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Based on the effective-medium theory, the propagation of a shear horizontal (SH) wave in joined

half-spaces composed of elastic metamaterials (EMMs) is investigated. From the dispersion rela-

tions, the effects of negative effective-medium parameters on the properties of a SH wave traveling

near the interface are analyzed in detail. It is found that a SH wave can always appear and travel

along the interface under specific effective-parameter combinations no matter whether the effective

transverse wave velocity is imaginary or real. This is significantly different from the classical case

(joined half-spaces composed of natural media), and the existence of these SH interfacial wave

modes may have important impacts on EMM-based SH wave manipulation, especially wave isola-

tion and object protection. Published by AIP Publishing. https://doi.org/10.1063/1.4994611

I. INTRODUCTION

Originating from the work of Liu et al.1 in 2000, an elastic

metamaterial (EMM) is a new type of composite that is com-

posed of many sub-wavelength unit cells embedded in a certain

matrix. Unlike the case of phononic crystals (Bragg type), whose

periodicity is the decisive factor, the special wave properties of

EMMs are attributed mainly to the unique properties of the inter-

nal sub-wavelength unit cell that create differing resonant

behaviors. By using an EMM, elastic waves can be manipulated

in unprecedented ways, for example, the isolation of elastic

waves within low and medium frequency,2–5 elastic-wave cloak-

ing,6,7 negative refraction,8–10 energy localization,11,12 and

super-resolution imaging.13 This field is very active nowadays,

and more information can be found in Refs. 14 and 15.

Existing studies have shown that the behavior of waves in

an EMM can be described effectively using the concept of an

effective medium and homogenization technology under long-

wave conditions [i.e., the internal unit cell (scatterer) is much

smaller than the wavelength in the matrix]. The effective-

medium parameters of an EMM are generally frequency-

dependent and can become negative near the vibrational

eigenmodes of the scatterer.5,16–18 Moreover, it has been recog-

nized that the negative effective bulk modulus, effective den-

sity, and effective shear modulus are associated with the

monopole, dipole, and quadrupole resonant modes, respec-

tively, of the scatterer.18–21 In fact, the band gaps and negative-

refraction properties of EMMs are related directly to these neg-

ative effective parameters; for instance, single-negative effec-

tive parameters often lead to the band gaps of bulk waves,3,22

and double-negative or triple-negative effective parameters can

induce negative refraction.23,24 Based on this understanding, a

variety of subtle sub-wavelength unit cells have been proposed

from which EMMs can be constructed21,25–29 to achieve certain

functions of wave control. The frequency-dependent effective

parameters can be evaluated using the effective-medium theory,

for which the Coherent Potential Approximation (CPA)

method20,30,31 and the “feel and response” method32–35 are fre-

quently used. EMMs with different negative effective parame-

ters (i.e., single-, double-, and triple-negativities) have been

realized recently.3,19,21,36,37 In addition, wave reflection and

transmission occurring at the interface of two different EMMs

have also been investigated,23 through which unique phenom-

ena such as negative refraction and wave-mode conversion

have been revealed. Given that natural materials do not present

these effective parameters, EMM-based designs have also been

proposed for isolating certain important elastic waves, espe-

cially seismic waves.38–41

As for practical problems, there always exist different sur-

face or interface boundaries. The classical wave theory42,43 sup-

ports certain types of surface or interfacial waves (IWs), such

as the well-known Rayleigh, Stoneley, and Love waves. When

it comes to EMMs instead of natural media, it is not difficult to

imagine that similar surface/IWs could also exist under certain

conditions because an EMM can be deemed an extension of a

natural medium from the effective-medium perspective.

Although related studies on surface or interfacial wave propa-

gation in EMMs are relatively few, a surface wave akin to a

surface plasmon polariton (SPP)44 has been found recently on

the surface of an EMM with specific effective parameters, and

the conditions for Rayleigh and Scholte waves to exist in an

EMM were established and verified by finite-element simula-

tions. Although these surface or interfacial waves are obviously

detrimental in EMM-based elastic-wave isolation applications

and should be attended to carefully, they could be useful in cer-

tain function devices of elastic (acoustic) waves.
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In the present paper, we derive the dispersion relation of

a shear horizontal (SH) wave propagating in joined half-

spaces composed of one or more EMMs. We also analyze in

detail the effects of negative effective-medium parameters

on the ability of the SH wave to travel near the interface, as

well as its properties in doing so. We find that no matter

whether the effective transverse wave velocity is imaginary

or real, a class of SH traveling waves can always appear near

the interface when certain existence conditions (four specific

combinations of effective parameters) are satisfied. This

observation clearly differs from the classic case (i.e., joined

half-spaces composed of natural media), and the existence of

these SH IW modes may significantly impact EMM-based

SH wave isolation and object protection.

This paper is organized as follows: an analytical model

of joined half-spaces composed of one or more EMMs is

given in Sec. II, and the dispersion relation of a SH IW is

deduced. According to different combinations (positive or

negative) of effective-medium parameters, the conditions for

a SH IW mode to exist are discussed further, and in Sec. III,

we establish four supporting conditions involving the effec-

tive density and/or the shear modulus ratio between the two

half-spaces. The theoretical results given in Sec. III are veri-

fied in Sec. IV by finite-element simulations at two levels,

namely, that of the effective medium and that of the micro-

structural unit cell. Finally, conclusions and potential future

work are given in Sec. V.

II. MODEL AND DISPERSION EQUATIONS

Although a SH wave propagating in joined half-spaces

is a classic problem, we are concerned mainly here with a

SH IW mode traveling near the interface. It is well known

that when both sides of the joined half-spaces are composed

of normal media, no surface wave mode can exist according

to the classical wave theory.43 However, the situation is very

different when one or more EMMs are used to construct the

joined half-spaces.

