https://doi.org/10.1016/j.chemosphere.2017.11.104

Seasonal variations of C₁-C₄ alkyl nitrates at a coastal site in Hong Kong: influence of photochemical formation and oceanic emissions? Junwei Song^a, Yingyi Zhang^a, Yu Huang^{b, c}, Kin Fai Ho^d, Zibing Yuan^a, Zhenhao Ling^e, Xiaojun Niu^a, Yuan Gao^b, Long Cui^b, Peter K. K. Louie^f, Shun-cheng Lee^{b,*}, Senchao Lai^{a,*} ^a Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou, China ^b Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong ^c Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China ^d The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Sha Tin, Hong Kong ^e School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China ^f Hong Kong Environmental Protection Department, Wan Chai, Hong Kong *Corresponding authors. E-mail addresses: ceslee@polyu.edu.hk (S.C. Lee) and sclai@scut.edu.cn (S.C. Lai) © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

23 Highlights

• Ambient levels of C₁-C₄ alkyl nitrates (RONO₂) were measured in four selected months at a coastal site.

• C₂-C₄ RONO₂ peaked in winter and were mainly produced via photochemical formation.

 Methyl nitrate (MeONO₂) peaked in summer and was mainly derived from oceanic emissions.

• The notable enrichment of MeONO₂ over C₂-C₄ RONO₂ was influenced by the oceanic

air masses from the South China Sea.

31 Abstract

Five C₁-C₄ alkyl nitrates (RONO₂) were measured at a coastal site in Hong Kong in four selected months of 2011 and 2012. The total mixing ratios of C_1 - C_4 RONO₂ (Σ_5 RONO₂) ranged from 15.4 to 143.7 pptv with an average of 65.9 ± 33.0 pptv. C₃-C₄ RONO₂ (2-butyl nitrate and 2-propyl nitrate) were the most abundant RONO₂ during the entire sampling period. The mixing ratios of C₃-C₄ RONO₂ were higher in winter than those in summer, while the ones of methyl nitrate (MeONO₂) were higher in summer than those in winter. Source analysis suggests that C₂-C₄ RONO₂ were mainly derived from photochemical formation along with biomass burning (58.3-71.6%), while oceanic emissions was the major contributor to $MeONO_2$ (53.8%) during the whole sampling period. The photochemical evolution of C₂-C₄ RONO₂ was investigated, and found to be dominantly produced by the parent hydrocarbon oxidation. The notable enrichment of MeONO2 over C3-C4 RONO2 was observed in a summer episode when the air masses originating from the South China Sea (SCS) and MeONO₂ was dominantly derived from oceanic emissions. In order to improve the accuracy of ozone (O_3) prediction in coastal environment, the relative contribution of RONO₂ from oceanic emissions versus photochemical formation and their coupling effects on O₃ production should be taken into account in future studies.

 49 Keywords: Alkyl nitrates, Seasonality, Photochemical production, Marine emissions, Ozone

1. Introduction

Alkyl nitrates (RONO₂) are usually considered as a component of total reactive nitrogen (NO_y = NO_x + HNO₃ + NO₃ + N₂O₅ + organic nitrates) (Day et al., 2003). They can serve as a temporary reservoir of NO_x and transport long distances because of their relatively low reactivity (Atkinson et al., 2006; Ling et al., 2016).

It has long been proposed that RONO₂ are mainly formed by the photochemical oxidation of hydrocarbons (e.g., methane, ethane, propane etc.) in the presence of NO_x (Atkinson et al., 2006). The photochemical formation pathways of C_1 - C_4 RONO₂ are demonstrated as follows (Arey et al., 2001; Atkinson et al., 2006):

 $RH + \cdot OH \rightarrow \cdot R + H \ O, k_1, \alpha_1 \tag{R1}$

- , k₂ (R2)
- 61 , k_3 , $1-\alpha_2$ (R3)

 62 , k_4 , α_2 (R4)

 63 , k_5 (R5)

 64 , k_6 (R6)

where k_1 , k_2 , k_3 , k_4 and k_5 are the reaction rate constants; α_1 and α_2 are the branching ratios for the reactions (R1 and R4) of parent hydrocarbons (RH) with hydroxyl radicals (·OH) and peroxyl radicals (·RO₂) with NO, respectively. Briefly, alkyl radicals (·R) results from the ·OH-initiated oxidation of RH (R1) and can subsequently react with O₂ to form ·RO₂ (R2). A large fraction of RONO₂ is usually formed via reaction of ·RO₂ with NO (R4) (Atkinson et al., 1982; Bertman et al., 1995). Another branch of reaction of ·RO₂ with NO

71	can produce alkoxy radicals (·RO) and NO ₂ (R3), leading to the alternative formation
72	pathway of RONO ₂ through the reaction of \cdot RO and NO ₂ (R5) (Flocke et al., 1998a; Flocke
73	et al., 1998b). In addition to secondary photochemical formation, primary emissions of C ₁ -C ₃
74	RONO ₂ from the oceans (Atlas et al., 1993; Blake et al., 2003; Ling et al., 2016) and biomass
75	burning (Simpson et al., 2002) have been reported previously. However, other emissions are
76	not considered as important sources of C ₁ -C ₃ RONO ₂ (Perring et al., 2013). Ambient
77	observations over the equatorial Pacific showed that the levels of C_1 - C_2 RONO ₂ were
78	enhanced in this region (Atlas et al., 1993; Blake et al., 2003). Direct measurements of
79	$RONO_2$ in seawater showed that C_1 - C_3 $RONO_2$ can be supersaturated in surface layer (Chuck
80	et al., 2002; Moore and Blough, 2002; Dahl et al., 2007). These results indicated that oceanic
81	emissions is a source of $RONO_2$ in the atmosphere. In contrast, the removal of $RONO_2$
82	primarily includes photolysis and the reaction with •OH (Clemitshaw et al., 1997; Talukdar et
83	al., 1997a; Talukdar et al., 1997b).

,
$$J_{\text{RONO}_2}$$
 (R7)
ts, k_6 (R8)

86 where *hv* is sunlight; J_{RONO_2} and k_6 are the rate constants of photolysis and ·OH reaction, 87 respectively. Photolysis is the dominant mechanism for the removal of C₁-C₃ RONO₂, 88 while ·OH reaction is more important to the removal of RONO₂ with carbon number higher 89 than 4 (Clemitshaw et al., 1997; Talukdar et al., 1997a; Talukdar et al., 1997b). Besides, 90 Russo et al. (2010) and Wu et al. (2011) suggested that dry deposition is another removal 91 process for RONO₂.

