steady and symmetric wake structure due to the waviness
of the square cylinder. The maximum drag reduction of about 16 % was obtained
at a Reynolds number of 100 compared with the straight, non-wavy square cylinder.
Moreover, at higher Reynolds numbers, the drag reduction increases substantially.

Furthermore, active flow control method based on the idea of wavy surface effect is
also pursued (see figure 2 and table 1). Kim et al. (2004) and Kim & Choi (2005) used
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Authors Types Cross-section Key features Re Methods

AC
Kim et al. (2004) AC-A1, A2 Half-ellipse shape Three-dimensional vortex structures; Drag 4200, 20 000–40 000 Num., Exp.

reduction
Kim & Choi (2005) AC-B1, B2 Circular shape Optimal regime of wave parameters 40–300, 3900 Num.
PC
Tombazis & Bearman (1997) PC-A1 Half-ellipse shape Shedding frequency, wake patterns 2500, 40 000 Exp.
Bearman & Owen (1998) PC-A2 Square shape Drag reduction; wake stability 100, 40 000 Exp.
Dobre et al. (2006) PC-A2 Square shape Drag reduction 23500 Exp.
Owen et al. (2000) PC-B1 Circular shape Vortex shedding suppression 100 Exp.
Keser et al. (2001) PC-B1, C Circular shape Three-dimensional vortex structures NA Num.
Darekar & Sherwin (2001a, b) PC-B2, B3 Square shape Optimal regime of wave parameters 10–200, 500 Num.
Ahmed & Bay-Muchmore (1992) PC-C Circular shape Three-dimensional separation line, wake 5000–20 000 Exp.
Ahmed et al. (1993) PC-C Circular shape topology Wake patterns 5000–20 000 Exp.
Lam et al. (2004a, b) PC-C Circular shape Drag reduction; wake patterns 200–50 000 Exp.
Zhang et al. (2005) PC-C Circular shape Periodic spanwise wake patterns 3000 Exp.
Lee & Nguyen (2007) PC-C Circular shape Drag reduction 5000–20 000 Exp.
Lam & Lin (2007,2008) PC-C Circular shape Drag reduction; three-dimensional vortex 100, 3000 Num.

structures
Present study PC-C Circular shape Optimal regime of wave parameters 60–150 Num.

Table 1. Summary of types of the wavy cylinder for the control of FIV: AC = active control; PC = passive control; Exp. = experimental
measurement; Num. = numerical simulation.
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an active open-loop control method (called distributed forcing) for the reduction of
drag of a half-ellipse–shaped body (figure 2; AC-A1, AC-A2) and a circular cylinder
(figure 2; AC-B1, AC-B2), respectively. The forcing profile was achieved by sinusoidal
variation of blowing and suction from slots on the upper and lower surfaces of the
object in the spanwise direction. The Kármán vortex shedding was attenuated for
both laminar flow condition and turbulent flow condition, and the drag was also
reduced substantially. Moreover, the vortex shedding was significantly suppressed for
some typical cases at Re = 100 (Kim & Choi 2005).

Alternatively, a cylinder whose diameter varied sinusoidally along its spanwise
direction was studied (figure 1; PC-C). Such cylinder is omnidirectional to the
free oncoming flow. In fundamental research, experimental measurements on the
surface–pressure distributions of such wavy cylinders with different spanwise
wavelengths were carried out by Ahmed & Bays-Muchmore (1992). They found
that the separated flow structures near the geometric nodes are distinctly asymmetric
for a large fraction of time, and the sectional drag coefficients at the geometric nodes
are greater than that at the geometric saddle. Ahmed et al. (1993) further investigated
experimentally the turbulent wake behind a wavy cylinder. They described the
topology of the boundary layer separation lines and the subsequent three-dimensional
development of turbulent structure of the wake. The formation of trailing streamwise
vortices behind the nodal points of separation gives rise to a locally narrower wake,
a rapid wake velocity recovery and a suppression of the turbulence development
within the separated boundary layer. However, the phenomena of the drag reduction
and suppression of lift fluctuating were not discussed. Keser et al. (2001) used a
three-dimensional discrete vortex method to simulate the separated flow around wavy
cylinders. Lam et al. (2004a) started to focus attention on the effects of different wavy
cylinders on drag and lift reduction and the related effects on FIV. It was anticipated
that such type of cylinder could lead to a better control of the vortex shedding
and hence a better suppression of FIV by changing the geometric wavelength and
wave amplitude of the cylinder. For constant values of wave amplitude, they found
experimentally that with the value of wavelength ratio from 1.45 to 2.27, a large
value of drag reduction up to 20 % can be obtained in subcritical Reynolds numbers
range of 20 000–50 000. It was also found that the root mean square (r.m.s.) lift
coefficients of the wavy cylinders are much lower than those of the circular cylinder.
Furthermore, Lam et al. (2004b) measured the near wake velocity distributions of
a wavy cylinder. They found that the wavy geometry played an important role in
vortex formation length, drag reduction and vortex shedding suppression. The vortex
formation length of the wavy cylinder is longer than that of the circular cylinder.
Flow visualization studies were also performed, and in the near wake of the wavy
cylinder, the rib structures were detected near the saddle planes at the Reynolds
number of 600. At the nodal and saddle planes, the streamwise velocity distributions
are very different compared with those of a circular cylinder. Recently, Zhang et al.
(2005) investigated the three-dimensional near wake structures behind a wavy cylinder
by using the particle image velocimetry (PIV) technique at the Reynolds number of
3000. Along the spanwise direction of the wavy cylinder, well-organized streamwise
vortices with alternating positive and negative vortices were observed. They suppress
the formation of the large-scale spanwise vortices and decrease the overall turbulent
kinetic energy in the near wake of the wavy cylinder. Experiments by Lee & Nguyen
(2007) and others, using hot-wire anemometer and flow visualization method, over a
wide range of Reynolds number from 5300 to 50 000, showed that when the values
of wavelength ratio equal 2, wavy cylinders can give rise to larger drag reductions
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than when those ratios equal 1. The maximum drag reduction of up to 22 % is
obtained at wavelength ratio of 2 and Re = 10 000. They also showed that the longer
vortex formation region of the wavy cylinder seems to be related to the effect of drag
reduction. At similar Reynolds numbers, the vortex formation length is longer and
the turbulent intensity smaller than those of the circular cylinder. From these results,
it can be seen that an optimal value of spanwise wavelength ratio exists in the lower
wavelength ratio range of 1–2.27 for drag reduction at higher Reynolds numbers.
Recently, Lam & Lin (2007, 2008) carried out computational studies and captured
the detailed three-dimensional vortex structures of wavy cylinders for laminar flow
at low Reynolds number Re = 100 and in turbulent flow at Re = 3000; the optimal
values of spanwise wavelength for drag reduction were obtained over a small range
of wavelength variation. For turbulent flow, they confirmed the findings above by
using the large eddy simulation for wavy cylinders with wavelength ratio of 1.14–3.33
at Re = 3000. The optimal value of wavelength ratio for turbulent flow was around
λ/Dm = 1.9. The relationships between the vortex formation length and drag were
also given.