As shown in Fig. 1, the upper and lower half-spaces are

assumed to be composed of an EMM medium and a normal

one, respectively. It is worth noting that both the effective

density and effective shear modulus of an EMM can be

designed to be frequency-dependent, which has additional

impacts on the dispersion relation of a SH wave in joined

half-spaces. Actually, the analysis is similar to that of the

general case. This is because their effects on the SH wave

properties are exhibited directly through the effective trans-

verse wave velocity. The frequency-dependent effective den-

sity used here is a very typical one that is borrowed from

Ref. 27 [see Eq. (14) therein]; the frequency response func-

tion (FRF) curve is shown in Fig. 2, where x0 is the charac-

teristic frequency of the built-in unit of the EMM (see the

inset), and qm and qst represent the effective and static densi-

ties, respectively. On the whole, the frequency response of

the effective density can be regarded as a type of resonance

curve. The effective density increases gradually from its

static value to infinity when approaching the critical fre-

quency x0 from below, it becomes negative when beyond

x0, and it then tends to zero gradually in a certain frequency

band with further increase of frequency. The effective den-

sity qm and shear modulus lm of the EMM can become nega-

tive within certain frequency regions.

The displacement solutions of a SH wave in the two

media can be expressed as

um
3 ¼ C1ejpx2 ejðkx1�xtÞ;

un
3 ¼ C2ejqx2 ejðkx1�xtÞ;

(1)

where p2 ¼ x2

c2
m
� k2, c2

m ¼
lm

qm
, q2 ¼ x2

c2
0

� k2, and c2
0 ¼

ln

qn
.

Terms p and q are the wavenumbers of the upper and lower

half-spaces in the x2 direction, respectively. The term k is the

wavenumber in the x1 direction, and j is the imaginary unit.

The density qn and shear modulus ln of the normal medium

are positive constants.

To meet the continuity conditions of displacement and

shearing stress on the interface, we have the following

relations:

C1 ¼ C2; (2)

lmp ¼ lnq: (3)

We are concerned here with a surface wave traveling in

the qm; lm direction near the interface, so p and q should

take negative and positive imaginary values, respectively.

Hence, k2 > x2

c2
m

and k2 > x2

c2
0

must be satisfied as prerequisites.

Let p ¼ jp�, p� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
m

q
, q ¼ jq�, and q� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
0

q
,

whereupon Eq. (3) can be expanded as

FIG. 1. Joined half-spaces built from an elastic metamaterial (EMM) and a

normal material. FIG. 2. Frequency response function (FRF) of the typical effective density.
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�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
m

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
0

s ¼ ln

lm

: (4)

Equations (3) or (4) give the dispersion relation that

should be satisfied by an IW traveling in the joined half-

spaces. Unlike the normal case (i.e., joined half-spaces com-

posed of two normal media) in which the relation never

holds, the dispersion relation may be met under certain con-

ditions by engineering the effective shear modulus (lm) of

the EMM half-space to be negative within certain frequency

regions. In the following, different cases are discussed

according to the characteristics of the effective parameters of

the EMM.

III. DISCUSSION OF SH IW MODES

A. Joined half-spaces composed of an EMM
and a normal material

If the lower half-space is composed of a normal

medium, there are four different combinations according to

whether the effective parameters of the EMM half-space are

positive or negative.

(1) Double-positive parameters (qm > 0, lm > 0)

When qm > 0 and lm > 0, the left-hand-side of Eq. (4)

is negative whereas the right-hand side is positive. Hence,

the dispersion relation can never be met, meaning that no SH

IW mode can appear and travel in the joined half-spaces

under these conditions. It is noted that there exists a limiting

case of p ¼ q ¼ 0, which requires c2
m ¼ c2

0; obviously, Eq.

(3) holds in that case and we have cm ¼ c0 ¼ x
k . However, as

seen from the displacement solution [Eq. (1)], the displace-

ment fields of the upper and lower half-spaces become inde-

pendent of x
x0

, which actually represent a class of bulk SH

waves propagating in the b! a direction as a whole.

Thus, we conclude that there is no SH IW mode that can

travel in the vicinity of the interface formed by a normal

half-space and an EMM one with double-positive effective

parameters. Undoubtedly, this point is also applicable to

joined half-spaces that are both composed of normal media.

(2) Single-negative effective density (qm < 0, lm > 0)

As in the previous case, Eq. (4) also cannot be met with

qm < 0 and lm > 0, and so no SH IW mode exists.

Somewhat differently, the situation of p¼ q¼ 0 does not

appear here because c2
m < 0 while c2

0 > 0 (the limiting case

of both being zero represents both half-spaces being com-

posed of fluid-like media and hence no SH wave arises).

Consequently, there is also no SH mode at the interface

formed by a normal half-space and an EMM one with single-

negative effective density.

(3) Single-negative effective shear modulus (qm > 0,

lm < 0)

If qm > 0 and lm < 0, both sides of Eq. (4) are less than

zero simultaneously. Therefore, certain solutions may exist. For

convenience, two ratios of medium parameters are introduced

here, namely, a ¼ qm

qn
and b ¼ �lm

ln
ða > 0; b > 0Þ. Then,

according to Eq. (4), we obtain k ¼
ffiffiffiffiffiffiffiffi
1þab
1�b2

q
x
c0

. Apparently, a

traveling IW mode does exist (with real wavenumber k) as long

as the condition 0 < b < 1 is satisfied.

