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Abstract 

 

In the present paper, a mesoscale model is adopted to model the concrete behavior 

under dynamic split tension. The concrete material is assumed to consist of coarse 

aggregates, mortar matrix, and interfacial transition zone (ITZ). In the mesh generation 

process, random coarse aggregate particles are generated from a certain aggregate size 

distribution and then placed into the mortar matrix with ITZ between the coarse 

aggregate edge and the mortar matrix. Different aggregate shapes, i.e., circular, oval, 

and polygons, are modeled to analyze the gravel and crushed stone aggregates, 

respectively. Numerical simulation is used to model the dynamic damage responses of 

a typical cylinder specimen and a typical cube concrete specimen under split tension. 

Velocity boundary is added as a dynamic loading. Computational results obtained 

agree well with the normal experimental results. On the macroscale level, reasonable 

tensile stress-strain relationships are calculated; on the mesoscale level, the detailed 

stress wave distribution and the crack pattern are obtained, it can be found that the 

cracks are affected by the aggregate distribution.  

 

 

Keywords: Mesoscale model, concrete, split tension, interfacial transition zone (ITZ)  
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1. Introduction 

As a common construction material, concrete is widely used to construct bridges, civil 

structures, nuclear plants and military facilities all over the world. Those structures 

might be subjected to impact or explosive loading during their service life. Terrorist 

attack and accidental explosion are two typical highly dynamic loading cases. It is of 

interest for researchers to study the static and dynamic behaviours of concrete. Under 

dynamic loading, the behaviour of concrete-like material is well known to be strain 

rate dependent (Malvar and Ross, 1998, Grote et al. 2001, Song and Lu, 2012). 

Typically SHPB (Split Hopkinson Pressure Bar) apparatus can be used to test the 

compressive dynamic mechanism of concrete under different loading rates (Gomez et 

al., 2001, Zhang et al., 2009). To perform tensile splitting experiments under dynamic 

loading, SHPB can also be used to test the dynamic tensile strength of concrete 

(Gomez et al., 2001). Numerical simulation has also been employed to analyze the 

behaviour of concrete sample under this kind of dynamic tensile loading (Hughes et al., 

1993, Zhu and Tang, 2006). 

 

In numerical simulations, concrete can be simulated in different scales, say, 

macroscopic, mesoscopic, and microscopic scales. In the macroscopic scale modelling, 

the concrete material is normally assumed to be isotropic and homogeneous. Many 

constitutive relationships have been constructed to model the behaviour of concrete. 

For example, the RHT model (Riedel et al. 1999) used in AUTODYN (AUTODYN 
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2005), Gebbeken model (Gebbeken 2000), and K&C model (Malvar et al., 1997) used 

in LS-DYNA (2007). Concrete is a typical composite material consisting of coarse 

aggregates, fine aggregates and cement pastes, with some additives if necessary. The 

concrete mesoscale structure makes its behaviour rather complicated. Especially, high 

strain rate loading cases often generates stress waves traveling inside the concrete 

member. Consequently the distribution of the stress field inside the concrete is highly 

non-homogeneous. Therefore, the use of a mesoscale concrete model is desirable to 

capture the concrete material response when it is under high strain rate. To analyse the 

detailed concrete damage responses under different loading cases, mesoscale models 

have been constructed (Wang et al., 1999, Wriggers and Moftah 2006, Zhou et al., 

2009, Unger and Eckardt, 2011). In a mesoscale concrete model, coarse aggregates, 

mortar matrix and the interfacial transition zone (ITZ) are often modelled by different 

material constitutive models. Most of the mesoscale simulations of concrete are 

focused on the static response of concrete-like materials. Some studies have been done 

to apply the mesoscale models in dynamic numerical simulations to investigate the 

dynamic material properties of concrete (Zhou and Hao, 2008, Lu et al., 2009, Song 

and Lu, 2012). In our previous work (Zhou and Hao, 2008), mesoscale modelling has 

been done to investigate the dynamic responses of a typical cylinder splitting test, 

where simplified circular aggregates were the only shape considered. Professor Lu and 

his co-workers have done some mesoscale numerical researches on the high strain rate 

compressive behaviours (Lu et al., 2009, Song and Lu, 2012), where polygonal shapes 

are adopted to model the coarse aggregates. Xu et al. (2012) have analysed the 
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dynamic tensile behaviour of fibre reinforced concrete. At microlevel, the mortar 

matrix of the mesoscale level is subdivided into fine aggregate and hardened cement 

paste. Very high computational cost makes the microscopic simulation unaffordable. 