All investigations above with respect to the wavy cylinder of model type PC-C
(figure 1) have only been performed over a small region of the wavelength ratio λ/Dm

along the spanwise direction. The optimal value of wavelength which can well control
the vortex formation is still not fully revealed over a wider range of wavelength
ratio. The amplitude ratio a/Dm of the wavy cylinder should also play an important
role in the control of the vortex structure from the wavy cylinders. The aim of the
present work is to apply a well-established three-dimensional numerical simulation
method to carry out extensive investigations on laminar flows past wavy cylinders.
It is anticipated that numerical simulations can well capture the instantaneous three-
dimensional vortex structures and other valuable data, such as drag, lift, pressure and
vortex shedding frequency and thus provide a fuller picture for the understanding of
the complex flow phenomenon. The relationship between wavelength, wave amplitude
and force reduction can be fully investigated, and the effect of Reynolds number can
also be examined.

2. Parametric definition of the body geometry
As shown in figure 3, the diameter of the wavy cylinder varies sinusoidally along its

spanwise direction. The geometry of the wavy cylinders is described by the following
equation:

Dz = Dm + 2a cos(2πz/λ), (2.1)

where Dz denotes the local diameter of the wavy cylinder and varies in the spanwise
direction z. The mean diameter Dm is defined by

Dm = (Dmin + Dmax )/2. (2.2)

The amplitude of the wavy surface a is equal to half peak-to-peak distance. The
spanwise wavelength λ is also indicated in figure 3. The axial location with maximum
local diameter Dmax is called ‘node’, while the axial location of the minimum diameter
Dmin is called ‘saddle’. The ‘middle’ is also defined at the midpoint position between
nodal and saddle planes. The diameter of the middle cross-section is equal to the mean
diameter Dm. The nodal position of the wavy cylinder along the spanwise direction
is denoted by z/λ = 0, while z/λ = 0.5 denotes the saddle position. Furthermore, a
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Figure 3. Schematic diagram of a wavy cylinder.

circular cylinder with diameter Dm is used for comparison study. In the present study,
all geometrical lengths are normalized with the mean diameter Dm.

3. Numerical method
In the present study, unsteady three-dimensional laminar flow of a viscous incom-

pressible fluid is considered. The finite volume method (FVM) with an unstru-
ctured hexahedral grid is employed to solve the unsteady three-dimensional
incompressible Navier–Stokes equations.

3.1. Governing equations

The three-dimensional dimensionless Navier–Stokes equations governing the flow of
a Newtonian fluid can be written in vector form as

∂u
∂t

+ u · ∇u = −∇p +
1

Re
∇2u, (3.1)

∇ · u = 0, (3.2)

where u is the non-dimensional flow velocity vector in the Cartesian coordinate system
(x, y, z) with its three velocity components u, v and w. The non-dimensional static
pressure is denoted by p. Re = U∞Dm/ν is the Reynolds number, with U∞ being the
free-stream velocity and ν being the fluid kinematic viscosity. In solving the governing
equations, the different physical quantities are changed to non-dimensional form; i.e.
all the variables are normalized. The flow time t is normalized by the free-stream
velocity and the cylinder mean diameter, such that t̃ = tU∞/Dm. In the above equations
the velocities are non-dimensionalized by the free-stream velocity U∞.

The present FVM code calculates the solution of the incompressible Navier–Stokes
equations. The spatial discretization of the equations is based on an unstructured
hexahedral mesh. The primitive variables are all discretized in a cell-centred fashion,
with one value for each variable in each element. The semi-implicit pressure linked
equations (SIMPLE) method is used to deal with the pressure velocity coupling
between the momentum and the continuity equations. The second-order upwind
differencing scheme is used for convective terms. Second-order central differencing
scheme is adopted for diffusion terms, while the second-order implicit scheme is
employed to advance the equations with time.



Effects of wavelength and amplitude of a wavy cylinder in cross-flow 201

3.2. Computational domain and boundary conditions

In the present study, the computational domain used for the simulations is set at
24Dm × 36Dm × λ in x, y, z directions of a fixed Cartesian coordinate system (x, y, z),
respectively as shown in figure 15 in the appendix. The domain parameters are similar
to that chosen by Darekar & Sherwin (2001a, b). A wavy cylinder model is placed
inside the flow domain. The x-axis is chosen to be along the inlet main flow direction
(streamwise direction); the z-axis is parallel to the cylinder axis (spanwise direction);
and the y-axis is perpendicular to both x-axis and z-axis (crosswise direction). The
origin (0, 0, 0) of the coordinate is set at the centre of the nodal cross-section of the
wavy cylinder. The velocity at upstream boundary of the computational domain is
set at a distance of 12Dm from the centreline of the cylinder, while the downstream
boundary is 24Dm away from the wavy cylinder. Each lateral surface is 12Dm away
from the axis of the cylinder (blockage ≈ 4.2 %). Furthermore, for the computational
domain along the spanwise direction, only one wavelength λ is adopted due to periodic
boundary condition being used in the simulation.

The boundary conditions are summarized in the following manner: At the inlet
boundary, a uniform velocity profile (u = 1, v = w =0) is imposed. A convective
boundary condition (∂u/∂t + Uc(∂u/∂x) = 0) is used at the outlet boundary, where
Uc is the characteristic convective velocity (surface-averaged streamwise velocity)
at the plane of the outlet. A periodic boundary condition is employed at the
boundaries in the spanwise direction, and no-slip boundary condition (u = v =w = 0)
is prescribed at the surface of the wavy cylinders. The lateral surfaces are treated
as slip surfaces, using symmetry boundary conditions (∂u/∂y = ∂w/∂y = v = 0). The
accuracy of computational results is highly dependent on the grid size and number
of cells. Details of the grid independence tests and the validation of the numerical
models are provided in the Appendix.

3.3. Definition of dimensionless physical quantities

The important dimensionless physical quantities are summarized below. In the present
calculations, the drag coefficient CD and lift coefficient CL are defined by

CD =
2FD

ρU 2
∞Dmλ

, (3.3)

CL =
2FL

ρU 2
∞Dmλ

, (3.4)

where ρ is the fluid density; FD and FL are the total drag force and total lift force,
respectively; C̄D is the mean drag coefficient; and C ′

L is the r.m.s. lift coefficient.
The Strouhal number is the non-dimensional vortex shedding frequency fs and is
expressed as

St =
fsDm

U∞
. (3.5)

The frequency of vortex shedding fs is obtained by fast Fourier transform (FFT) of
the lift fluctuating-time history. The pressure coefficient CP on the cylinder surface is
defined as

Cp =
2(P − P∞)

ρU 2
∞

, (3.6)

where P∞ is the oncoming flow static pressure, and P is the static pressure on the
cylinder surface. The mean base pressure coefficient −C̄pb is the value of negative
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non-dimensional mean pressure at the rear stagnation point (180◦ from the frontal
point) of the cylinder.

The definition of the velocity recovery length (vortex formation length Lf ) by Lam
et al. (2004b) is adopted in the present study. The location of the closure point
(U/U∞ = 0) of the time-averaged streamwise velocity U on the wake centerline (y = 0
plane) has been used to define the vortex formation length Lf . The flow separation
point in the boundary layer is determined at the position on the cylinder wall at
which the shear stress is zero. The separation angle is the angle measured from the
frontal stagnation point to the separation point.