A set of parameters (b ¼ 0.2, 0.8, 0.94, 0.97, 0.99, and

0.999, qn¼ 2600 kg/m3, and ln ¼ 9 MPa) is chosen for

numerical calculation. Meanwhile, the typical frequency-

dependent effective density is also considered here, which is

similar to that given in Sec. II except that the vertical coordi-

nate is replaced by a in Fig. 2 and the characteristic fre-

quency x0 is set as 600 rad/s. It should be noted that these

parameter values are selected arbitrarily here and do not cor-

respond to a specific natural medium. In fact, it can be seen

that the ratios of density and shear modulus (i.e., a and b,

respectively) are the decisive factors in the dispersion rela-

tion (k ¼
ffiffiffiffiffiffiffiffi
1þab
1�b2

q
x
c0

) and hence specific values of parameters

such as density and shear modulus have no radical influences

on the main conclusions. The dispersion curves as calculated

are depicted in Fig. 3, where the horizontal axis (k) repre-

sents the wavenumber in the x1 direction and the vertical

axis denotes the dimensionless frequency.

First, it can be observed that all the curves of SH IW

modes are located below and to the right of the bulk trans-

verse wave mode of the normal half-space, i.e., the black

dashed line (x ¼ kc0) shown in Fig. 3. In fact, it is noted that

the prerequisite k2 > x2

c2
0

holds only within this region, which

is essential to ensure that q is imaginary (an imaginary value

of p is ensured by c2
m < 0).

Second, the dispersion curves are gradually approaching

the straight line x ¼ kc0 as the shear modulus ratio b tends

FIG. 3. Dispersion curves of SH interfacial wave (IW) modes traveling in

joined half-spaces composed of a normal medium and an EMM one with a

typical effective density (x0 ¼ 600 rad/s) and different ratios of shear mod-

uli (b ¼ 0.2, 0.8, 0.94, 0.97, 0.99, and 0.999).
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to zero (or equivalently as lm ! 0). In other words, the SH

IW velocity will tend to the bulk transverse wave velocity of

the normal-medium half-space. In fact, as b tends to zero,

the SH wave can hardly be transferred effectively in the

EMM half-space because the EMM becomes ever-more

fluid-like. Meanwhile, the boundary surface (or the interface)

of the normal half-space becomes gradually similar to a

stress-free boundary in terms of the SH wave motion. It

should be noted that the wavenumber q� in the x2 direction is

also approaching zero as b tends to zero. Hence, the displace-

ment solution [the second one of Eq. (1)] will tend to repre-

sent a bulk SH wave in the lower half-space as a whole in

the x1 direction, which is denoted by the black dashed line

x ¼ kc0. Consequently, the SH IW velocity should approach

the value of c0 as b tends to zero, as observed from Fig. 3.

Third, the wavenumber k (in the x1 direction) of the IW

will increase gradually for a given frequency as b tends to

unity, and meanwhile, the wave amplitude attenuation

becomes ever stronger along the x2 direction (refer to the

expressions for p� and q�). Therefore, the IW will travel along

the x1 direction with the displacement field confined to an

ever-narrower region on either side of the interface as b
approaches unity. We note in passing that the resultant wave-

numbers in the EMM and normal half-spaces remain always

unchanged as x=cm and x=c0, respectively. The limiting case

of b ¼ 1 is considered additionally; the continuity condition of

shearing stress on the interface can no longer be satisfied

physically, as can easily be observed from Eq. (3). Besides,

looking at the displacement solutions, we find that the dis-

placement field will vanish completely on either side and exist

exactly on the interface formed by the two half-spaces under

this limiting case, which is apparently nonphysical but never-

theless a mathematical (albeit limiting) solution (i.e., k ¼ 1).

Finally, we consider the IW behavior as x tends to x0.

As the effective density gradually approaches infinity (or

equivalently as a!1), all of the dispersion curves tend to

be horizontal and approach the common asymptotic line

x¼x0. In fact, this reflects the fact that the hypothetical par-

ticles of the effective medium of the EMM could hardly be

stimulated to vibrate because their individual mass would

become much greater as x tends to x0. Correspondingly, the

vibration energy could hardly be transferred in the form of

wave motion, and hence, the group velocity would tend to

zero and the dispersion curves would approach the horizontal

asymptote at x¼x0.

(4) Double-negative parameters (qm < 0, lm < 0)

The solution of Eq. (4) in this case is analogous to that

in the previous one. Introducing a ¼ �qm

qn
and b ¼ �lm

ln

ða > 0; b > 0Þ, the dispersion relation of the SH IW can be

obtained from Eq. (4) as k ¼
ffiffiffiffiffiffiffiffi
1�ab
1�b2

q
x
c0

. Considering the pre-

requisites of k2>x2

c2
m

and k2>x2

c2
0

,
ffiffiffiffiffiffiffiffi
1�ab
1�b2

q
>1 and

ffiffiffiffiffiffiffiffi
1�ab
1�b2

q ffiffi
b
a

q
>1

must be satisfied simultaneously. Consequently, the follow-

ing two supporting conditions for the SH IW mode can be

derived in this case:

Condition A1 : 0 < a < b < 1 and

Condition A2 : 1 < b < a:

These manifest the fact that an IW could exist and travel in

joined half-spaces composed of a normal medium and an

EMM with double-negative effective parameters as long as the

ratios of effective density and effective shear modulus meet

specific supporting conditions. For illustration, we choose two

sets of parameters satisfying the above two conditions respec-

tively (a ¼ 0.45, b ¼ 0.5, 0.9, 0.97, 0.99, and 0.999; a ¼ 3, b
¼ 1.002, 1.03, 1.1, 1.3, and 2.5) are chosen to calculate the dis-

persion curves of the IW. The results are shown in Fig. 4.

For the case in which the effective parameter ratios sat-

isfy condition A1, the dispersion curves are shown in Fig.