Therefore, mesoscale simulation is adopted in the present study. 

 

In the present paper, the typical split tension tests of a cylinder concrete specimen and a 

cube concrete are numerically simulated by a mesoscale concrete model. In the 

mesoscale model, the coarse aggregates are modeled by different shapes, say, circular, 

oval and polygons. Numerical simulation results of different cases are obtained, 

especially the effect of the coarse aggregate shape is analyzed. 

 

2. Mesoscale Model  

 

At the mesoscale level, concrete can be regarded as being composed of three different 

phases, coarse aggregates, mortar matrix and ITZ. Figure 1 shows a typical section 

view of a concrete sample (Zhou et al, 2009). It was scanned by CT. From the figure, 

coarse aggregates and mortar matrix can be clearly seen. In the present study, the 

coarse aggregates, mortar and the ITZ are distinctively simulated with the respective 

material properties. 

 

2.1. Mesoscale Concrete Structure 
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The mesoscale concrete structure to be generated consists of randomly distributed 

coarse aggregate particles and the mortar matrix filling the space between the particles. 

Therefore, the layout of the mortar matrix depends entirely on the spatial distribution 

of the aggregate particles. 

 

The generation of the random coarse particles must satisfy the basic statistical 

characteristics of the real concrete material. In addition, the spatial distribution of the 

aggregate particles must be as macroscopically homogeneous in space and 

macroscopically isotropic as possible (Wriggers and Mofta, 2006). 

 

The popular “take-and-place” method is adopted here to generate the coarse aggregates. 

The random principle is applied by taking samples of aggregate particles and placing 

the aggregate particles one by one into the concrete in such a way that there is no 

overlapping with particles already placed. The size distribution of the particles must 

follow a certain given grading curve. 

 

2.2. Generation of Coarse Aggregates 

 

For normal concrete, coarse aggregates refer to the particles whose diameters are 

greater than 4.75 mm. For most concrete, the coarse aggregates represent 40–50% of 

the concrete volume. The shape of the coarse aggregate particles depends on the 

aggregate type. In general, gravel aggregates have a rounded shape while crushed stone 
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aggregates have an angular shape. In the present study, circular and oval particles are 

adopted to model gravel aggregates, while the polygons are used to model the rushed 

stone aggregates. 

 

2.2.1 Aggregate Size Distribution 

The determination of the particle size distribution for aggregates is usually expressed 

in terms of the cumulative percentage passing through a series of sizes of sieve 

openings. One of the most acceptable aggregate distributions is given by Fuller 

(Wriggers and Mofta, 2006) as: 

n
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where P(d) is the cumulative percentage passing a sieve with an aperture diameter of d, 

dmax is the maximum size of the aggregate particles, and n is the exponent (n = 

0.45–0.70). In the practical concrete construction, the typical maximum size of 

aggregates is about 32 mm to obtain high quality concrete mix. Fuller’s grading curve 

is shown in Figure 2, where dmax is assumed to be 32 mm and n is taken as 0.5. In the 

present study, since the concrete-like specimens considered have much smaller sizes 

compared with normal concrete member, the maximum coarse aggregate size, dmax, is 

set as a smaller size, 10mm. In addition to that, the minimum aggregate size is assumed 

to be 2.5mm, which is smaller than the most frequently used number of 4.75mm. 

 

In the numerical simulation, the grading curve expressed in Eq.1 can be discretized 

into a certain number of segments (Lu and Tu, 2009), each covering a size range of [di, 
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di+1]. Thus the amount (area in 2D) of aggregates within each grading segment is 
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where Aa is the total amount (area in 2D) of aggregates in concrete and dmin is taken as 

2.5 mm in the present study. 

 

2.2.2 Aggregate Particle shapes 

The circular, oval, and polygonal shaped aggregate particles are respectively 

constructed in the present study. The circular shape aggregates can be easily 

constructed. Uniformly distributed random numbers are set to determine the centers of 

the circles. The diameters are then generated randomly. As for the oval shaped 

aggregates, random numbers are generated to determine the position of the oval center 

(x,y), long axial radius rl, short axial radius rs , and the orientation angle of the long 

axis . Typical oval particle with those randomly distributed parameters is shown in 

Figure 3. For simplicity, the polygon aggregates are constructed as the inscribed 

polygons of the ovals, with the side number randomly distributed between 6 and 12 

and the interior angles randomly distributed between 15 and 90 degrees, avoiding 

weird shapes. Figure 4 shows a typical polygonal shaped aggregate. As for those 

polygonal particles in the circular specimen, only random quadrangular shapes are 

adopted. 