Photochemical RONO₂ are one of the byproducts of ozone (O_3) formation through the reactions between volatile organic compounds (VOCs) and NO_x (Lyu et al., 2017). Photochemical formation of RONO₂ involves the oxidation of NO to NO₂ (R3), promoting the production of O₃ (R6). Meanwhile, the formation reaction (R5) could reduce the budget of NO₂, directly competing with the formation of O₃ (R6). In addition, as temporary nitrogen reservoirs, the photolysis of RONO₂ could also release NO₂ (R7), increasing the potential of O_3 formation. Therefore, there is a complex and tight association between RONO₂ and O_3 (Lyu et al., 2017). Recently, modeling studies have reported that the formation and degradation of photochemical RONO₂ have significant impacts on O₃ production (Lyu et al., 2015; Ling et al., 2016; Lyu et al., 2017). Additionally, Neu et al., (2008) proposed that C₁-C₂ RONO₂ from oceanic emissions could subsequently produce NO₂ through photolysis, contributing to the budgets of tropospheric NO_x and O_3 .

 C_1 - C_4 RONO₂ have been widely studied at different geographical locations, including 105 remote marine (Atlas et al., 1993; Schneider and Ballschmiter, 1999; Blake et al., 2003), 106 coastal (Simpson et al., 2006; Russo et al., 2010), rural (Atlas, 1988; Shepson et al., 1993) 107 and urban areas (Wang et al., 2013; Aruffo et al., 2014; Ling et al., 2016). In the Pacific 108 troposphere (8°N-13°S), primary oceanic emissions were suggested to be the largest source of 109 RONO₂, especially for C₁-C₂ RONO₂ (Blake et al., 2003). In contrast, in rural and urban 110 areas, C₁-C₄ RONO₂ are mainly formed from photochemical processes, which are generally 111 dominated in formation of C₃-C₄ RONO₂ (Simpson et al., 2006; Wang et al., 2013; Ling et al., 112 2016). However, knowledge on the relative influence of photochemical formation and 1 113 primary oceanic emissions on RONO₂ in coastal environment is limited (Simpson et al., 2006; Russo et al., 2010). A measurement of C₁-C₅ RONO₂ in coastal New England indicated that the levels of RONO₂ were controlled by the photochemical formation of their precursors rather than oceanic emissions (Russo et al., 2010). Another long-term measurement of C₁-C₅ RONO₂ at a coastal site in Hong Kong (Tai O) also showed that oceanic emissions had minor contribution to RONO₂ (Simpson et al., 2006). However, researchers recently investigated the distributions of C₁-C₃ RONO₂ on a global scale by using chemical transport models and found a large discrepancy between the modeled and observed RONO₂ data when oceanic emissions were absent in the models (Williams et al., 2014; Khan et al., 2015).

During last decades, rapid economic development led to severe air pollution with high concentrations of particles and O₃ in the Pearl River Delta (PRD) region, China (Lai et al., 2016; Ou et al., 2016; Ling et al., 2017). The limited studies focused on the characteristics of RONO₂ in this region (Simpson et al., 2006; Lyu et al., 2015; Ling et al., 2016), although they may have significant impacts on O₃ production. Here we conducted an observation of C₁-C₄ RONO₂ at a coastal site in Hong Kong during four selected months of May, August, November 2011 and February 2012. The aims of this work are (1) to observe the ambient levels and seasonal variations of $RONO_2$ and (2) to investigate the influence of photochemical formation and oceanic emissions on RONO2 in coastal environment.

2. Methods

133 2.1. Sampling site

Whole air samples were collected at a coastal site of 2.3 m above ground level in Hong Kong University of Science and Technology (HKUST, 22.33°N and 114.27°E). The sampling station is located on the west of shorefront and approximately 8-10 km east of the highly developed Kowloon urban area of Hong Kong (Fig. 1). There is no major industrial emissions and little traffic near this site. It is an ideal site to study background air quality and regional transport in Hong Kong (Cheng et al., 2014; Cheung et al., 2015; Man et al., 2015).

141 2.2. Sampling and chemical analysis

Twenty-four hour (0:00-23:59) integrated air samples were collected using pre-treated and evacuated 2-L electro-polished stainless steel canisters by an automated sampler (Model 2200, Malibu, CA) approximately once every three days in May, August, November 2011 and February 2012. The final pressure was 29 ± 1 psi in the canisters. A 47 mm Teflon filter was placed on a holder to remove particulates from the air stream before entering the flow lines. The sampled canisters were transported to a laboratory in the University of California at Irvine (UCI) for analysis of volatile organic compounds (VOCs) within two weeks after sample collection. The stability of the target compounds was demonstrated by preparing a purified air filled canister injected with a known amount of certified gas mixture. The recovery of each target compounds was close to 100%, indicting the stability of the target VOCs during the storage and transport processes (Huang et al., 2015). The detailed descriptions of the analytical system, measurement detection limits, accuracy and precision of VOCs have been provided in the previous publications (Colman et al., 2001; Barletta et al.,

2002; Simpson et al., 2006). Briefly, five RONO₂, i.e., methyl nitrate (MeONO₂), ethyl 1 155 nitrate (EtONO₂), 2-propyl nitrate (2-PrONO₂), 1-propyl nitrate (1-PrONO₂) and 2-butyl nitrate (2-BuONO₂), were quantified by a gas chromatography (GC) with electron capture detector (ECD). The precision and detection limits of RONO₂ measurements are 5% and 0.1 pptv, respectively (Huang et al., 2015). The calibration scale for RONO₂ measurements changed in 2008, increasing by factors of 2.13, 1.81, 1.24 and 1.17 for the C₁, C₂, C₃, C₄ RONO₂, respectively (Simpson et al., 2011). Methane and other VOCs (i.e., alkanes, alkenes, ethyne, aromatics and halocarbons) were simultaneously detected by using a combination of GC with flame ionization detector (FID) and mass spectrometric detector (MSD). The accuracy of measurements is 1% for methane, 2-20% for halocarbons and 5% for other VOCs. The measurement precision is 2% for methane, 1-5% for halocarbons and 0.5-5% for other VOCs. The measurement detection limits (MDLs) of VOCs are shown in Table S1.

Auxiliary data of O₃ and NO/NO₂ were obtained from the HKUST's ENVF Atmospheric and Environmental Database. The ambient concentrations of O₃ and NO/NO₂ were determined every 5 min by a UV photometric O₃ analyzer (API, Model 400E) and a chemiluminescence NO-NO₂-NO_x analyzer (API, Model 200E), respectively. The detection limits are 1 ppbv and 0.5 ppbv for O_3 and NO_2/NO_x , respectively.

2.3. Model analysis

> Air mass backward trajectories were computed for the air samples using Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Stein et al., 2015). The

HYSPLIT model uses the archived meteorological dataset from the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory as an input file. Three-day backward trajectories were calculated for each sampling month at an altitude of 200 m above sea level. The source profiles and contributions of RONO₂ were investigated by using the principle component analysis (PCA) and positive matrix factorization (PMF) model. A more detailed description of PCA and PMF is shown in supplement (Appendix A).