4. Results and discussions
The present study focuses attention on investigating the characteristics of flow past

wavy cylinders at low Reynolds numbers. A series of computational investigations
have been carried out mainly at Reynolds number equal to 100 for wavy cylinders
with wavelength ratio λ/Dm = 1 to 10 and wave amplitude ratio a/Dm =0.02 to
0.30. Comparisons are made with a straight circular cylinder (λ/Dm = ∞, a/Dm = 0).
The three-dimensional vortex structures are captured and classified. Other physical
parameters such as velocity, pressure, drag, lift and vortex formation length are
obtained to provide better understanding of the phenomena.

4.1. Force distributions (1 � λ/Dm � 10, 0.05 � a/Dm � 0.25, Re = 100)

Figure 4 summarizes the variations of the mean drag coefficient C̄D and the r.m.s.
lift coefficient C ′

L with different wave amplitude ratios and wavelength ratios of
the wavy cylinders. The values of C̄D and C ′

L of a corresponding straight circular
cylinder with diameter equal to the mean diameter (Dm) are also incorporated for
comparison. The value of C̄D and C ′

L of a straight circular cylinder at Re =100 for
the present simulation are 1.34 and 0.234, respectively. In figure 4, two troughs are
found for both the mean drag coefficient curve and the r.m.s. lift coefficient curve
at positions around λ/Dm =2.5 and λ/Dm = 6 for wave amplitude a/Dm > 0.1. The
drop at the second trough at λ/Dm =6 is severer than that at the first trough with a
maximum drag reduction of about 18 % and the r.m.s. lift approaching zero. For a
constant a/Dm and an increased λ/Dm, the values of C̄D and C ′

L reduce quickly when
λ/Dm � 2 but increase to a maximum again at λ/Dm = 3. Compared with a circular
cylinder, the mean drag coefficient and the r.m.s. lift coefficient start to drop below
the values of a circular cylinder at the positions λ/Dm = 1.75 and 1.25, respectively.
At this lower range of wavelength ratio (1 � λ/Dm � 3), although the maximum
drag coefficient reduction is only up to 9 %, the maximum r.m.s. lift coefficient is
reduced to 0.0164 which is much smaller than the reduction of a circular cylinder.
The values of C̄D and C ′

L begin to rise at λ/Dm = 2.5 to until they reach the maximum
at λ/Dm = 3. It can be seen that around λ/Dm = 3, no drag reduction is obtained
for the wavy cylinder, while there are still slight reduction in r.m.s. lift coefficient
for large amplitude ratio a/Dm. Further increasing the wavelength, the values of C̄D

and C ′
L drop again to very low values at λ/Dm = 5. The minimum values of C̄D and

C ′
L are found at λ/Dm = 6 (the value of the second trough point). After that, C̄D

and C ′
L start to increase again moderately with the wavelength for λ/Dm � 6. The

maximum drag coefficient reduction of up to 18 % is found for the wavy cylinder at
the values λ/Dm =6 and a/Dm = 0.25 (see figure 4a), while the r.m.s. lift coefficient is
equal to zero at λ/Dm = 6 and a/Dm = 0.15. The zero r.m.s. lift implies that there is
no vortex shedding at the near wake of such wavy cylinders. Considering the previous
experimental and numerical results by Lam et al. (2004a), Lee & Nguyen (2007) and
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Figure 4. Mean drag coefficients C̄D and r.m.s. lift coefficients C ′
L for wavy and circular

cylinders at Re = 100 with different wavelengths λ/Dm and wave amplitudes a/Dm.

Lam & Lin (2008), the optimal wavelength λ/Dm of the present results in the lower
range of wavelength ratio (1 � λ/Dm � 3, Re = 100) appears to be in the range 2–2.5,
which is slightly higher than that for turbulent flow at high Reynolds number (around
1.9). In previous investigations for both laminar and turbulent flows, all the curves
of C̄D and C ′

L for different λ/Dm with constant a/Dm show a ‘trough’ characteristic,
since the results have only been obtained over a small range of wavelength around
the first trough. It can be seen from the present simulations in a broader range of
wavelength ratio (1 � λ/Dm � 10) that there is a first ‘trough’ followed by a bigger
second ‘trough’. At least for Re =100, the true optimal wavelength appears to be
close to λ/Dm =6. This result is similar to that found by Darekar & Sherwin (2001b)
for a square circular with wavy stage face. The optimal wavelength found by them
is 5.7 at Re = 100 with a drag reduction up to 16 %. It is also close to that of the
circular cylinder, found using active control method (Kim & Choi 2005). The mean
drag coefficient was reduced about 20 % with the optimal wavelength between 4 and
5 at Re = 100.

Furthermore, a larger value of a/Dm will give a more significant reduction of drag
and suppression of r.m.s. lift. With a large value of wave amplitude a, the mean drag
coefficients of wavy cylinders are significantly reduced for the same λ/Dm when λ/Dm

is larger than 1.75, while the r.m.s. lift coefficients are also drastically reduced when
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Figure 5. Flow pattern regimes of wavy cylinders with different spanwise wavelengths λ/Dm

and wave amplitudes a/Dm at Re =100. The symbol � represents each wavy cylinder case in
the present simulations.

λ/Dm is larger than 1.25. However, with the values λ/Dm � 1.75 for drag coefficient
and λ/Dm � 1.25 for r.m.s. lift coefficient, a large value of a/Dm, on the contrary,
leads to an increase of C̄D and C ′

L in such Reynolds number range.

4.2. Flow pattern regimes (1 � λ/Dm � 10, 0.05 � a/Dm � 0.25, Re = 100)

To understand the variations in drag and r.m.s. lift and the occurrence of the
first trough and the second trough, the flow patterns for different wavy cylinders are
captured. The wavy cylinders over the whole range of wavelength and wave amplitude
investigated and classified into three wavelength regimes (I, II and III) with three
different flow patterns (A), (B) and (C) as shown in figure 5). The spanwise vorticity
ωz = ∂v/∂x − ∂u/∂y at different spanwise sections was used as a flow indicator. The
three-dimensional vortex structures corresponding to different flow patterns are shown
in figure 6. The time histories of some typical wavy cylinders are also incorporated
for comparison of flow patterns and force characteristics. Flow pattern (A) is similar
to the wake structure behind a straight circular cylinder except with some distortions
in the spanwise direction. Flow pattern (B) is characterized by an increase of three-
dimensional wake vortex distortion and increase of vortex formation length with a
progressive weakening of vortex shedding, while for flow pattern (C), the free shear
layer does not roll up into a vortex, and hence no vortex shedding occurs.