 

2.2.3 Aggregates Placing Process 

The typical circular particles placing process is as follows, 
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Step 1. Calculate the area of aggregates to be generated in the grading segment. 

Step 2. Generate a uniformly distributed random number to determine the position 

of the aggregate particle (center of the circle). 

Step 3. Generate a random number defining the size of an aggregate particle, 

assuming the particle size d is a uniformly random number between size range of [di, 

di+1]. Largest size range is put first. 

Step 4. Check whether all the placing conditions are completely satisfied. The 

placing conditions include: overlap between any two particles, or overlap between a 

particle and any edge is not allowed; a minimum gap size t needs to be provided 

between any two particles. As shown in Figure 5, those dashed circles are unsuccessful 

and should be avoided. 

Step 5. Calculate the total area of the generated aggregate particles and compared 

with the area within the current grading segment. If the former is less than the latter, 

repeat from Step 2; otherwise, calculate the next grading segment. 

Step 6. Repeat the above steps for the next grading segment until the total area of 

aggregates reaches a certain value, which means that all the particles are generated. 

 

For oval and polygonal shaped particles, the placing process is similar to that for the 

circular particles. The differences are the process in avoiding overlap and area 

calculation, which are more difficult for oval and polygonal particles. 

 

Typical aggregate particles for different shapes are shown in Figure 6. ITZ is clearly 
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shown in the figure as a thin boundary around the aggregates. 

 

2.3 Material Models for three phases  

 

Hydrocode is adopted in the present study (AUTODYN 2005). The equation of state 

(EOS) and the strength criterion need to be constructed to model the three phases in 

concrete. A piecewise-linear porous model (Zhou and Hao, 2009) is used to model both 

the mortar matrix and the ITZ. The simplest linear EOS is adopted to model the 

aggregate as follows, 

kp                                  (3) 

where p is the pressure, =(/0)-1, and k is the material bulk modulus. Obviously the 

modulus of aggregate is much higher than that of the mortar matrix. 

 

The deviatoric stress tensor is governed by a damage-based yield strength surface. The 

dynamic yield strength surface is amplified from the static surface by considering the 

strain rate effect. Typically the compressive (tensile) strength is multiplied by a 

compressive (tensile) dynamic increase factor (DIF). Due to the lack of the 

experimental results, determination of the DIFs for ITZ is assumed to be the same as 

that for the mortar matrix. The yield strength criterion considered is a piece-wise 

Drucker-Prager model. The equivalent yield strength can be determined by 

)~1(02 NiapbJF idip 
                               (4) 

where J2 is the second invariant of the stress deviatoric tensor, p is the hydrostatic 
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pressure, and other parameters are used to determined piece-wise linear model. 

 

For the coarse aggregate and mortar matrix, same material constants as those in our 

previous work (Zhou and Hao, 2009) are adopted here. As for the ITZ, the material 

constants for the strength and Young’s modulus are assumed as 75% of the mortar 

matrix. The material parameters for all the three phases are listed in Table 1. 

 

3. Numerical Simulation  

 

3.1 Split Tension Test Setup and Numerical Model  

 

In order to analyze the dynamic behaviour of concrete material under different strain 

rates, two-dimensional models of concrete mixture are constructed and modelled. Two 

split tension specimens are modelled in the present study, one is the typical cylinder 

specimen (the same specimen as that in our previous work, Zhou and Hao, 2008), and 

the other is a cube concrete sample. Numerical model and boundary condition for the 

cylinder case are shown in Figure 7. The diameter of the specimen is assumed to be 

50mm, In this figure, it can be seen that the vertical velocity is added as a boundary 

condition on the upper side of the circle, while the displacement is fixed on the lower 

bound of the circle. In the present study, only one typical constant velocity, 1m/s, is 

considered. Three different coarse aggregate shapes adopted in the present simulation 

are shown in Figure 8. 
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In China, a cube concrete sample with a length of 150 mm is the typical specimen for 

the split tension test. A typical split tension test setup of the cube specimen is shown in 

Figure 9. The model geometry in the numerical simulation is shown in Figure 10. The 

bottom boundary shown in the figure is assumed to be fixed, while velocity boundary 

shown in Figure 11 is added on the top boundary. The element size is chosen as 0.5 

mm, resulting in a total element number of 300300. 