3. Results and discussion

3.1. Seasonal variations of alkyl nitrates

Table 1 shows the statistics of C₁-C₄ RONO₂ and their parent hydrocarbon mixing ratios measured at HKUST in May, August, November 2011 and February 2012. The total mixing ratios of the five RONO₂ (Σ_5 RONO₂) ranged from 15.4 to 143.7 pptv with an average of 65.9 \pm 33.0 pptv throughout the entire sampling period. The predominant RONO₂ was 2-BuONO₂ with an average level of 25.5 \pm 17.8 pptv, followed by 2-PrONO₂ (18.9 \pm 11.0 pptv), MeONO₂ (10.4 \pm 2.9 pptv) and EtONO₂ (8.5 \pm 3.8 pptv). Among the observations at coastal sites in Hong Kong (Fig. S1), the average levels of C_1 - C_4 RONO₂ were comparable to those measured at Hok Tsui in spring (Wang et al., 2003), but lower than those observed at Tai O in 2001-2002 (Simpson et al., 2006). All these mixing ratios of C_1 - C_4 RONO₂ in our study were higher than the values reported in coastal New England (Russo et al., 2010), and lower than those obtained in urban environments, such as Tsuen Wan, Hong Kong (Ling et al., 2016) and other Chinese urban sites (Wang et al., 2013). The dominance of C_3 - C_4 RONO₂

(2-BuONO₂ and 2-PrONO₂) over C₁-C₂ RONO₂ at HKUST was similar with those reported in the previous studies (Simpson et al., 2006; Russo et al., 2010; Wang et al., 2013; Ling et al., 2016). It can be ascribed to the increasing branching ratios of photochemical $RONO_2$ production with the increasing carbon numbers (Atkinson et al., 1982), although the mixing ratios of their parent hydrocarbons should decrease with the increasing carbon numbers. The average mixing ratios of C_3 - C_4 parent hydrocarbons (i.e., propane and *n*-butane) were lower than C₁-C₂ parent hydrocarbons (i.e., methane and ethane). It suggests the importance of photochemical production for C₃-C₄ RONO₂ in our observation. The mixing ratios of 1-PrONO₂ were much lower than 2-PrONO₂ due to the lower photochemical branching ratio of 1-PrONO₂ (Atkinson et al., 1982).

In Hong Kong, May and August represent summer months, and November and February represent winter months (Lee et al., 2002; Guo et al., 2004). In this study, the average levels of C₃-C₄ RONO₂ in winter were higher than those in summer by factors of 2 to 3. However, MeONO₂ showed an opposite seasonal trend with significantly higher levels in summer than those in winter (p = 0.015, two-tailed t test). Besides, there was no significant difference in the levels of EtONO₂ between the two seasons (p = 0.102). At Tai O, Hong Kong, Simpson et al. (2006) found a similar seasonality of C3-C4 RONO2 with maximum in winter and minimum in summer. Russo et al. (2010) also observed higher C₃-C₄ RONO₂ levels in winter than those in summer in coastal New England, whereas C₁-C₂ RONO₂ showed a homogenous distribution throughout the year. The seasonality of RONO₂ can be constrained by several factors including their sources and sinks, as well as the seasonal transport patterns (Simpson

et al., 2006; Russo et al., 2010). Due to the higher OH radical concentration and faster photolysis reactions, C₃-C₄ RONO₂ can be removed more quickly in summer (Clemitshaw et al., 1997; Talukdar et al., 1997b; Atkinson et al., 2006). On the other hand, C₃-C₄ RONO₂ photochemical yields are temperature dependent, increasing with the decreasing temperature (Atkinson et al., 1983). In our study, the average temperature was lower in winter (19.1 \pm 4.2 °C) than in summer (28.1 \pm 2.2 °C). These factors in photochemical processes can explain the seasonal variations of C₃-C₄ RONO₂.

Due to the Asian monsoon system, the prevailing winds in Hong Kong are from northeast in winter and from south in summer, respectively (Simpson et al., 2006). In our study, the backward trajectory analysis shows that the air masses frequently traveled across the Chinese mainland in winter and the South China Sea (SCS) in summer (Fig. 2). Since RONO₂ had relatively long lifetime (Clemitshaw et al., 1997; Talukdar et al., 1997a; Atkinson et al., 2006), high levels of RONO₂ can be transported from the Chinese mainland to this site in winter. In summer, clean oceanic air masses may efficiently decrease the levels of RONO₂. As expected, the seasonal variations for C₃-C₄ RONO₂ were similar to those for CO and anthropogenic VOCs, e.g., benzene, toluene (Table S1). In contrast, MeONO₂ showed a similar seasonal variation with dimethyl sulfide (DMS), a specific tracer for oceanic emissions (Nowak et al., 2001). The enhancement of MeONO₂ in summer was likely related to oceanic emissions, which has already been suggested by previous studies (Chuck et al., 2002; Moore and Blough, 2002; Blake et al., 2003).

In both summer and winter, C₂-C₃ RONO₂ showed strong positive correlations with 2-BuONO₂ ($r^2 = 0.58-0.95$, Fig. S2), which was believed to be entirely produced by *n*-butane photochemical oxidation (Bertman et al., 1995). However, no significant correlations were found between MeONO₂ and 2-BuONO₂ in both seasons (p > 0.05), suggesting the different sources or formation processes of MeONO₂. The levels of methane were comparable between the two seasons (1.97 \pm 0.11 ppmv in summer and 1.95 \pm 0.04 ppmv in winter). Based on the kinetics of methane ($k_{CH_d+OH} = 6.2 \times 10^{-15} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 298 K) (Atkinson, 1997), the yield of MeONO₂ from methane oxidation was estimated below 1 pptv in 1day for methane of 2 ppmv given at diurnal OH radicals of 2×10^6 molecule cm⁻³. These results suggest that the oxidation of methane was not the major source for MeONO₂.

Previous studies have suggested possible additional formation pathways of MeONO₂, including (1) the reaction of methoxy radicals (\cdot CH₃O) with NO₂ (Simpson et al., 2006), (2) the reaction of methanol with nitric acid (HNO₃) (Fan et al., 1994), (3) the decomposition of larger compounds, e.g., larger alkoxy radicals and peroxyacetyl nitrate (PAN) (Flocke et al., 1998b; Simpson et al., 2003; Worton et al., 2010). The first two pathways have been proven to be insignificant under most atmospheric conditions (Orlando et al., 1992; Simpson et al., 2006; Iraci et al., 2007; Lyu et al., 2015). The decomposition of larger compounds could be a potential source of methyl peroxy radicals (·CH₃O₂), contributing to MeONO₂ via reaction of \cdot CH₃O₂ with NO (\cdot CH₃O₂ + NO \rightarrow CH₃ONO₂) (Flocke et al., 1998a). Here we use the maximum value of PAN with 5 ppbv based on an observation in Hong Kong in the same

period of our study (summer of 2011) to estimate the concentration of MeONO₂ from PAN decomposition (Xu et al., 2015). Assuming that all the PAN are converted to produce \cdot CH₃O₂ reacting with NO to form MeONO₂, the concentration of MeONO₂ from the decomposition of PAN can be roughly estimated as follows:

$$\frac{d[MeONO_2]}{d[t]} = \alpha k[\cdot CH_3O_2][NO]$$

where k is the reaction rate coefficient of 6.9×10^{-13} cm³ molecule⁻¹ s⁻¹, and α is the branching ratio of 0.0003 (Flocke et al., 1998a). [MeONO₂], [·CH₃O₂] and [NO] represents the concentration of MeONO₂, ·CH₃O₂ and NO, respectively. According to the maximum value of NO (45 ppbv) and PAN (5 ppbv) in August (Xu et al., 2015), the yield of MeONO₂ can be estimated to be 4×10^{-3} pptv in 1 day from PAN decomposition, which was much lower than those observed in August.