The flow pattern regimes I, II and III correspond to different wavelength regimes
in the range of 1 � λ/Dm � 2.5, 2.5 � λ/Dm � 6 and 6 � λ/Dm � 10, respectively. It is
to be noted that the division lines are drawn at the positions of maximum reduction
in drag and r.m.s. lift at λ/Dm = 2.5 and 6, so that the change of flow patterns
around these positions can be clearly illustrated. It can be seen from figure 6 that
the reduction of drag and r.m.s. lift in the three regimes is due to the transformation
of flow pattern from pattern (A) to pattern (B) and then to pattern (C) in the
three regimes. The prominent features for the wavy cylinders in different flow pattern
regimes are summarized in table 2. The flow structures in the nodal plane are not
identical with those in the saddle plane due to the three-dimensional effect. In regime
I (1 � λ/Dm < 2.5) and regime II (2.5 � λ/Dm < 4), the vortices expand along both the



E
ff
ects

o
f

w
a
velen

g
th

a
n
d

a
m

p
litu

d
e

o
f

a
w

a
vy

cy
lin

d
er

in
cro

ss-fl
o
w

2
0
5

CD

CL

Regime I

I (A)

I (B)

I (C)

Regime II

II (A)

II (B)

II (C)

Regime III

III (A)

III (B)

1.2

1.3

CD
1.2

1.3

CD
1.2

1.3

0

0.2

–0.2

CL0

0.2

–0.2

CL0

0.2

–0.2

x/Dm

y
Dm

(2, 0.1)

(2, 0.25)

(λ/Dm, a/Dm)(2, 0.3)

(3, 0.075)

(4, 0.25)

(6,0.2)

t~ t~ + 25 t~ + 50

(9, 0.1)

(9, 0.25)

Time history of drag and lift coefficients (t~ = tU∞ /Dm)

Nodal plane Saddle plane
Three-diamentional 

vortex structure

(2, 0.1)

(2, 0.25)

(2, 0.3)

(3, 0.075)

(4, 0.25)

(6, 0.2)

(9, 0.1)

(9, 0.25)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

y
z x

y
z x

y
z x

y
z x

y
z x

y
z x

y
z x

y
z x

Figure 6. Flow patterns for different wavy cylinders at Re = 100: λ/Dm and a/Dm are respectively denoted by the values in parentheses.
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Key features

Flow mode Near wake flow structures Force reduction

Regime I I (A) Quasi-two-dimensional wake, similar to that of a straight No drag reduction, r.m.s. lift is evident;
1 � λ/Dm � 2.5, circular cylinder; slight spanwise distortions. St(WY) ≈ St(CY)

0.1 � a/Dm � 0.3 I (B) Noticeable free shear layer elongation towards the Drag reduction with the weakening of r.m.s. lift;
downstream direction. St(WY) � St(CY)

I (C) Steady and symmetrical wake; first disappearance of Significant drag reduction and full suppression in
periodic vortex shedding phenomenon. r.m.s. lift; St(WY) = 0; first optimal wavelength ratio.

Regime I↔II (small optimal wavelength λ/Dm = 2.5)

Regime II II (A) Similar to that of in regime I (A); more spanwise Drag and lift are close to or slightly smaller than
2.5 � λ/Dm � 6, distortions. those of circular cylinders; St(WY) � St (CY)

0.02 � a/Dm � 0.3 II (B) Fully three-dimensional wake; evident spanwise distortions; Evident drag reduction and suppression in r.m.s.
the strength of vortices is weakening. lift; St(WY) < St(CY)

II (C) Well controlled, steady and symmetrical wake patterns; no Maximum drag reduction and no r.m.s. lift;
vortex shedding occurs. St(WY) = 0; Real optimal wavelength ratio.

Regime II↔III (large optimal wavelength λ/Dm = 6)

Regime III III (A) Prominent complicated three-dimensional wake; vortex Drag reduction and the weakening of r.m.s. lift;
6 � λ/Dm � 10, dislocation appears with the weakening of vortices strength. St(WY) � St(CY)

0.05 � a/Dm � 0.25 III (B) Fully complicated three-dimensional wake; spanwise Evident drag reduction and suppression in r.m.s.
direction expansion of the regime II (B) wake patterns. lift; St(WY) < St(CY)

Table 2. Summary of flow patterns of different wavy cylinders at Re =100: WY =wavy cylinder; CY = circular cylinder.
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streamwise direction and the crosswise direction. The wake width in the saddle plane
is increased, giving rise to a wide wake further downstream (figure 6a–b, d–e). On the
contrary, the vortices in the nodal plane appear to be elongated in the streamwise
direction and noticeably compressed in the crosswise direction. The flow separation
occurs later at the nodal position than that at the saddle position. As a result, it
produces a narrower wake downstream in the nodal plane. In such smaller wavelength
regime, similar characteristic of flow pattern (B) was found by Ahmed et al. (1993) for
a wavy cylinder with λ/Dm = 1.2 and a/Dm =0.1 at Re from 5000 to 20 000. Lam et al.
(2004b) showed similar flow characteristics of pattern (A) at Re � 400 and pattern (B)
at Re � 600 for a wavy cylinder with λ/Dm =2.27 and a/Dm = 0.09. Lam & Lin (2008)
also found the flow pattern (B) with 1.14 � λ/Dm � 3.33 and 0.09 � a/Dm � 0.15.

In regime II with 4 < λ/Dm � 6 and regime III, the wake pattern in the nodal plane
is wider than that in the saddle plane (see figure 6f–h). It is opposite the regimes
discussed above. Due to the effect of vortex dislocation along the spanwise direction,
the drag coefficient CD varies in a larger time scale cycle (λ/Dm =9 and a/Dm =0.1,
in regime III (A); see figure 6g). It is evidently different from other wavy cylinders
in regimes I and II. Similar results were observed by Darekar & Sherwin (2001b;
λ/Dm = 10, wavy square cylinder) and Kim & Choi (2005; λ/Dm =7, circular cylinder
by active control method) at the similar Reynolds number Re =100. With the increase
of a/Dm, such phenomenon disappears. For constant values of λ/Dm, a large value
of a/Dm means a steeper wavy surface along the spanwise direction. A steeper wavy
surface will then give rise to different angle of flow separation along the spanwise
direction. In the nodal plane, the far downstream wake width is much different from
that in the saddle plane. It makes a large degree of distortion of the near wake
structures formed in regime II (B) and regimes III (A) and III (B). It is interesting
to note that no periodic vortex shedding appears in the saddle plane in regime III
(B) (see figure 6h). The wake of the saddle plane shows a steady plane vortex sheet
similar to the saddle plane flow pattern in regime II (C).

For pattern (C), the flow behind the wavy cylinder is close to a steady plane
vortex sheet. The force reduces sharply with the r.m.s. lift of the wavy cylinder
being greatly suppressed. In general, only weak vortex shedding can be found at
the very far downstream positions. For the optimal wavy cylinder models (λ/Dm = 2,
a/Dm = 0.3 and λ/Dm = 6, a/Dm = 0.15), the periodic vortex shedding cannot be
discerned. The symmetrical and steady plane vortex sheets do not roll up into
vortex structures. The value of Strouhal number becomes zero. These characteristics
are also reflected by the distributions of different time histories of drag and lift
coefficients (see figure 6). As the value of a/Dm, in regime II increases, the value of C ′

L

becomes discernible again (C ′
L = 0.0006), and slight vortex shedding appears very far

downstream with St = 0.091 for a wavy cylinder for λ/Dm = 6 and a/Dm = 0.2 (see
figure 6f).