 

3.2 Numerical Results 

 

3.2.1 Numerical Results of the cylinder Specimen 

In numerical simulation of the cylinder specimen, four different cases are studies, i.e. 

(a) homogeneous model, (b) mesocale model with random circular aggregates, (c) 

random oval aggregate mesoscale model and (d) random polygon mesoscale model. 

For these mesoscale models, their aggregate distributions are shown in Figure 8. Fig.12 

shows the xx distribution at different time instants. For comparison, homogeneous 

model, mesoscale models with different aggregate shapes are shown in the figure. 

From the figure, the stress wave propagation can be clearly seen. The effect of the 

aggregate and the ITZ is also noticeable. For the cases from (b) to (d), their stress 

distributions are obviously not as continuous as that in case (a). Especially, the stress 

state in the ITZ elements differs a lot from their neighbor elements. The reason is that 

different material properties of the three phases inside the concrete specimen affect the 
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stress wave transportation. From detailed comparison it can be found that sometimes 

the ITZ elements are in compression when their neighbor elements are in tension. 

 

For all the three cases, the first failure occurs in the ITZ somewhere along the middle 

line, then the major crack generates. The failure modes for the above four cases are 

shown in Figure 13. In this figure, it can be clearly seen that the crack pattern is 

affected by the aggregate distribution. Basically, the maximum tensile stress occurs 

along the middle line, thus the cracks occur along this line. However, the position of 

the aggregate does affect the crack pattern because the cracks only occurs along the 

ITZ and the mortar matrix element, while the aggregate is still kept intact. For the 

mesoscale cases of (b), (c) and (d), the crack pattern in case (d) shows failure pattern 

which is more realistic to the real experimental tests, where an obvious main crack 

along the center line can be found; while for the other two cases, more cracks in the 

ITZ areas around the center line can be found. From this point of view, polygonal 

aggregate shape seems more reasonable, this is true because more crushed stone 

aggregates are used in the real concrete material.  

 

Dynamic tensile strength is approximately obtained here by taking the average 

maximum stress over the middle 60% length of the central line. For all the mesoscale 

cases, the calculated dynamic strengths are around 5MPa, which is higher than the 

static tensile strengths of the mortar and the ITZ. This is caused by the strain rate effect 

because the dynamic increase factors (DIF) are considered for both the mortar matrix 
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and the IZT.  

 

3.2.2 Numerical Results of the cube Specimen 

For the polygonal aggregate model, the stress distribution (σxx) at different time 

instants is shown in Figure 14. With the increase of the time step, the stress becomes 

higher. Because the material properties for the three phases are not the same, the 

aggregate distribution affects the stress distribution. In particular, the stress in the ITZ 

differs a lot from that in the aggregate. This observation is the same as that in the 

cylinder specimen in the previous section. At the time of 0.1 ms, initial cracks can be 

clearly seen at around the centre of the specimen. The crack firstly occurs at the ITZ 

element. Accordingly, the stress in the ITZ element drops as the cracks begin to occur. 

 

From the numerical simulation, it can be found that the total stress can still increase 

even the first few cracks occur because the rest part of the specimen can still support 

the loading. When more cracks happen, the stress drops gradually. The final crack 

pattern is shown in Figure 15. It shows that main vertical cracks occur along the 

centerline. Basically the specimen will be split into two halves, same as usual split 

tension tests. 

 

The tensile stress-train relationship calculated from the mesoscale concrete with 

polygonal aggregate particles is shown in Figure 16. The tensile strength is around 3 

MPa, which is slightly higher than the tensile strength of ITZ, but lower than that of 
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the mortar matrix. It is worthy noting that the dynamic loading obtained from the cube 

specimen is lower that from the cylinder specimen, because the strain rate in the 

cylinder specimen is higher since the size of the specimen is smaller. Another reason is 

that the thickness of ITZ in the cylinder specimen is 0.2mm, which in much smaller 

than that in the cube specimen, 0.5mm.  