4(a). It can be seen that as b tends to a, the IW mode tends to

the bulk transverse wave mode of the normal half-space,

which is represented by the black dashed line x ¼ kc0. In

FIG. 4. Dispersion curves of the SH IW mode in joined half-spaces composed of a normal-medium half-space and an EMM half-space with double-negative

effective parameters. (a) a ¼ 0.45, b ¼ 0.5, 0.9, 0.97, 0.99, 0.999 and (b) a ¼ 3, b ¼ 1.002, 1.03, 1.1, 1.3, 2.5.
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fact, as b tends to a, the transverse wave velocities in the

upper and lower half-spaces tend to the same value (i.e.,

cm ! c0) according to the definition of bulk transverse wave

velocity. Consequently, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
m
� k2

q
and q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
0

� k2
q

will also tend to be equal. To meet the continuity require-

ment [Eq. (3)] of shearing stress on the interface, it can be

found that p and q should approach zero simultaneously. As

can be seen clearly from Eq. (1), this represents simply a

kind of SH wave for both the upper and lower half-spaces in

the x1 direction, i.e., the bulk transverse wave mode

(x ¼ kc0). Similar to the previous case, the interfacial wave-

number k also increases gradually for a given frequency as b
tends to unity, and the wave field tends to be confined to an

ever-narrower region on either side of the interface. In addi-

tion, there exists a limiting case, namely, b ¼ a ¼ 1, in

which the effective density and effective shear modulus of

the EMM half-space are exactly opposite to those of the

lower normal half-space, seemingly like a type of

“antimatter.” By checking Eq. (3) or (4), we see that the con-

tinuity condition of shearing stress on the interface (or the

dispersion relation) can always be satisfied, meaning that an

IW mode with an arbitrary real wavenumber k can appear at

any frequency in this limiting case. Nevertheless, it should

be noted that the resultant wavenumbers of these IW modes

in both half-spaces remain unchanged and keep the same

value, namely x
c0

(or x
cm

, because cm ¼ c0 here).

For the other case in which the effective parameter

ratios satisfy condition A2, the dispersion curves are

depicted in Fig. 4(b). The results are similar: the IW velocity

will approach the bulk transverse wave velocity of the nor-

mal half-space as b tends to a, while its wavenumber will

gradually increase and tend to infinity as b tends to unity.

In passing, it can be seen that the effective parameters

(effective density and shear modulus) in the above case of

double-negative parameters are assumed to be independent

of the wave frequency to simplify the analysis and focus on

the essential factors. In fact, the frequency dependence of

these effective parameters cannot fundamentally affect the

results obtained here because whether the SH IW exists or

not is determined mainly by the negative properties of these

effective parameters. Certainly, within the frequency range

corresponding to double-negative parameters, the frequency

dependencies of these effective parameters do influence the

location of the frequency band in which the IW appears

through influencing the values of a and b, i.e., the effective

parameter ratios. However, it is impossible for us to study all

possible types of frequency dependency of the effective

parameters, therefore, the simplification here is reasonable

because it can help us recognize from the perspective of the

single frequency point that the IW will take place as long as

the effective parameters valued at a certain frequency point

meet the supporting conditions (A1 or A2), regardless of the

actual property of the frequency dependency. In fact, the pre-

vious case (single-negative effective shear modulus) is also

discussed in this way. Apart from that, a class of typical fre-

quency dependency of the effective density is considered

incidentally in the numerical example.

It can be found from the above analyses that the SH IW

may exist as long as the effective shear modulus of the

EMM half-space is negative, regardless of whether the effec-

tive density is positive or negative. However, this is specific

to the joined half-spaces built from an EMM half-space and

a normal one. Actually, for the more general case composed

of two EMM half-spaces, the dispersion equation (4) still

holds. Thus, there will exist two other combinations of effec-

tive parameters supporting the occurrence of the SH IW.

(1) One half-space is composed of an EMM medium with

single-negative effective density while the other one has

single-negative effective shear modulus;

(2) One with single-negative effective density while the

other is double-negative.

We will discuss these two cases briefly in Sec. III B.

B. Joined half-spaces composed of two types of EMM

Figure 5 shows a schematic of the joined half-spaces

composed of two types of EMM. The terms qm1 and lm1 rep-

resent the effective density and effective shear modulus of the

upper half-space and qm2 and lm2 represent the effective den-

sity and effective shear modulus of the lower half-space,

respectively. Similar to Eq. (1), the displacement fields of the

SH wave in the respective half-spaces can be expressed as

um1
3 ¼ C1ejpx2 ejðkx1�xtÞ;

um2
3 ¼ C2ejqx2 ejðkx1�xtÞ;

(5)

where p¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
m1

�k2
q

, c2
m1¼

lm1

qm1
, q¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
m2

�k2
q

, and c2
m2¼

lm2

qm2
.

Terms p and q still represent the wavenumbers in the upper

and lower half-spaces, respectively, in the qm;lm direction. A

dispersion relation similar to Eq. (3) is obtained again accord-

ing to the continuity requirement of shearing stress, namely,

lm1p ¼ lm2q: (6)

(1) Single-negative effective shear modulus and single-

negative effective density

In this case, the upper and lower half-spaces are

assumed to have single-negative effective shear modulus and

single-effective density, respectively, namely, qm1 > 0,

FIG. 5. Joined half-spaces composed of two types of EMM.
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lm1 < 0, qm2 < 0, and lm2 > 0. Likewise, when considering

the IW solution, p and q should take positive and negative

imaginary numbers, respectively (similarly, p ¼ jp� and q

¼ �jq� are introduced, where p� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
m1

q
, q�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � x2

c2
m2

q
, and j is the imaginary unit). After introducing

the effective-parameter ratios, namely, a ¼ �qm2

qm1
and b ¼ �lm1

lm2

ða > 0; b > 0Þ, the dispersion relation of the IW can be

derived from Eq. (6) as k ¼
ffiffiffiffiffiffiffiffi
a�b
b2�1

q ffiffiffiffiffiffi
qm1

lm2

q
x. Correspondingly,

the following two existence conditions supporting the (trav-

eling) IW mode are obtained:

Condition B1 : 1 < b < a:

Condition B2 : 0 < a < b < 1:

For numerical illustration, two sets of parameters satisfy-

ing the above two conditions (respectively, a ¼ 8, b ¼ 1.01, 2,

3.5, 5.2, 7, and 7.99 and a ¼ 0.1, b ¼ 0.101, 0.18, 0.4, 0.7,

0.93, and 0.999) are selected arbitrarily, and the other parame-

ters are assumed as qm1 ¼ 2600 kg/m3 and lm2 ¼ 9 MPa. The

calculated dispersion curves are depicted in Fig. 6.