In order to explore the sources of RONO₂, we performed a principal component analysis (PCA) on the measured data of C₁-C₄ RONO₂, CO, CH₃Cl and DMS during the entire sampling period (Fig. S3). Two principal components (PC1 and PC2) can explain totally 84.2% of the variation. PC1 explains 66.4% of the variation with high loadings of C₂-C₄ RONO₂, CO and CH₃Cl. CO was considered as a tracer of combustion processes (Lai et al., 2010; Lai et al., 2011) and CH₃Cl was selected as a tracer of biomass burning (Simpson et al., 2011). Therefore, PC1 was characterized with photochemical formation and biomass burning. PC2 explains 17.8% of the variation with high loadings of MeONO₂ and DMS (a specific tracer for oceanic emissions) (Nowak et al., 2001). Given the location of HKUST is adjacent to the SCS, it is highly possible that PC1 was associated with oceanic emissions. Furthermore, a

PMF model was further used to estimate the source profiles and contributions to individual RONO₂. As shown in Fig. 3, the first factor is distinguished by high loadings of C_2 - C_4 RONO₂. In addition, this factor includes moderate to high percentages of CO, CH₃Cl, ethyne and ethane, the compounds mainly derived from biomass burning (Lai et al., 2010; Lai et al., 2011; Simpson et al., 2011). Therefore, this factor is identified as the source of photochemical formation and biomass burning. The second factor is dominated by the significant presence of DMS, CH₄ and MeONO₂, which were associated with oceanic emissions. The third factor is distinguished by high percentages of propane, *i*-butane and *n*-butane, which are the typical tracers for liquefied petroleum gas (LPG) usage (Guo et al., 2007). During the whole sampling period, the contribution of photochemical formation together with biomass burning to EtONO₂, 2-PrONO₂, 1-PrONO₂ and 2-BuONO₂ are 58.3%, 71.2%, 67.4% and 71.6%, respectively. Therefore, ocean is the dominant contributor to MeONO₂ (53.8%) and to some extent contributes to $EtONO_2$ (21.6%). Besides, the contributions of LPG usage to individual RONO₂ range from 20.1% to 27.1%.

3.3. Photochemical evolution of C_2 - C_4 alkyl nitrates

Bertman et al. (1995) developed a simplified reaction model to evaluate the photochemical processing of RONO₂, which has been applied in many studies (Roberts et al., 1998; Simpson et al., 2003; Reeves et al., 2007; Russo et al., 2010; Worton et al., 2010; Wang et al., 2013; Ling et al., 2016). Briefly, it assumes that: (1) the reaction (R1) of RH with \cdot OH is the rate-limiting step for RONO₂ photochemical formation and (2) the environment is NO_x-rich (> 301 0.1 ppbv), making the reaction (R4) is the dominant pathway for \cdot RO₂ removal (Roberts et al., 302 1998). In this study, the average mixing ratio of NO_x (8.0 ± 5.7 ppbv) was high enough 303 that \cdot RO₂ was predominantly removed by its reaction with NO. Then the photochemical 304 reaction schemes (R1-R7) could be simplified as follows:

$$RH \xrightarrow{k_{A},\beta} RONO_{2} \xrightarrow{k_{B}} products \qquad (R8)$$

The photochemical evolution (R8) can be expressed as a function with reaction time (t):

$$\frac{[\text{RONO}_2]}{[\text{RH}]} = \frac{\beta k_{\text{A}}}{k_{\text{B}} - k_{\text{A}}} \left(1 - e^{(k_{\text{A}} - k_{\text{B}})t}\right) + \frac{[\text{RONO}_2]_0}{[\text{RH}]_0} e^{(k_{\text{A}} - k_{\text{B}})t}$$

where $\beta = \alpha_1 \alpha_4$, $k_A = k_1 [\cdot OH]$ and $k_B = k_4 [\cdot OH] + J_{RONO_2}$ are the pseudo-first order rate constants for RONO₂ production and removal. The kinetics of α_1 , α_4 , k_1 , k_4 and J_{RONO_2} are obtained from the published literatures (Table S2) (Bertman et al., 1995; Kwok and Atkinson, 1995; Clemitshaw et al., 1997; Roberts et al., 1998; Arey et al., 2001; Simpson et al., 2003; Atkinson et al., 2006). [•OH] is the average concentration of •OH. Based on the studies in the PRD region (Simpson et al., 2003; Hofzumahaus et al., 2009), the values of 2×10^6 and $1 \times$ 10^6 molecules cm⁻³ are assumed for [·OH] in summer and winter, respectively. [RONO₂]₀ and [RH]₀ represent the initial levels of RONO₂ and RH before photochemical processing. Typically, [RONO₂]₀/[RH]₀ equal to zero was adopted for modeling the photochemical evolution (Bertman et al., 1995; Roberts et al., 1998; Simpson et al., 2003; Worton et al., 2010), while more recent studies have proposed to use non-zero [RONO₂]₀/[RH]₀ to evaluate the influence of background levels (Russo et al., 2010; Wang et al., 2013; Ling et al., 2016). In this study, we assume that the non-zero [RONO₂]₀/[RH]₀ is equal to the lowest seasonal [RONO₂]/[RH] value.

22	The observed RONO ₂ /RH ratios were plotted against another RONO ₂ /RH ratios with
23	comparisons to the photochemical evolution curves calculated from kinetics. As shown in Fig.
24	4, the ratios of 2-BuONO ₂ / <i>n</i> -butane were plotted on the abscissa because 2-BuONO ₂ was
25	predominantly produced from n -butane photochemical oxidation (Bertman et al., 1995). The
26	given time of photochemical evolution ranged from 1 minute to 10 days. As a result of the
27	influence of [RONO ₂] ₀ /[RH] ₀ , the non-zero [RONO ₂] ₀ /[RH] ₀ curves varied significantly with
28	the zero $[RONO_2]_0/[RH]_0$ curves, especially at shorter processing time (< 1 day). In winter
29	(Fig. 4b), the observed values of C_2 - C_3 RONO ₂ /RH were mostly close to the modeled curves
30	with non-zero $[RONO_2]_0/[RH]_0$, indicating that photochemical formation from ethane and
31	propane oxidation contributed significantly to C ₂ -C ₃ RONO ₂ . However, the observed ratios
32	of C ₂ -C ₃ RONO ₂ /RH were higher than the zero $[RONO_2]_0/[RH]_0$ curves by factors of ~2-15.
33	It indicates that the influence of background RONO ₂ and RH levels should be taken into
34	account. In summer (Fig. 4a), the observed ratios of C_2 - C_3 RONO ₂ /RH to
35	2-BuONO ₂ / n -Butane followed the trends of non-zero [RONO ₂] ₀ /[RH] ₀ curves, but we found
36	that the observed C_2 - C_3 [RONO ₂]/[RH] were higher than these modeled curves. It should be
37	noted that this simplified model may contain some uncertainties. The seasonal wind patterns
38	have a significant impact on RONO_2 and RH levels. This will likely affect the values of
39	[RONO ₂] ₀ /[RH] ₀ , changing the position of the modeled curves.