To understand why free shear layer will not roll up into a vortex easily at optimal
wavelength, the spanwise variation of vorticity in the shear layers which leads to
additional vorticity components in the streamwise direction is studied. Figure 7
shows the streamwise vorticity isosurface for flow around the optimal wavy cylinder
(λ/Dm = 6 and a/Dm =0.15). Two types of stable streamwise vorticities can be
observed – an outer streamwise vorticity and an inner streamwise vorticity. The
central position of the outer streamwise vorticity is closer to the surface of the wavy
cylinder than that of the inner one. Both the outer and inner streamwise vorticities
are well organized and exhibit symmetrical distributions of vorticity in the x–z plane
with y =0, while at the same time showing a periodic repetition along the spanwise
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Figure 7. Streamwise vorticity isosurface plot for the flow around a wavy cylinder at optimal
wavelength for Re = 100: (a) overview; (b) the same structures viewed in the x–z plane and (c)
the x–y plane.
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direction. This kind of additional streamwise component tends to stabilize the two-
dimensional spanwise vorticity of the free shear layers. The free shear layers separated
from the surface of the wavy cylinder are pushed to further downstream positions as
shown in figure 6 (patterns B and C). This stable three-dimensional redistribution of
vorticity appears to prevent the free shear layer interaction in the near wake behind
the cylinder and hence suppresses the formation of Kármán vortex.

4.3. Flow characteristics of typical wavy cylinders at Re = 100

To deepen our understanding of the effects of change of wavelength and wave
amplitude, the surface pressure distribution, the vortex formation length, the surface
velocity separation angles and the three-dimensional vortex structures of some typical
wavy cylinders are obtained and investigated.

4.3.1. Base pressure coefficient and vortex formation length

Figure 8 shows the spanwise direction mean pressure coefficient C̄p distributions
of several wavy cylinders at the positions of θ =0◦ and 180◦. At the position θ = 0◦,
the values of C̄p are generally smaller than those for a circular cylinder along the
spanwise direction at Re =100, except at the positions of nodal and saddle planes (see
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Figure 9. Spanwise distributions of the vortex formation length (Lf ) for different wavy
cylinders at y = 0 with the mean steamwise velocity equal to zero (Re = 100): (a) a/Dm = 0.175;
(b) a/Dm = 0.15. The position of z/λ = 0 denoted the node, while z/λ = 0.5 is saddle point.

figure 8a). At the middle section (z/λ= 0.25), the mean pressure coefficients at θ = 0◦

of all the wavy cylinders are smaller than those in other planes of the wavy cylinders.
The value of C̄p decreases with the decrease in λ/Dm for the same wave amplitude
(a/Dm =0.175, 1 � λ/Dm � 3 and a/Dm = 0.15, λ/Dm = 6 and 9). This means larger
wave steepness a/λ can increase the variation of the spanwise pressure coefficients and
also that it gives rise to a strong three-dimensional effect on the near wake of wavy
cylinders. Similar results were also obtained by Ahmed & Bays-Muchmore (1992),
Lam et al. (2004a) and Lam & Lin (2008) with λ/Dm � 2.27 for turbulent flow.

Figure 8(b) shows the mean pressure coefficients C̄p of different wavy and circular
cylinders at the rear position θ = 180◦. In general, the maximum value of C̄p (the
minimum value of base pressure coefficient −C̄pb) along the spanwise direction is
obtained at λ/Dm =2.5 (1 � λ/Dm � 3, a/Dm =0.175), while the value of C̄p shows
little variation along the spanwise direction for wavelength λ/Dm = 1, and it is smaller
than that of a circular cylinder. A stronger base suction leads to a higher drag
(figure 4a). Increase in the wavelength (1 � λ/Dm � 2.5) leads to increase in the value
of C̄p from the nodal position (z/λ= 0) to the saddle position (z/λ= 0.5). Similar
results were also obtained by Ahmed & Bays-Muchmore (1992), Lam et al. (2004a)
and Lam & Lin (2008) with λ/Dm � 2.27 for turbulent flow. When λ/Dm =3, the value
of C̄p is close to that of a circular cylinder. As the value of the wavelength further
increases, however, the value of C̄p decreases from the nodal position to the saddle
position. The maximum C̄p is obtained at λ/Dm = 6. It means that the minimum value
of −C̄pb corresponds to the maximum drag reduction. Apart from the wavy cylinders
with λ/Dm = 1, 1.5 and 3, all the value of C̄p along the spanwise direction are larger
than that of a corresponding circular cylinder.

The length of the reversed flow region behind the bluff bodies has a strong
relationship with the mean base pressure coefficient −C̄pb. Lam et al. (2004b) and
Lam & Lin (2008) showed that the values of the velocity recovery lengths of both
wavy and circular cylinders are inversely proportional to the values of the mean base
pressure coefficient −C̄pb in turbulent flow. Similar trend can be found in laminar
flow condition. Figure 9 shows that the general trend of spanwise distribution of
vortex formation length is similar to the spanwise distribution of the mean pressure
coefficient C̄p at θ = 180◦ (see figure 8) for all the wavy cylinders. Along the spanwise
direction of wavy cylinders, the values of Lf exhibit a large variation. For the typical
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Figure 10. Mean surface streamlines of wavy cylinders with different wave amplitude at
Re = 100: (a) λ/Dm = 2; (b) λ/Dm = 6.

wavy cylinder with λ/Dm = 1.5 and a/Dm =0.175, the value of Lf shows in two line
distributions along the spanwise direction due to the definition adopted (see figure 9a).
The line close to the back surface (θ = 180◦) of the wavy cylinder is not the real vortex
formation length. The second line is the real vortex formation length, considering the
relationship between Lf and −C̄pb. Furthermore, we also found that at the nodal
position and the mean values of streamwise velocity U/U∞ in the y = 0 plane are
not equal to zero for the wavy cylinders with λ/Dm =2 and 2.5. Along the spanwise
direction, the value U/U∞ = 0 can be captured at z/λ � 0.08 for λ/Dm = 2 and at
z/λ� 0.13 for λ/Dm = 2.5. The central position of the streamwise velocity recovery
appears around the saddle position of the wavy cylinder. However, it is far from the
back surface of the wavy cylinder and leads to a small value of −C̄pb. In figure 9(b),
the values of the vortex formation length Lf of all wavy cylinders are evidently longer
than that of a circular cylinder. At the nodal positions, the vortex formation lengths
are longer than that in the saddle plane in the range 3.5 � λ/Dm � 10. In general, the
vortex formation length increases from the nodal plane to the saddle plane. Unlike that
of the wavy cylinders with 1.5 � λ/Dm � 2.5, the streamwise velocity recovery centre
moves to the nodal sections. An evidently different vortex structure is generated along
the spanwise direction. The wake pattern in the nodal plane is much wider than that
in the saddle plane (figure 5g, h). Despite the difference of wake structures, velocity
and pressure distributions, it can be concluded that longer vortex formation region
can provide more reduction of the drag coefficient and a much greater suppression
of the r.m.s. lift coefficient.