Figure 6(a) shows the dispersion curves under condition

B1. Clearly the curves approach the vertical axis as b tends

to a. In fact, the transverse wave velocities of the upper and

lower half-spaces tend to the same value as b tends to a (i.e.,

cm1 ! cm2). Thus, p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
m1

� k2
q

and q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2
m2

� k2
q

will

also tend to the same value. Considering further the continuity

requirement of the shearing stress on the interface [Eq. (6)], p
and q will approach zero simultaneously in this limiting case.

As can be observed from the displacement solution Eq. (5), this

situation represents the upper and lower half-spaces fluctuating

simultaneously as a whole along the x1 direction (i.e., a bulk

transverse wave). However, because there is a single-negative

effective parameter in each half-space, the fluctuation cannot

propagate effectively because its wavenumber is imaginary,

that is, the real part of the wavenumber becomes zero. Hence,

the mode curve of the limiting case is represented by the y axis

in Fig. 6(a). As in Sec. III A, the wavenumber k (in the x1 direc-

tion) of the IW mode also increases gradually to infinity for a

given frequency as b tends to unity, with the displacement field

being confined to an ever-narrower region on either side of the

interface. The dispersion curves under condition B2 are shown

in Fig. 6(b), where the main behaviors of the IW modes are

basically the same; we will not go into much detail about the

properties of these curves.

In addition, there is also an edge case (b ¼ a ¼ 1) just as

that mentioned in Sec. III A. Under this circumstance, the effec-

tive densities and effective shear moduli of the upper and lower

half-paces are exactly opposite. The dispersion equation or the

stress continuity relation on the interface becomes an identity

and is independent of the wave frequency. In other words, a SH

IW mode with an arbitrary real wavenumber k may possibly

appear with any frequency in the vicinity of the interface.

(2) Double-negative effective parameters and single-negative

effective density

For this case, the upper and lower half-spaces are

assumed to be composed of one double-negative and one

single-negative EMM medium, respectively, i.e., qm1 < 0,

lm1 < 0, qm2 < 0, and lm2 > 0. Introducing the ratios a

¼ qm2

qm1
and b ¼ �lm2

lm1
ða > 0; b > 0Þ into Eq. (6), we have

k ¼
ffiffiffiffiffiffiffiffi
abþ1
1�b2

q ffiffiffiffiffiffi
qm1

lm1

q
x. Obviously, the condition 0 < b < 1 is the

only requirement for supporting the propagation of the

expected SH IW.

We also choose a set of parameters for the numerical

illustration, where b¼ 0.2, 0.8, 0.94, 0.97, 0.99, and 0.999,

qm1¼�2600 kg/m3, lm1 ¼�9 MPa, and a ¼ 2. The calcu-

lated dispersion curves are shown in Fig. 7.

It can be seen that the SH IW mode tends to the bulk

transverse wave mode of the upper half-space (namely,

x ¼ kcm1, as denoted by the black dashed line in Fig. 7) as b
tends to zero. This phenomenon is easily understood by rec-

ognizing that the bulk transverse wave velocity in the lower

FIG. 6. SH IW modes in joined half-spaces composed of two types of EMM with qm1 > 0, lm1 < 0, qm2 < 0, and lm2 > 0. qm1 ¼ 2600 kg/m3 and lm2 ¼ 9 MPa

are used in the calculations. (a) a ¼ 8, b ¼ 1.01, 2, 3.5, 5.2, 7, 7.99, corresponding to condition B1 and (b) a¼ 0.1, b¼ 0.101, 0.18, 0.4, 0.7, 0.93, 0.999, correspond-

ing to condition B2.
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half-space approaches zero as b tends to zero, i.e.,

cm2 ¼
ffiffiffiffiffiffi
lm2

qm2

q
¼

ffiffiffiffiffiffiffiffiffiffi
�b lm1

a qm1

q
! 0, meaning that the lower half-

space tends to be composed of a fluid-like effective medium

in this situation. As b tends to unity, the features of the wave

modes are the same as those described before, namely that

the wavenumber k (in the x1 direction) of the IW increases

gradually to infinity for a given frequency and the displace-

ment field becomes confined into an ever-narrower region on

either side of the interface.

According to the above discussion, all four possible

combinations of the effective-medium parameters that sup-

port the SH IW mode in joined half-spaces built from EMMs

are summarized and listed in Table I, together with the corre-

sponding existence condition(s).

IV. FINITE-ELEMENT SIMULATIONS AND
DEMONSTRATIONS

A. Simulation from the level of the effective medium

We conducted finite-element simulation with the

effective-medium model by using the software COMSOL

Multiphysics 5.0. The model settings and structural parame-

ters are shown in Fig. 8, where several perfect matched

layers are set at the upper, left-hand, and right-hand bound-

aries to prevent wave reflection. The lower boundary in the

figure is specified as a symmetric boundary, while the conti-

nuity boundary constraint is applied to the front and back

boundaries (see the side view in the right-hand panel). A har-

monic edge load is exerted in the direction perpendicular to

the x1 � x2 plane at the interface. Noting that the SH IW dis-

persion relation in Eq. (4) is related only to density and shear

modulus, the Poisson’s ratios of the materials are set to 0.3

by default during the simulation. The joined half-spaces

composed of an EMM and a normal medium are simulated

as follows:

(1) Case 1: double-positive parameters

First, the out-of-plane displacement-field distribution is

computed for the case in which the EMM half-space has a

simultaneously positive effective density and shear modulus.