3.4. Oceanic emissions versus photochemical formation in a summer month

In the Pacific Ocean (8°N-13°S), Blake et al. (2003) suggested that oceanic emissions of

C₁-C₂ RONO₂ could be estimated by a MeONO₂/EtONO₂ ratio of approximately 3 to 4, while air masses influenced from urban emissions leads to much lower MeONO₂/EtONO₂ ratio. In our study, the ratios of MeONO₂/EtONO₂ ranged from 0.6 to 1.6 in winter, indicating that the influence of urban emissions, which is consistent with the backward trajectory analysis (Fig. 2). In summer, MeONO₂/EtONO₂ ratios fluctuated from 0.8 to 4.9, which could be due to the alternative influence of oceanic and continental air masses. In order to better understand the influence of air masses with different sources on RONO₂, we selected the month of August and classified it into two Episodes (Fig. 5) based on the backward trajectories: Episode I with the air masses from the SCS (1 to 22 August, n = 8) and Episode II with the continental outflow from Chinese mainland (25 to 31 August, n = 3). In the first Episode, the observed ratios of MeONO₂/EtONO₂ ranged from 2.7 to 4.9 in Episode I, close to that of oceanic emissions (3 to 4) (Blake et al., 2003). Besides, the mixing ratios of MeONO₂ were higher than those of C₂-C₄ RONO₂ in this Episode, and contributed to $\Sigma_5 RONO_2$ ranging from 38.6 to 57.7%. It suggests that oceanic emissions may play an important role on RONO₂ in this Episode. In Episode II, the ratios of MeONO₂/EtONO₂ (1.4 to 1.8) were significantly lower than those in Episode I. The mixing ratios of C_3 - C_4 RONO₂ were higher than those of MeONO₂ in Episode II, suggesting that the influence of photochemical formation became more important to RONO₂. Although the levels of MeONO₂ increased slightly from Episode I to II, there was no significant difference of MeONO₂ between the two Episodes (p = 0.087).

Similar variations were observed for CO and ethyne with C₂-C₄ RONO₂ and their parent

hydrocarbons (Fig. 5a-c). It suggests that the dilution of oceanic air masses and the contribution of continental outflow to these species in Episode I and II, respectively. The ratio of ethyne/CO can be used to evaluate the age of air mass, increasing from <1 pptv/ppbv for very processed air to 4-5 pptv/ppbv for fresh polluted air (Smyth et al., 1996). Guo et al. (2007) reported the ethyne/CO ratios of 5.6-7.5 pptv/ppbv for fresh sources in Hong Kong. The ethyne/CO ratios ranged from 1.8 to 3.6 pptv/ppbv with an average of 2.7 ± 0.6 pptv/ppbv in Episode I, lower than those in Episode II (4.6-6.2 pptv/ppbv with an average of 5.2 ± 0.9 pptv/ppbv). Minor ethyne/CO ratios suggest that the air masses arriving at HKUST were aged in Episode I. It should be noted that MeONO₂ could be more enriched than C_2 - C_4 RONO₂ in the aged continental air masses due to its longest lifetime. Ding et al. (2004) reported that the sea-breezes could bring the daytime photochemical pollutants from land and recirculation over the ocean to the coastal region at night. However, we did not found the changes of air mass origins in Episode I (Fig. S4). Therefore, the influence of aged continental plumes via recirculation over the SCS was negligible on RONO₂.

We found a good correlation between MeONO₂ and CH₃Cl ($r^2 = 0.69$, p < 0.05) in Episode I, suggesting the contribution of biomass burning (Simpson et al., 2002) and/or oceanic emissions (Rasmussen et al., 1980). Although some air masses in August were derived from the Southeast Asia (SEA) and passed over the SCS (Fig. 2 and Fig. S4), there were few fire spots observed in these regions (Fig. S5). Besides, the levels of species (e.g., CO, ethane, ethane and ethyne) associated with biomass burning were also in low levels during Episode I. It suggests that oceanic emissions was the major source of MeONO₂ rather than biomass burning in this Episode. This is also supported by the variation of DMS, which was approximately 2-fold higher in Episode I than II (Fig. 4e). Although no significant correlation was found between MeONO₂ and DMS in Episode I (p> 0.05), it was possibly because DMS production was not related to the same sources that contribute to MeONO₂ (Blake et al., 2003). Additionally, the different lifetimes of MeONO₂ and DMS (only a few hours) (Barnes et al., 2006) may deteriorate the correlation between MeONO₂ and DMS.

In addition, relatively high levels of O₃, NO₂ and C₂-C₄ parent hydrocarbons were observed in Episode II showing similar variations to those of C₂-C₄ RONO₂. This similar trends between O₃ and C₂-C₄ RONO₂ were also observed in other months (Fig. S6-S8). Previous studies have shown that RONO₂ and O₃ are photochemical co-products involving VOCs and NO_x sharing a common formation mechanism. Recent applications of the photochemical box model with Master Chemical Mechanism (PBM-MCM) from intensive measurement during pollution episodes reported that the photochemical formation of RONO₂ exert a negative impact on O₃ production (Lyu et al., 2015; Ling et al., 2016; Lyu et al., 2017). However, Neu et al. (2008) used a chemical transport model (CTM) to emphasize that oceanic C_1 - C_2 RONO₂ may act as a natural source of NO_x via photolysis, increasing the levels of O₃ in the tropical oceanic regions. The coupling effects of RONO₂ from photochemical formation and oceanic emissions on O₃ have not been explicitly investigated. In this study, we clearly demonstrate the importance of oceanic contribution to RONO₂ especially MeONO₂ in coastal region. When future studies focus on the relationship between O₃ and RONO₂ during both pollution and non-pollution periods in coastal area, the

406 contribution of photochemical formation versus oceanic emissions has to be taken into 407 account. In order to improve the accuracy of O_3 prediction in coastal environment, the 408 relative contribution of RONO₂ from oceanic emissions should be used as an input parameter 409 of photochemical models.