4.3.2. Velocity separation angles

Figure 10 shows the time-averaged surface streamlines with the variation of wave
amplitude 0.1 � a/Dm � 0.3 (λ/Dm = 2) and 0.02 � a/Dm � 0.3 (λ/Dm = 6) at Re = 100.
The velocity separation lines are also drawn along the spanwise direction. In general,
the separation position varies from the nodal plane to the saddle plane. Lam
et al. (2004b) pointed out the significant spanwise flow motion from the saddle plane
towards the nodal plane when λ/Dm = 2.27 for Re between 3000 and 9000, while Lam
& Lin (2008) also found such phenomenon for turbulent flow with 1.14 � λ/Dm � 3.33
at Re = 3000. Similar phenomenon is observed in laminar flow condition with
λ/Dm = 2 and 0.1 � a/Dm � 0.3 (see figure 10a). As shown in figure 11(a), the mean
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Figure 11. Mean velocity separation angles of wavy cylinders with different wave amplitude
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velocity separation angle θ̄sep in the nodal plane is larger than that in the saddle plane
λ/Dm = 2. It means that flow separation occurs earlier at the saddle position and
later at the nodal position and hence gives rise to the distortion of free shear layer
and the formation of three-dimensional vortex structures. It also leads to the flow
motion from the saddle plane to the nodal plane and the generation of a sinusoidal
wave line along the spanwise direction. The wavy velocity separation line becomes
progressively clear with the increase in a/Dm. It means that the wave steepness value
a/λ plays an important role in the determination of the separation point. The stability
of the free shear layer and the resulting vortex structure are highly dependent on
the separation point of the wavy cylinder. For a wavy cylinder with a larger value
of wavelength (λ/Dm = 6; see figure 10b), the separation line shows little waviness
with the small value a/Dm =0.02. With the increase in a/Dm, the variation becomes
clearer. All the values of θ̄sep in the nodal planes are less than those in the saddle
planes (see figure 11b). It means that flow separation at the nodal position is much
earlier than that at the saddle position for all wavy cylinders with λ/Dm = 6. The
spanwise flow motion moves from the nodal plane towards the saddle plane, opposite
to those shown in figure 10(a) with λ/Dm =2. At a/Dm < 1.5 the values of the
separation angle in both the nodal and saddle planes are less than that of circular
cylinder, while at the saddle plane, it is larger than that of the circular cylinder when
a/Dm > 1.5. Similar results were also obtained using an active control method at
the same Reynolds number with λ/Dm =5 by Kim & Choi (2005). Because of the
wavy velocity separation line, the two-dimensional vortex sheet is distorted, and the
vortex structures become highly three-dimensional in the wake of the wavy cylinder.
That means a longitudinal vorticity component is produced resulting from the wavy
separation line. Thereafter, the three-dimensional vortex sheet rolls up into complex
three-dimensional vortex structure at further downstream positions.

4.3.3. Spanwise wake structure topology

Figure 12 shows the spanwise vortex structure distributions for several typical
wavy cylinders. The wake structures are plotted with several periodic repetitions
along the spanwise direction. With a small value of spanwise wavelength, the
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Figure 12. The instantaneous spanwise vortex structure distributions with several periodic
repetitions along the spanwise direction (Re = 100): (a) λ/Dm = 1.5 and a/Dm = 0.175;
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three-dimensional feature is not prominent at the further downstream positions (see
figure 12a, λ/Dm = 1.5 and a/Dm = 0.175, in the flow pattern (A) in regime I). The
wake pattern is close to that of a circular cylinder at Re = 100 (two-dimensional
unsteady wake vortex shedding flow pattern). With λ/Dm = 2.5, the three-dimensional
vortex structures become clearer. The riblike vortex structures captured are similar to
the spanwise vortex structures of the wavy cylinder (λ/Dm = 2.27 and a/Dm = 0.09) at
Re = 600 obtained by the laser-induced fluorescence (LIF) method (Lam et al. 2004b).
Furthermore, the riblike vortex structure in the near wake of the wavy cylinder appears
at the positions of saddle planes (see figure 12b, regime I↔II (B)). It also shows a
periodic characteristic along the spanwise direction. As shown in figure 12(c, d)
in regimes II (A, B), as the values of λ/Dm further increased from 3.5 to 5.0, the
three-dimensional feature became more and more prominent. The riblike vortex
structures along the spanwise direction were also observed. However, they appear at
the positions near the nodal plane, different from that in figure 12(b). Considering the
flow separation characteristics for wavy cylinders with different wavelength (figures 10
and 11), the riblike vortex structures appear at the positions at which the separation
of the flow occurs first. The free shear layers behind the wavy cylinder at such
positions expand along both the streamwise direction and the crosswise direction while
shrink at other positions. It distorts the spanwise wake structures, and the evidently
three-dimensional wake structures are thus generated. With a larger waviness of
the wavy cylinder, the riblike structures become more prominent. As discussed in
§ 4.3.2, there is a significant spanwise flow motion from the saddle plane towards
the nodal plane for smaller wavelength (λ/Dm = 2), while the flow motion is from
the nodal plane to the saddle plane for larger wavelength (λ/Dm = 6). It implies that
the different spanwise flow motion with the variation of wavelength may lead to
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different additional vorticity components which hence give rise to two types of riblike
structures (at the saddle or nodal position) being generated as shown in figure 12.

For the optimal spanwise wavelength λ/Dm = 6 corresponding to the flow pattern
regime II (C), the spanwise vortex structures appear as a smooth plane vortex sheet
along the spanwise direction from the nodal position to the saddle position. The
riblike structures disappear (see figure 12e). Only two wide and smooth vortex sheets
are generated behind the wavy cylinder (the flow pattern in figure 6f). Unlike a
two-dimensional vortex sheet, the three-dimensional vortex sheet behind the optimal
wavy cylinder is very stable and will not roll up into a mature vortex at this Reynolds
number even at very far downstream position. The periodic vortex shedding is well
suppressed at λ/Dm = 6 and a/Dm =0.15. Therefore, the largest reduction of the
mean drag coefficient and the r.m.s. lift coefficient is obtained. At λ/Dm = 7.5 and
a/Dm = 0.15, the riblike structures appear again (figure 12f) at the positions of nodal
planes, while structures are very different from that of figure 12(b–d) for such large
value of spanwise wavelength. The flow pattern characteristic in regime III (B) is fully
demonstrated.

4.4. Reynolds number effect

Reynolds number plays an important role in the effect of optimal spanwise wavelength
in controlling the vortex shedding, drag reduction and suppression of the vortex-
induced vibrations. Several typical wavy cylinders are used to examine the effects of
Reynolds numbers from 60 to 150. A corresponding circular cylinder is also simulated
at the same Reynolds numbers for comparison. The mean drag coefficient C̄D , the
r.m.s. lift coefficient C ′

L and the Strouhal number St for the wavy and circular cylinders
at different Reynolds numbers are obtained.