The medium parameters selected for simulation are listed in

Table II (case 1), and the obtained wave field is shown in

Fig. 9(a). Both half-spaces have real values of bulk trans-

verse wave velocity in this case, as evidenced by the bulk

wave effect. However, just as expected from the theoretical

analysis, no SH IW appears.

(2) Case 2: single-negative effective density

The out-of-plane displacement-field distribution is cal-

culated with the set of parameters listed in Table II (case 2)

for which the EMM medium exhibits the property of single-

negative effective density. As shown in Fig. 9(b), no SH IW

can be found but the bulk wave. The observed bulk wave

travels only in the normal half-space while being attenuated

significantly in the EMM half-space because of the imagi-

nary transverse wave velocity induced by the single-negative

density property. It can be seen that the simulation results in

this case and the previous one are consistent with the theoret-

ical predictions given before.

(3) Case 3: single-negative effective shear modulus

For this case, a set of parameters is also specified as

listed in Table II (case 3), and the computed out-of-plane

displacement-field distribution is shown in Fig. 10(a).

Evidently, a distinct SH IW appears in the vicinity of the

interface formed by the two half-spaces, and the wave field

is concentrated in a rather narrow region on either side of the

interface. Furthermore, Fig. 10(b) gives the wave profile,

from which the wavelength is estimated to be around

0.158 m after data extraction and processing. According to

the analysis frequency of 57.3 Hz used here, we have marked

the corresponding theoretical result on the dispersion curve,

namely, the marked point (39.8, 0.6) (see the pink dot in Fig.

3, where the dimensionless frequency is 0.6, i.e., f ¼ x
2p

¼ 0:6x0

2p ¼ 0:6�600
2p ¼ 57.3 Hz). Clearly, the simulation result

here agrees well with the theoretical prediction (k ¼ 2p
k ¼ 2p

39:8
¼ 0.158 m).

Rather than a bulk wave field, a SH IW appears in Fig.

10(a). In fact, the bulk wave still exists on the side of the nor-

mal half-space, although it is not obvious because of the

FIG. 7. SH IW modes in joined half-spaces composed of two types of EMM

with qm1 < 0, lm1 < 0, qm2 < 0, and lm2 > 0. b¼ 0.2, 0.8, 0.94, 0.97, 0.99,

and 0.999, qm1 ¼�2600 kg/m3, lm1 ¼�9 MPa, and a ¼ 2 are used in the

calculation.

TABLE I. Possible combinations of effective parameters supporting the SH

IW mode, with the corresponding existence condition(s).

Effective

parameter

property of

half-space 1

Effective

parameter

property of

half-space 2

Existence

condition 1

Existence

condition 2

q1 > 0; l1 < 0 q2 > 0; l2 > 0
0 <
jl1j
l2

< 1
/

q1 < 0; l1 < 0 q2 > 0; l2 > 0
0 <
jq1j
q2

<
jl1j
l2

< 1 1 <
jl1j
l2

<
jq1j
q2

q1 > 0; l1 < 0 q2 < 0; l2 > 0
1 <
jl1j
l2

<
jq2j
q1

0 <
jq2j
q1

<
jl1j
l2

< 1

q1 < 0; l1 < 0 q2 < 0; l2 > 0 0 <
l2

jl1j
< 1 /
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strong intensity of the IW. For illustration, we extract the

out-of-plane displacement distribution from a hypothetical

line that is perpendicular to the interface in the middle part

of the model [i.e., the horizontal line AG in Fig. 10(a)]. The

results of doing so are shown in Fig. 10(c), the ordinate of

which represents the ratio of (i) the out-of-plane displace-

ment calculated by simulation to (ii) the prescribed displace-

ment at the loading edge. In Fig. 10(c), the out-of-plane

displacement distribution on the interface can be seen easily,

and a relatively weak bulk wave traveling in the normal side

can be found. Meanwhile, rather than a traveling bulk wave,

an evanescent one appears in the EMM side because of the

imaginary bulk transverse wave velocity. It is worth noting

in passing that the IW intensity is much stronger than the

concurrent bulk wave. This is obviously unfavorable for

applications of SH-wave isolation and related object protec-

tion (e.g., in the field of seismic waves) despite the fact that

the propagation of the bulk transverse wave could be sup-

pressed effectively by using EMMs with single-negative

parameters. It would be interesting and meaningful to further

investigate the wave-energy allocation ratio between the

bulk wave mode and the IW mode under general forced exci-

tation. However, that goes beyond the scope of this paper

and will be discussed elsewhere.

(4) Cases 4 and 5: double-negative parameters

The wave field corresponding to two sets of effective

parameters that respectively satisfy the two supporting condi-

tions (namely A1 and A2) are obtained as shown in Figs.

11(a)–11(c) and 11(d)–11(f), respectively. The medium

parameters used in the simulations are given in Table II (see

cases 4 and 5), and the analysis frequency is 159.15 Hz (corre-

sponding to an angular frequency of 1000 rad/s). Similarly,

the related theoretical results are marked in Figs. 4(a) and 4(b)

[i.e., the points (30.12, 1000) and (34.75, 1000), respectively].

There are distinct bulk waves traveling in both half-

spaces for the double-negative effective parameters, while a

significant traveling SH wave appears in the vicinity of the

interface. For case 4 (a ¼ 0.45 and b ¼ 0.9, corresponding to

condition A1), the wavelength of the IW is obtained as

FIG. 8. Simulation model of joined

half-spaces composed of EMM and

normal medium.