4. Conclusions

Measurements of C₁-C₄ RONO₂ were conducted at HKUST, a coastal site in Hong Kong in four selected months of 2011 and 2012. The seasonal variations of C3-C4 RONO2 were characterized with higher levels in winter than in summer, while the levels of MeONO₂ were significantly higher in summer than those in winter. Receptor models (PCA and PMF) both suggest that photochemical formation and biomass burning were the major sources of C₂-C₄ RONO₂, whereas MeONO₂ was mainly from oceanic emissions during the entire sampling period. The enrichment of MeONO₂ over C₃-C₄ RONO₂ was observed in a summer episode when the air masses are mostly derived from the SCS. More important role of oceanic emissions than photochemical formation is suggested in the relative contribution to RONO₂ especially MeONO₂ in this episode. Due to the limited observation, more intensive field measurements are necessary to assess the sources of RONO₂. Besides, comprehensive photochemical models coupled with the relative contribution of RONO₂ from oceanic emissions may improve the understanding of the impact of RONO₂ on O₃ production.

426 Acknowledgements

This study was supported by the Research Grants Council of Hong Kong Government (PolyU 152083/14E and PolyU 152090/15E) and Hong Kong RGC Collaborative Research Fund (C5022-14G). S.L. thanks the financial support of the National Natural Scientific Foundation of China (Grant No. 41275730 and 41105083).

We thank the group of Prof. Donald Blake (UCI) for laboratory analysis of the whole air samples. The authors thank HKEPD for provision of the data sets and permission for publication and also thank HKUST's ENVF Atmospheric and Environmental Database for the provision of O_3 and NO_x data sets.

436 Appendix A. Supplementary material

1 437 References

2

4

5

6

14

15

17

18

21

22

24

25

27

28

31

32

34

35

37

38

41

44

45

- Arey, J., Aschmann, S.M., Kwok, E.S.C., Atkinson, R., 2001. Alkyl nitrate, hydroxyalkyl 3 438 439 nitrate, and hydroxycarbonyl formation from the NO_x -air photooxidations of C_5 - C_8 440 *n*-alkanes. J. Phys. Chem. A 105, 1020-1027.
- 7 441 Aruffo, E., Di Carlo, P., Dari-Salisburgo, C., Biancofiore, F., Giammaria, F., Busilacchio, M., 8 442 Lee, J., Moller, S., Hopkins, J., Punjabi, S., Bauguitte, S., O'Sullivan, D., Percival, C., Le 9 10 443 Breton, M., Muller, J., Jones, R., Forster, G., Reeves, C., Heard, D., Walker, H., Ingham, 11 444 T., Vaughan, S., Stone, D., 2014. Aircraft observations of the lower troposphere above a 12 megacity: Alkyl nitrate and ozone chemistry. Atmos. Environ. 94, 479-488. 13 445
- 446 Atkinson, R., 1997. Gas-phase tropospheric chemistry of volatile organic compounds .1. 16 447 Alkanes and alkenes. J. Phys. Chem. Ref. Data 26, 215-290.
- 448 Atkinson, R., Aschmann, S.M., Carter, W.P.L., Winer, A.M., Pitts, J.N., 1982. Alkyl nitrate 19 449 formation from the nitrogen oxide NO_x -air photooxidations of C_2 - C_8 *n*-alkanes. J. Phys. 20 450 Chem. 86, 4563-4569.
- Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, 451 23 452 M.E., Rossi, M.J., Troe, J., 2006. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - gas phase reactions of organic species. Atmos. Chem. 453 26 454 Phys. 6, 3625-4055.
- 455 Atkinson, R., Carter, W.P.L., Winer, A.M., 1983. Effects of temperature and pressure on alkyl 29 456 nitrate yields in the nitrogen oxide (NO_x) photooxidations of *n*-pentane and *n*-heptane. J. 30 457 Phys. Chem. 87, 2012-2018.
- 458 Atlas, E., 1988. Evidence for $\geq C_3$ alkyl nitrates in rural and remote atmospheres. Nature 33 459 331, 426-428.
- Atlas, E., Pollock, W., Greenberg, J., Heidt, L., Thompson, A.M., 1993. Alkyl nitrates, 460 36 461 nonmethane hydrocarbons, and halocarbon gases over the equatorial Pacific Ocean during SAGA 3. J. Geophys. Res., Atmos. 98, 16933-16947. 462
- Barletta, B., Meinardi, S., Simpson, I.J., Khwaja, H.A., Blake, D.R., Rowland, F.S., 2002. 39 463 40 464 Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, 42 465 Pakistan. Atmos. Environ. 36, 3429-3443.
- 43 466 Barnes, I., Hjorth, J., Mihalopoulos, N., 2006. Dimethyl sulfide and dimethyl sulfoxide and their oxidation in the atmosphere. Chem. Rev. 106, 940-975. 467
- Bertman, S.B., Roberts, J.M., Parrish, D.D., Buhr, M.P., Goldan, P.D., Kuster, W.C., 46 468 47 Fehsenfeld, F.C., Montzka, S.A., Westberg, H., 1995. Evolution of alkyl nitrates with air 469 48 mass age. J. Geophys. Res., Atmos. 100, 22805-22813. 49 470
- 50 Blake, N.J., Blake, D.R., Swanson, A.L., Atlas, E., Flocke, F., Rowland, F.S., 2003. 471 51 Latitudinal, vertical, and seasonal variations of C1-C4 alkyl nitrates in the troposphere 52 472 53 473 over the Pacific Ocean during PEM-Tropics A and B: Oceanic and continental sources. J. 54 55 474 Geophys. Res., Atmos. 108, 171-181.
- 56 475 Cheng, Y., Lee, S.C., Huang, Y., Ho, K.F., Ho, S.S.H., Yau, P.S., Louie, P.K.K., Zhang, R.J., 57 2014. Diurnal and seasonal trends of carbonyl compounds in roadside, urban, and 476 58 59 477 suburban environment of Hong Kong. Atmos. Environ. 89, 43-51.