Figure 13(a–c) shows that the maximum drag reduction of up to 21.5 % is obtained
at Re = 150 with λ/Dm = 2.5 with the r.m.s. lift coefficient C ′

L =0 and the Strouhal
number St = 0 in the range 1.5 � λ/Dm � 3.0 and a/Dm =0.175. In this spanwise
wavelength range at Re = 60, the minimum value of C̄D =1.426 is obtained for
λ/Dm = 3 and is close to the value of a circular cylinder at the same Reynolds
number (C̄D =1.428). The value of C̄D decreases as the value of λ/Dm increases. The
lift fluctuation is not significantly weakened with little change of the Strouhal number.
At Re = 80, the minimum value of C̄D = 1.36 is obtained with λ/Dm = 2.5 which is
slightly lower than that of the wavy cylinder with λ/Dm = 3 and the circular cylinder.
Increasing the Reynolds number to Re = 100, the minimum value of C̄D is obtained
with λ/Dm = 2.5. Compared with a circular cylinder, the lift fluctuation is significantly
weakened for λ/Dm = 2.0 and 2.5, and the Strouhal numbers are lower. At Re = 150,
the values of C̄D for the wavy cylinders with λ/Dm = 2.0 and 2.5 are lower than that
of the circular cylinder. However, the values of C̄D are close to the values of a circular
cylinder for λ/Dm = 1.5 and 3.0. In general, the optimal spanwise wavelength is slightly
reduced with the increase in Reynolds numbers in the range 1.5 � λ/Dm � 3.0. But
it is still within the lower wavelength range 2.0 � λ/Dm � 2.5. The spanwise vortex
structures of the wavy cylinders (λ/Dm = 2.0 and 2.5, a/Dm = 0.175) at Re = 80 and
150 are shown in figure 14. Longer near wake vortex structures generated behind
the wavy cylinder at Re = 150 contrast with the shorter vortex structures generated
at Re = 80 for the wavy cylinder with λ/Dm = 2 and a/Dm = 0.175. A well-organized
steady and symmetrical wavy vortex sheet structure is found for λ/Dm = 2.5 and
a/Dm = 0.175 at Re =150.

In the wavelength range 5.0 � λ/Dm � 7.5, the value of optimal wavelength for
C̄D and C ′

L reduction is also reduced with the increase in Reynolds numbers (see
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Figure 13. Mean drag coefficients, r.m.s. lift coefficients and Strohual numbers of wavy and
circular cylinders at the Reynolds number values of 60–150: (a)–(c) a/Dm = 0.175 with −�−,
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figure 13d–f). The maximum drag reduction appears at λ/Dm = 7.5 for Re =60,
while it appears at λ/Dm = 6 for Re =100. At Re = 150, the optimal value is further
reduced to λ/Dm = 5. These phenomena are consistent with the results of Kim & Choi
(2005), which used the active control method. As shown in figure 13(d), at Re =60,
80 and 100, the drag reduction of a wavy cylinder with the optimal wavelength
(λ/Dm =6, a/Dm = 0.15) is 5.7 %, 11.8 % and 16.4 %, respectively, compared with
that of a circular cylinder at the same Reynolds number. The magnitude of reduction
decreases at Re = 150. The drag reduction is 17 % which is only slightly higher than
that at Re = 100. The wake pattern of this wavy cylinder at Re =80 and 100 is steady,
and no vortex shedding appears (see figure 15a, b). At Re =150, the wake vortex
structure behind the wavy cylinder becomes unsteady, and the wake pattern reverts
back to the vortex shedding characteristic (see figure 15c). The continuous distortion
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Figure 14. Instantaneous spanwise vortex structures for the wavy cylinders with a/Dm =
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Figure 15. Instantaneous spanwise vortex structures for the wavy cylinder (λ/Dm = 6 and
a/Dm = 0.15) at Reynolds number values of 40–150: (a) Re =80; (b) Re = 100; (c) Re = 150.

of the vortex sheet leads to ultimate rolling up of three-dimensional vortex structure
in the near wake with the occurrence of periodic vortex shedding at downstream
position. This means that the effects of drag reduction and the suppression of r.m.s.
lift still occur. Along the spanwise direction, the riblike vortex structures are formed.
Figure 13(e, f) also confirms that the r.m.s. lift is discernible again and not fully
suppressed for the wavy cylinder with λ/Dm = 6 and a/Dm = 0.15 at Re = 150. In
the range 5.0 � λ/Dm � 7.5 at Re = 150, all the wake patterns of the wavy cylinder
become unsteady with three-dimensional vortex shedding at far downstream. From
the discussion above, we can conclude that the vibration control by modifying the
spanwise wavelength of the cylinder and the values of optimal wavelength are also
Reynolds number dependent.
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5. Conclusions
In the present investigations, the three-dimensional numerical simulations based on

the finite volume method are used to calculate the laminar flow around wavy cylinders
with different combinations of spanwise wavelength λ/Dm and wave amplitude a/Dm

at low Reynolds numbers. The three-dimensional near wake vortex structures of
wavy cylinders mainly at the Reynolds number of 100 were captured and analysed.
It was found that such kind of wavy surfaces with certain optimal values of λ/Dm

and a/Dm can significantly modify the free shear layer development and control the
three-dimensional vortices formation behind the wavy cylinder. The wavy cylinders
are classified into three wavelength regimes (I, II and III) with different flow patterns
(A), (B) and (C). For flow pattern (A), the flow is unsteady and shows a quasi-two-
dimensional unsteady wake structures similar to the straight circular cylinder. Flow
pattern (B) is characterized by an increase of three-dimensional wake vortex distortion
and vortex formation length with a progressive weakening of vortex shedding. In
pattern (C), the flow pattern behind the wavy cylinder is very steady. A three-
dimensional wavy vortex sheet is generated, but it does not roll up into a vortex even
at far downstream position. The r.m.s. lift reduces to zero with the full suppression
of vortex-induced vibration. The velocity separation line of the wavy cylinders varies
along the spanwise direction. This leads to the distortion of the two-dimensional
symmetrical vortex structures along the spanwise direction into three-dimensional
structures. In regimes I and II with flow pattern (A) or (B), the wake width expands
in the region behind the saddles of cylinders and shrinks behind the nodes of cylinders.
On the contrary, in regimes II ↔ III and III with the flow pattern (A) or (B), the
wake width shrinks behind the saddle positions and expands at the nodal position.
As a result, the near wake vortex structures exhibit a periodic variation along the
spanwise direction. In both regimes with flow pattern (B), it is difficult for the free
shear layer to roll up. Hence it can only develop into mature vortex at a further
downstream position. A wavy cylinder with certain optimal values of λ/Dm and
a/Dm can significantly modify and control the three-dimensional vortex structure
behind itself. It weakens and even suppresses the vortex shedding. The base pressure
coefficient decreases due to the formation of a longer vortex formation length. The
mean drag coefficients of a typical wavy cylinder are reduced compared with those
of a corresponding straight circular cylinder at the same Reynolds numbers. At an
optimal wavelength λ/Dm around 6, the mean drag coefficient and the r.m.s. lift of
a wavy cylinder drop sharply with the increase of wave amplitude a/Dm and the
maximum drag coefficient reduction of up to 18 % is obtained. The reduction of the
r.m.s. lift coefficients to zero indicates that such a wavy cylinder is an ideal device for
the suppression of FIV. With a large value of wave amplitude, the three-dimensional
near wake vortex structures are coherent and well organized. Furthermore, the value
of optimal spanwise wavelength of the wavy cylinder for the control of FIV varies
with the Reynolds number range 60–150. In the wavelength range 5.0 � λ/Dm � 7.5,
the value of optimal wavelength reduces from λ/Dm =6 at Re = 100 to λ/Dm = 5
at Re =150. In the wavelength regime 2.0 � λ/Dm � 2.5, the variation of C̄D and
C ′

L is small. The maximum drag reduction of up to 21.5 % is obtained at Re =150
for λ/Dm =2.5 and a/Dm = 0.175. In conclusion, the value of optimal wavelength
decreases with the increase in Reynolds number.