TABLE II. Simulation parameters of joined half-spaces composed of EMM and normal medium.

EMM effective-parameter property qn (kg/m3) qm (kg/m3) ln (MPa) lm (MPa) f (Hz)

Case 1: double-positive parameters 2600 5200 9 7.2 100

Case 2: single-negative effective density 2600 �5200 9 7.2 57.3

Case 3: single-negative effective shear modulus 2600 3926.12 9 �8.73 57.3

Case 4: double-negative parameters (Condition A1) 2600 �1170 9 �8.1 159.15

Case 5: double-negative parameters (Condition A2) 2600 �7800 9 �11.7 159.15

FIG. 9. Displacement-field distributions of joined half-spaces composed of a

normal medium and an EMM with (a) double-positive parameters and (b)

single-negative effective density.

215104-8 Shi et al. J. Appl. Phys. 122, 215104 (2017)



0.208 m [as shown in Figs. 11(a)–11(c)], while the theoreti-

cal result is k ¼ 2p
k ¼ 2p

30:12
¼ 0.209 m. For case 5 (a ¼ 3 and

b ¼ 1.3, corresponding to condition A2), the wavelength cal-

culated from the wave-field data is around 0.182 m [as shown

in Figs. 11(d)–11(f)], while the theoretical value is k ¼ 2p
k

¼ 2p
34:75
¼ 0.181 m. Obviously, these results agree well.

(5) Cases 6 and 7: single-negative effective shear modulus

and single-negative effective density.

We use the same finite-element model to simulate the

joined half-spaces built from two types of EMM. For the

situation in which one of the EMMs has a single-negative

effective shear modulus while the other possesses a single-

negative effective density, two cases (conditions B1 and B2)

are considered here; the medium parameters are given in

Table III (cases 6 and 7). For comparison, the analysis fre-

quencies are selected here as 159.15 Hz and 318.31 Hz,

respectively, and the theoretical results are marked in Fig. 6

[i.e., the points (24, 1000) and (36.7, 2000), respectively].

Figures 12(a)–12(c) and 12(d)–12(f) exhibit the out-of-plane

displacement-field distributions of these two cases, respec-

tively. There is no bulk wave in either half-space because of

FIG. 10. Displacement field of the SH wave in joined half-spaces composed of a normal medium and an EMM with single-negative effective shear modulus.

FIG. 11. Displacement field of the SH wave in joined half-spaces composed of a normal medium and an EMM with double-negative parameters: (a)–(c) corre-

sponding to condition A1, a ¼ 0.45, and b ¼ 0.9; (d)–(f) corresponding to condition A2, a ¼ 3, and b ¼ 1.3.
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the imaginary bulk transverse wave velocities induced by the

single-negative property. However, the SH IW can be

observed clearly near the interface just as predicted by the

theoretical analysis given before. If we check the wave-

lengths according to the simulation results (0.263 m and

0.172 m for cases 6 and 7, respectively), a good agreement is

again found with the theoretical values.

(6) Case 8: single-negative effective density/double-negative

effective parameters.

Figure 13 shows the wave field when one EMM medium

has single-negative effective density while the other has

double-negative effective parameters; the medium parame-

ters are given in Table III (case 8). It is natural that the bulk

wave appears only in the EMM half-space with double-

negative parameters (the left-hand side) because of the real

value of the effective bulk transverse wave velocity, while

evanescent waves occur in the other side because of the

imaginary wave velocity induced by the single-negative

density. Apart from the bulk wave field, a distinct SH IW is

found traveling in the vicinity of the interface once again

with a much stronger intensity than that of the bulk wave

field. The wavelength calculated from the simulation is

around 0.149 m, which is also consistent with the theoretical

result (refer to the marked point (42.15, 500) in Fig. 7).

B. Simulation from the level of the microstructural unit
cell

To verify the theoretical results with practical materials,

an appropriate three-dimensional EMM unit cell is presented

and analyzed in this subsection. The unit cell is composed of

a three-component continuous medium comprising a silicon-

rubber-coated epoxy sphere embedded in a polyethylene

foam matrix in a SC (simple cubic) lattice, as shown in Fig.

14(a). The radius of the epoxy sphere is 4.2 mm, the thick-

ness of the rubber coating is 5.4 mm, and the length of the

cube edge is 30 mm (hence the filling fraction is around

TABLE III. Simulation parameters of joined half-spaces with two types of EMM.

EMM effective-medium property combination qm1 (kg/m3) qm2 (kg/m3) lm1 (MPa) lm2 (MPa) f (Hz)

Case 6: single-negative effective shear modulus/single-negative effective density (condition B1) 2600 �20 800 �18 9 159.15

Case 7: single-negative effective shear modulus/single-negative effective density (Condition B2) 2600 �260 �6.3 9 318.31

Case 8: single-negative effective density/double- negative parameters �2600 �5200 �9 8.46 79.58

FIG. 12. Displacement field of the SH wave in joined half-spaces composed of two types of EMM, one with single-negative effective shear modulus and the

other with single-negative effective density: (a)–(c) corresponding to condition B1, a ¼ 8, and b¼ 2; (d)–(f) corresponding to condition B2, a ¼ 0.1, and

b¼ 0.7.
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13.7%). The material parameters (mass density and Lam�e
constants) are as follows: polyethylene foam, qP ¼ 115 kg/

m3, kP¼ 6 MPa, and lP¼ 3 MPa; silicon rubber, qS

¼ 1300 kg/m3, kS¼ 0.6 MPa, and lS¼ 0.04 MPa; epoxy, qE

¼ 1180 kg/m3, kE ¼ 4430 MPa, and lE ¼ 1590 MPa.