 

For the oval and circular aggregate cases, the numerical stress-strain relationship 

results obtained are similar as that shown in Figure 14. However, the stress distribution 

and the crack pattern are different from those shown in Figures 12 and 13. The reason 

is that the stress distribution and the crack pattern are affected by the aggregate 

position. Nevertheless, the overall responses of the entire specimen for different cases 

are similar.  

 

5. Conclusions 

 

A mesoscale concrete material is constructed in the present paper. Different shapes are 

used to mode the coarse aggregate particles. For the three phases in the concrete 

mixture, say, coarse aggregates, mortar matrix and ITZ, are modelled by different 

material models and different material parameters. The typical split tension test of a 

cylinder concrete specimen and a cube concrete specimen are modelled in 

two-dimensional mesoscale models. Numerical results show that reasonable entire 

stress-strain relationship can be obtained by the current mesoscale model. It can also be 
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found that the crack pattern and the stress distribution are affected by the aggregate 

shape, size and distribution. With the increase of the loading, the tensile stress 

increases. At the certain time instance, the first crack occurs at the ITZ element and 

then spreads through the mortar matrix. For the current loading case, cracks are not 

found in the aggregate particles. 

 

The present numerical study shows that the mesoscale concrete model can obtain not 

only the mesoscale damage process, but also the macroscale stress-strain relationship. 
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Figure 1.  Typical section view of concrete sample (Zhou et al, 2009) 
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Figure 2.  Fuller’s grading curve 
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Figure 3.  Typical oval particle 
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Figure 4.  Typical polygonal particle 
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Figure 5.  Aggregate placing process 
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Figure 6.  Typical aggregate particles 
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Figure 7. Model geometry and boundary condition for the cylinder specimen 
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a. random circular aggregate 
 
 

 
 

b. random oval aggregate 
 

 
 

c. random quadrangular aggregate 
 
 

Figure 8.  Coarse aggregate distribution for the cylinder specimen
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Figure 9.  Split tension test setup for the cube specimen 
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Figure 10.  Model geometry for the cube specimen 
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Figure 7.  Velocity loading acting on the top boundary 
 

Figure 11.  Velocity loading acting on the top boundary of the cube specimen 
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t=0.005 ms t=0.010 ms t=0.015 ms t=0.020 ms 

(a) homogeneous model 

    

t=0.005 ms t=0.010 ms t=0.015 ms t=0.020 ms 

(b) random circular aggregate 

    

t=0.005 ms t=0.010 ms t=0.015 ms t=0.020 ms 

(c) random oval aggregate 

     

t=0.005 ms t=0.010 ms t=0.015 ms t=0.020 ms 

(d) random quadrangular aggregate 

 

Fig.12 Stress xx distribution for different model cases 
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Figure.13 Failure mode for different cases 
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Figure 14.  σxx distribution at different time instants 
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Figure 15.  Crack distribution after damage  
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Figure 16. Calculated stress-strain relationship 
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Table 1 Material parameters 

 
(a)  material parameters for mortar matrix and ITZ 

 

 Mortar 
matrix 

ITZ 

Solid density s (kg/m3) 2.750103 2.750103 
Initial density0 (kg/m3) 2.1103 1.8103 

Initial soundspeed C0 (m/s) 2.970103 2.572103 
Initial compaction pressure pe 

(MPa) 
32.3 24.3 

Solid compaction pressure 
ps(MPa) 

6000 6000 

Shear modulus (GPa) 8.3Gpa 6.24Gpa 
Damage parameters t, c 0.5 0.5 

Tensile damage threshold st0 2.010-4 2.010-4 
Compressive damage threshold sc0 2.010-3 2.010-3 

Tensile strength ft (MPa) 3.6Mpa 2.7Mpa 
Compressive strength fc (MPa) 45Mpa 33MPa 

Cut-off tensile strength fttt (MPa) 1.8MPa 1.35MPa 

 
(b) material parameters for aggregate 

 

Density 0 (kg/m3) 2.750103 

Bulk modulus K (GPa) 35.7 
Shear modulus G (GPa) 17.4 
Damage parameters t, c 0.5 

Tensile damage threshold st0 3.610-4 
Compressive damage threshold sc0 3.610-3 

Tensile strength ft (MPa) 15 
Compressive strength fc (MPa) 200 

Cut-off tensile strength fttt (MPa) 7.5 

 
 