The authors wish to thank the Research Grants Council of the Hong Kong Special
Administrative Region, China, for its support through grant no. PolyU 5311/04E.
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Case Nc H/Dm (Nz ) Cells �tU∞/Dm C̄D C ′
L St −C̄pb

CY-1 80 1 (16) 131200 0.025 1.3356 0.2285 0.1599 0.7246
CY-2 100 1 (16) 163200 0.025 1.3397 0.2342 0.1651 0.7259
CY-3 120 1 (16) 185600 0.025 1.3396 0.2337 0.1635 0.7292
CY-4a 120 3 (32) 371200 0.025 1.3396 0.2332 0.1638 0.7260
CY-4b 120 3 (32) 371200 0.0125 1.3406 0.2351 0.1643 0.7241
CY-5 120 6 (56) 649600 0.025 1.3391 0.2345 0.1645 0.7275
CY-6 140 1 (16) 208000 0.025 1.3405 0.2324 0.1636 0.7247
CY-7 160 1 (16) 243200 0.025 1.3414 0.2341 0.1644 0.7278

Table 3. Grid independence test of a circular cylinder at Re = 100: CY = circular cylinder;
Nc = mesh numbers around the cylinder circumference; Nz = mesh layers along the cylinder
spanwise direction.
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Figure 16. Computational domain and mesh distribution: (a) computational mesh
distribution in the x–y plane; (b) mesh around the circumference of a cylinder; (c) spanwise
direction mesh distribution.

Appendix. Grid independence test and the validation of numerical models
Grid independence test and the validation of numerical models are extremely

important prior to extensive numerical simulations. Figure 16 shows the detailed
diagram of the grid system. The mesh distribution in the x–y plane is non-uniform,
while it is uniform along the z-direction (the spanwise direction of the cylinder). A
finer grid was generated near the cylinder and gradually became coarser in the wake
and the far field. The grid was clustered near the cylinder with an expansion rate of
1.2 in the radial direction from the cylinder surface.

Table 3 shows that seven circular cylinder mesh models were constructed for the
present simulations at Re = 100. The distance between the first grid and the cylinder
surface was 0.01Dm. The dimensionless time steps �tU∞/Dm = 0.0125 and 0.025 were
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C̄D C ′
L St −C̄pb

Authors Re= 60 80 150 100 100 100 100

Past
Williamson (1989) Exp. – – – – – 0.164 –
Henderson (1995) Num. 1.42 1.37 1.34 1.35 – – 0.73
Park, Kwon & Choi (1998) Num. – 1.35 – 1.33 0.23 0.165 0.74
Zhang et al. (1998) Num. – – – 1.32 0.23 – –
Posdziech & Grundmann (2001) Num. 1.39 1.35 1.32 1.33 – – –
Kim et al. (2005) Num. – 1.36 – 1.34 0.23 – 0.72
Sharman et al. (2005) Num. – – – 1.33 0.23 0.164 0.72

Present
CY-4a Num. 1.43 1.37 1.32 1.34 0.23 0.164 0.73

Table 4. Comparison with published results for circular cylinder.

used. At each time step, when the sum of absolute mass imbalance over all the mesh
elements decreased to 0.0001 of the total mass flux across the inlet section, the iteration
was deemed to be convergent. With different grid numbers, grid independence tests
were satisfied if the variation in the values of C̄D , C ′

L, St and −C̄pb were all very small.
The wake vortex structures were also very similar. Moreover, the two different time
steps �tU∞/Dm (see table 3; CY-4a and CY-4b) had negligible effect on the values
above. Because of the two-dimensional steady characteristic of flow around a circular
cylinder at Re = 100, the computational domain height (H/Dm) also had no effect on
the different parameters. Hence, it can be said with confidence that the grid size used
in the present study is sufficiently accurate to simulate the laminar flow around the
cylindrical bluff bodies. As shown in table 4, the values of C̄D , C ′

L, St and −C̄pb of
the present simulations (case CY-4a) are all in good agreement with other published
results of a circular cylinder by Williamson (1989), Henderson (1995), Park, Kwon &
Choi (1998), Zhang & Dalton (1998), Posdziech & Grundmann (2001), Kim & Choi
(2005) and Sharman et al. (2005) at Re = 60, 80, 100 and 150, respectively. Moreover,
figure 17 shows the grid independence tests for several wavy cylinders with different
cell numbers and time steps at Re = 100. No notable discrepancy of C̄D and C ′

L in the
same wavy cylinder by adopting different circumference mesh numbers (Nc), spanwise
mesh layers (Nz ) and different time steps were found.

Based on these analyses, the mesh model with cell numbers of 11 600 in the x–y
plane for both circular and wavy cylinders was adopted for capturing detailed vortex
structures and concurrently saving the computational time. The zone close to the
cylinder surface was meshed with 120 grids (Nc = 120) uniformly distributed along
the circumferential direction. On the other hand, uniform grid layers of 16–88 were
respectively used in the spanwise direction for λ/Dm ranging from 1 to 10 (figure 16).
For all of the present simulations, a constant non-dimensional time step is used with
�tU∞/Dm =0.025.

By adopting periodic boundary conditions, the computational domain height
(H/Dm) was equal to one wavelength λ of a wavy cylinder. To validate the accuracy
of the present periodic boundary conditions with only one wavelength λ in the
computational domain, tests were also performed for some typical wavy cylinders
with two (λ/Dm = 3, a/Dm =0.25; λ/Dm = 6, a/Dm = 0.15; λ/Dm = 9, a/Dm = 0.1)
and three (λ/Dm = 2, a/Dm = 0.1; λ/Dm =2, a/Dm = 0.25; λ/Dm = 6, a/Dm = 0.15)
wavelengths at Re =100. No differences in forces, velocity distributions and wake



Effects of wavelength and amplitude of a wavy cylinder in cross-flow 219

80 100 120 140 160
1.0

1.2

1.4

1.6

1.8

80 100 120 140 160
–0.1

0

0.1

0.2

0.3

0.4(a) (b)

CD C ′L

Nc Nc

λ/Dm = 1, a/Dm = 0.25 (Nz = 16, ΔtU∞/Dm = 0.025)
λ/Dm = 2, a/Dm = 0.1 (Nz = 24, ΔtU∞/Dm = 0.025)

λ/Dm = 2, a/Dm = 0.1 (Nz = 16, ΔtU∞/Dm = 0.025)

λ/Dm = 6, a/Dm = 0.15 (Nz = 56, ΔtU∞/Dm = 0.025)

λ/Dm = 6, a/Dm = 0.15 (Nz = 56, ΔtU∞/Dm = 0.0125)

λ/Dm = 1, a/Dm = 0.25 (Nz = 16, ΔtU∞/Dm = 0.0125)

λ/Dm = 1, a/Dm = 0.25 (Nz = 24, ΔtU∞/Dm = 0.025)

Figure 17. Grid independence test for different wavy cylinders at Re = 100.

topologies were obtained. Similar validation test with only one wavelength height in
the computational domain was also discussed by Darekar & Sherwin (2001b) who
numerically investigated the flow past a square cylinder with a wavy stagnation face at
the Reynolds number equal to 100. Kim & Choi (2005) also found that doubling the
computational spanwise height to 2λ did not cause any changes in the flow structure
and the force values by using an active open-loop control method for reduction of
drag of a circular cylinder at the Reynolds number less than 140.
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