62 63 64

60 61

- Cheung, K., Ling, Z.H., Wang, D.W., Wang, Y., Guo, H., Lee, B., Li, Y.J., Chan, C.K., 2015. 478 479 Characterization and source identification of sub-micron particles at the HKUST Supersite in Hong Kong. Sci. Total Environ. 527-528, 287-296. 3 480
 - Chuck, A.L., Turner, S.M., Liss, P.S., 2002. Direct evidence for a marine source of C₁ and C₂ 481 482 alkyl nitrates. Science 297, 1151-1154.
 - 483 Clemitshaw, K.C., Williams, J., Rattigan, O.V., Shallcross, D.E., Law, K.S., Cox, R.A., 1997. 484 Gas-phase ultraviolet absorption cross-sections and atmospheric lifetimes of several C₂-C₅ alkyl nitrates. J. Photochem. Photobiol. A: Chem. 102, 117-126.
 - Colman, J.J., Swanson, A.L., Meinardi, S., Sive, B.C., Blake, D.R., Rowland, F.S., 2001. 486 Description of the analysis of a wide range of volatile organic compounds in whole air 488 samples collected during PEM-Tropics A and B. Anal. Chem. 73, 3723-3731.
 - Dahl, E.E., Yvon-Lewis, S.A., Saltzman, E.S., 2007. Alkyl nitrate (C₁-C₃) depth profiles in 490 the tropical Pacific Ocean. Journal of Geophysical Research: Oceans 112, 141-143.
 - Day, D.A., Dillon, M.B., Wooldridge, P.J., Thornton, J.A., Rosen, R.S., Wood, E.C., Cohen, R.C., 2003. On alkyl nitrates, O₃, and the "missing NO_y". J. Geophys. Res., Atmos. 108, 493 4501.
 - Ding, A., Wang, T., Zhao, M., Wang, T., Li, Z.K., 2004. Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone 495 episode in the Pearl River Delta of China. Atmos. Environ. 38, 6737-6750.
 - 497 Fan, S.M., Jacob, D.J., Mauzerall, D.L., Bradshaw, J.D., Sandholm, S.T., Blake, D.R., Singh, H.B., Talbot, R.W., Gregory, G.L., Sachse, G.W., 1994. Origin of tropospheric NO_x over subarctic eastern Canada in summer. J. Geophys. Res., Atmos. 99, 16867-16877.
- 500 Flocke, F., Atlas, E., Madronich, S., Schauffler, S.M., Aikin, K., Margitan, J.J., Bui, T.P., 1998a. Observations of methyl nitrate in the lower stratosphere during STRAT: Implications for its gas phase production mechanisms. Geophys. Res. Lett. 25, 502 36 503 1891-1894.
- 504 Flocke, F., Volz-Thomas, A., Buers, H.J., Patz, W., Garthe, H.J., Kley, D., 1998b. Long-term measurements of alkyl nitrates in southern Germany 1. General behavior and seasonal 39 505 ⁴⁰ 506 and diurnal variation. J. Geophys. Res., Atmos. 103, 5729-5746.
- 42 507 Guo, H., Lee, S.C., Louie, P.K.K., Ho, K.F., 2004. Characterization of hydrocarbons, 43 508 halocarbons and carbonyls in the atmosphere of Hong Kong. Chemosphere 57, 509 1363-1372.
- 46 510 Guo, H., So, K.L., Simpson, I.J., Barletta, B., Meinardi, S., Blake, D.R., 2007. C₁-C₈ volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric 511 processing and source apportionment. Atmos. Environ. 41, 1456-1472. 49 512
- 513 Hofzumahaus, A., Rohrer, F., Lu, K.D., Bohn, B., Brauers, T., Chang, C.C., Fuchs, H., 52 514 Holland, F., Kita, K., Kondo, Y., Li, X., Lou, S.R., Shao, M., Zeng, L.M., Wahner, A., ⁵³ 515 Zhang, Y.H., 2009. Amplified Trace Gas Removal in the Troposphere. Science 324, 55 516 1702-1704.
- 56 517 Huang, Y., Ling, Z.H., Lee, S.C., Ho, S.S.H., Cao, J.J., Blake, D.R., Cheng, Y., Lai, S.C., Ho, 518 K.F., Gao, Y., 2015. Characterization of volatile organic compounds at a roadside environment in Hong Kong: An investigation of influences after air pollution control 59 519

1

2

4

5

- 520 strategies. Atmos. Environ. 122, 809-818.
- 1 521 Iraci, L.T., Riffel, B.G., Robinson, C.B., Michelsen, R.R., Stephenson, R.M., 2007. The acid 2 3 522 catalyzed nitration of methanol: formation of methyl nitrate via aerosol chemistry. J. 4 523 Atmos. Chem. 58, 253-266.
- 524 Khan, M.A.H., Cooke, M.C., Utembe, S.R., Morris, W.C., Archibald, A.T., Derwent, R.G., 525 Jenkin, M.E., Orr-Ewing, A.J., Higgins, C.M., Percival, C.J., Leather, K.E., Shallcross, ₉ 526 D.E., 2015. Global modeling of the C₁-C₃ alkyl nitrates using STOCHEM-CRI. Atmos. 10 527 Environ. 123, 256-267.
- 528 Kwok, E.S.C., Atkinson, R., 1995. Estimation of hydroxyl radical reaction rate constants for 13 529 gas-phase organic compounds using a structure-reactivity relationship: An update. Atmos. 530 Environ. 29, 1685-1695.
- Lai, S., Zhao, Y., Ding, A., Zhang, Y., Song, T., Zheng, J., Ho, K.F., Lee, S.C., Zhong, L., 16 531 532 2016. Characterization of PM_{2.5} and the major chemical components during a 1-year 19 533 campaign in rural Guangzhou, Southern China. Atmos. Res. 167, 208-215.
- 20 534 Lai, S.C., Baker, A.K., Schuck, T.J., Slemr, F., Brenninkmeijer, C.A.M., Velthoven, P.V., Oram, D.E., Zahn, A., Ziereis, H., 2011. Characterization and source regions of 51 535 23 536 high-CO events observed during Civil Aircraft for the Regular Investigation of the 537 Atmosphere Based on an Instrument Container (CARIBIC) flights between south China and the Philippines, 2005–2008. Journal of Geophysical Research Atmospheres 116, 26 538 539 1-15.
- 29 540 Lai, S.C., Baker, A.K., Schuck, T.J., van Velthoven, P., Oram, D.E., Zahn, A., Hermann, M., 30 541 Weigelt, A., Slemr, F., Brenninkmeijer, C.A.M., Ziereis, H., 2010. Pollution events 542 observed during CARIBIC flights in the upper troposphere between South China and the 33 543 Philippines. Atmos. Chem. Phys. 10, 1649-1660.
- Lee, S.C., Chiu, M.Y., Ho, K.F., Zou, S.C., Wang, X.M., 2002. Volatile organic compounds 544 (VOCs) in urban atmosphere of Hong Kong. Chemosphere 48, 375-382. 36 545
- Ling, Z., Guo, H., Simpson, I.J., Saunders, S.M., Lam, S.H.M., Lyu, X., Blake, D.R., 2016. 546 New insight into the spatiotemporal variability and source apportionments of C₁-C₄ alkyl 547 40 548 nitrates in Hong Kong. Atmos. Chem. Phys. 16, 8141-8156.
- 42 549 Ling, Z.H., Zhao, J., Fan, S.J., Wang, X.M., 2017. Sources of formaldehyde and their 550 contributions to photochemical O₃ formation at an urban site in the Pearl River Delta, southern China. Chemosphere 168, 1293-1301. 551
- 46 552 Lyu, X.P., Guo, H., Wang, N., Simpson, I.J., Cheng, H.R., Zeng, L.W., Saunders, S.M., Lam, S.H.M., Meinardi, S., Blake, D.R., 2017. Modeling C₁-C₄ alkyl nitrate photochemistry 553 49 554 and their impacts on O₃ production in urban and suburban environments of Hong Kong. 555 Journal of Geophysical Research Atmospheres.
- 52 556 Lyu, X.P., Ling, Z.H., Guo, H., Saunders, S.M., Lam, S.H.M., Wang, N., Wang, Y., Liu, M., ⁵³ 557 Wang, T., 2015. Re-examination of C_1 - C_5 alkyl nitrates in Hong Kong using an 55 558 observation-based model. Atmos. Environ. 120, 28-37.
- 56 559 Man, H.Y., Zhu, Y.J., Ji, F., Yao, X.H., Lau, N.T., Li, Y.J., Lee, B.P., Chan, C.K., 2015. 57 560 Comparison of Daytime and Nighttime New Particle Growth at the HKUST Supersite in 58 59 561 Hong Kong. Environ. Sci. Technol. 49, 7170-7178. 60