The effective mass density, bulk modulus, and shear

modulus of the EMM built with the unit cell are calculated

by using the “feel and response” method proposed in Refs.

33–35. Their frequency response curves (normalized to the

corresponding medium parameter of the matrix) are shown

in Fig. 14(b), where the symbol a is the lattice constant

(30 mm) and ~c is the S wave velocity of the polyethylene

foam (matrix). It can be seen that within two ranges of

dimensionless frequency, namely 0.1050–0.1078 and

0.1385–0.1793, the effective density is negative (because of

the internal dipole resonance of the unit cell), while both of

the effective moduli are positive, implying that bulk longitu-

dinal and transverse waves cannot propagate in these two

frequency bands. Besides, there exists another frequency

range (0.1905–0.2007) in which only the effective shear

modulus takes negative values (induced by the internal quad-

rupole resonance of the unit cell). Within this frequency

FIG. 13. Displacement field of the SH wave in joined half-spaces composed of two types of EMM, one with single-negative effective density and the other

with double-negative parameters.

FIG. 14. (a) EMM unit cell. (b) EMM

effective parameters computed by the

“feel and response” method. (c) Band

structure along the CX direction for

the SC lattice built by the unit cell in

(a). (d) Dispersion curve of the SH

wave mode near frequency corre-

sponding to zero effective shear modu-

lus (indicated by blue asterisks)

computed with the super cell. (e) Field

distribution of eigenstates of the SH

IW mode with ka=p ¼ 0:75.
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range, the bulk transverse wave will be suppressed

completely while the bulk longitudinal wave can still propa-

gate within a limited frequency interval until the effective

longitudinal modulus (K þ 4l
3

) turns negative as well. The

band structure along the CX direction for the SC lattice is

presented in Fig. 14(c). The band gaps within the frequency

ranges 0.1067–0.1094 and 0.1454–0.1834 are fairly consis-

tent with the results of the effective parameters. The band

structure also shows that the effective shear modulus

becomes negative within the range 0.1997–0.2072 in which

the effective density and longitudinal modulus are both posi-

tive. The band structure in this frequency range is enlarged

in Fig. 14(d) (the shaded area), from which we find that only

the longitudinal wave mode exists while the transverse wave

modes vanish, as predicted by the effective parameters.

To verify the SH IW mode in the joined half-spaces, we

construct a super cell with 13 cells and an epoxy square bar

[as shown in Fig. 14(e)]. The interface modes of this super

cell are carried out by finite-element simulation, and the cal-

culated SH IW dispersion curve is shown in Fig. 14(d) by

the blue asterisks. Comparing with the band structure of the

unit cell, we discover that the SH IW exists in the vicinity of

the lower edge of the shaded area (single-negative effective

shear modulus interval). Moreover, it should be noted that

the lower edge corresponds to zero effective shear modulus

of the EMM and, referring to the curves of the effective

parameters [Fig. 14(b)], it is not difficult to understand that

the narrow frequency interval is just the one that can satisfy

the supporting condition of the SH IW discussed in case 3,

i.e., 0 < b < 1, where b was defined there as the (effective)

shear modulus ratio between the component half-spaces

(b ¼ �lm

ln
). Figure 14(e) shows the eigenstates for the SH IW

mode with ka=p ¼ 0:75, from which we further verify that

the wave fields are confined strongly near to the interface.

It is worth pointing out that we have demonstrated only

the case in which the joined half-spaces are composed of a

normal medium and an EMM with single-negative effective

shear modulus; the other three cases remain unverified (on

the level of the microstructural unit cell). One reason is that

the appropriate unit-cell structures are not easy to find

because of the stricter requirements of the effective parame-

ters, and another is that the frequency band in which the

desired effective-medium properties could be even achieved

is often too narrow for demonstration (and thus far there

seems to be no general way to broaden it).

V. SUMMARY AND CONCLUSIONS

Unlike bulk-wave analysis in an unlimited domain,

joined half-spaces have an interface, and it is well known

that, as well as the original bulk-wave solutions, IW solu-

tions may exist in the vicinity of this boundary. The main

focus of interest in the present paper has been the problem of

whether similar IWs can still exist when the joined half-

spaces (either one or both) are built from EMMs.

Our research shows that a class of traveling SH IWs

may exist in the vicinity of the interface under four specific

combinations of effective-medium parameters. For the

joined half-spaces composed of a normal medium and an

EMM, no such SH IW mode can exist if the EMM possesses

double-positive effective parameters or single-negative

effective density. However, such a wave mode may occur

near the interface when the effective shear modulus of the

EMM medium is negative, regardless of whether the effec-

tive density is positive or negative. The other two combina-

tions appear in joined half-spaces composed of two types of

EMM, namely (i) one half-space has single-negative effec-

tive density while the other has single-negative effective

shear modulus and (ii) one half-space has double-negative

effective parameters while the other has single-negative

effective density. However, these four combinations of effec-

tive parameters provide only the possibility for a SH IW to

occur. Corresponding existence conditions established in

terms of effective-parameter ratios should be further satisfied

to realize such wave modes.

According to the analysis results, we should pay special

attention to this IW mode when considering the isolation,

protection, or regulation of SH waves based on the EMM

concept. Although a SH bulk wave can be blocked effec-

tively by using the bulk-transverse-wave band gaps caused

by single-negative parameters, these possible IWs can still

occur under specific conditions (even including the condition

of single-negative parameters) and should not be overlooked

because they may have much more serious impacts on the

protected objects (e.g., the foundations of a high-rise build-

ing). Similarly, we have been concerned only with SH

waves, but it is inevitable that P and SV waves will exist in

practical applications. Therefore, attention should also be

paid to understanding and manipulating those waves based

on EMM technology, something that we intend to do in

future work.
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