61

62

5

6 7

8

11

12

14

15

17

18

21

22

24

25

27

28

31

32

34

35

37

38

39

41

43

44

45

47

48

50

51

- Moore, R.M., Blough, N.V., 2002. A marine source of methyl nitrate. Geophys. Res. Lett. 29, 562 563 27-21-27-24.
- Neu, J.L., Lawler, M.J., Prather, M.J., Saltzman, E.S., 2008. Oceanic alkyl nitrates as a 3 564 natural source of tropospheric ozone. Geophys. Res. Lett. 35, 344-349. 565
 - Nowak, J.B., Davis, D.D., Chen, G., Eisele, F.L., Mauldin, R.L., Tanner, D.J., Cantrell, C., 566 Kosciuch, E., Bandy, A., Thornton, D., Clarke, A., 2001. Airborne observations of DMSO, 567 568 DMS, and OH at marine tropical latitudes. Geophys. Res. Lett. 28, 2201-2204.
- 10 569 Orlando, J.J., Tyndall, G.S., Calvert, J.G., 1992. Thermal decomposition pathways for 570 peroxyacetyl nitrate (PAN): Implications for atmospheric methyl nitrate levels. Atmos. Environ. 26, 3111-3118. 13 571
- 572 Ou, J.M., Yuan, Z.B., Zheng, J.Y., Huang, Z.J., Shao, M., Li, Z.K., Huang, X.B., Guo, H., Louie, P.K.K., 2016. Ambient Ozone Control in a Photochemically Active Region: Short 16 573 Term Despiking or Long-Term Attainment? Environ. Sci. Technol. 50, 5720-5728. 574
- 19 575 Perring, A.E., Pusede, S.E., Cohen, R.C., 2013. An Observational Perspective on the 20 576 Atmospheric Impacts of Alkyl and Multifunctional Nitrates on Ozone and Secondary Organic Aerosol. Chem. Rev. 113, 5848-5870. 577
- 23 578 Rasmussen, R.A., Rasmussen, L.E., Khalil, M.A.K., Dalluge, R.W., 1980. Concentration distribution of methyl chloride in the atmosphere. Journal of Geophysical Research: 579 Oceans 85, 7350-7356. 26 580
- 581 Reeves, C.E., Slemr, J., Oram, D.E., Worton, D., Penkett, S.A., Stewart, D.J., Purvis, R., 29 582 Watson, N., Hopkins, J., Lewis, A., Methven, J., Blake, D.R., Atlas, E., 2007. Alkyl 30 583 nitrates in outflow from North America over the North Atlantic during Intercontinental 584 Transport of Ozone and Precursors 2004. J. Geophys. Res., Atmos. 112, 409-427.
- 33 585 Roberts, J.M., Bertman, S.B., Parrish, D.D., Fehsenfeld, F.C., Jobson, B.T., Niki, H., 1998. 586 Measurement of alkyl nitrates at Chebogue Point, Nova Scotia during the 1993 North 36 587 Atlantic Regional Experiment (NARE) intensive. J. Geophys. Res., Atmos. 103, 588 13569-13580.
- Russo, R.S., Zhou, Y., Haase, K.B., Wingenter, O.W., Frinak, E.K., Mao, H., Talbot, R.W., 39 589 ⁴⁰ 590 Sive, B.C., 2010. Temporal variability, sources, and sinks of C₁-C₅ alkyl nitrates in 42 591 coastal New England. Atmos. Chem. Phys. 10, 1865-1883.
- 43 592 Schneider, M., Ballschmiter, K., 1999. C₃-C₁₄ alkyl nitrates in remote South Atlantic air. 44 593 Chemosphere 38, 233-244. 45
- 46 594 Shepson, P.B., Anlauf, K.G., Bottenheim, J.W., Wiebe, H.A., Gao, N., Muthuramu, K., 47 595 Mackay, G.I., 1993. Alkyl nitrates and their contribution to reactive nitrogen at a rural site 48 in Ontario. Atmos. Environ., A 27, 749-757. 49 596
- 50 597 Simpson, I.J., Akagi, S.K., Barletta, B., Blake, N.J., Choi, Y., Diskin, G.S., Fried, A., 51 52 598 Fuelberg, H.E., Meinardi, S., Rowland, F.S., Vay, S.A., Weinheimer, A.J., Wennberg, P.O., 53 599 Wiebring, P., Wisthaler, A., Yang, M., Yokelson, R.J., Blake, D.R., 2011. Boreal forest fire 54 55 600 emissions in fresh Canadian smoke plumes: C₁-C₁₀ volatile organic compounds (VOCs), 56 601 CO₂, CO, NO₂, NO, HCN and CH₃CN. Atmos. Chem. Phys. 11, 6445-6463.
- 57 Simpson, I.J., Blake, N.J., Blake, D.R., Atlas, E., Flocke, F., Crawford, J.H., Fuelberg, H.E., 602 58 59 603 Kiley, C.M., Meinardi, S., Rowland, F.S., 2003. Photochemical production and evolution
 - 26

1

2

4

5

6 7

8

9

11

12

14

15

17

18

21

22

24

25

27

28

31

32

34

35

37

38

41

- 604 of selected C₂-C₅ alkyl nitrates in tropospheric air influenced by Asian outflow. J. 1 605 Geophys. Res., Atmos. 108, 8808. 2
- 3 606 Simpson, I.J., Meinardi, S., Blake, D.R., Blake, N.J., Rowland, F.S., Atlas, E., Flocke, F., 4 607 2002. A biomass burning source of C1-C4 alkyl nitrates. Geophys. Res. Lett. 29, 5 21-21-27-24. 608 6
- 609 Simpson, I.J., Wang, T., Guo, H., Kwok, Y.H., Flocke, F., Atlas, E., Meinardi, S., Rowland, 9 610 F.S., Blake, D.R., 2006. Long-term atmospheric measurements of C₁-C₅ alkyl nitrates in 10 611 the pearl river delta region of southeast China. Atmos. Environ. 40, 1619-1632.
- Smyth, S., Bradshaw, J., Sandholm, S., Liu, S., Mckeen, S., Gregory, G., Anderson, B., 612 Talbot, R., Blake, D., Rowland, S., 1996. Comparison of free tropospheric western 13 613 614 Pacific air mass classification schemes for the PEM - West A experiment. J. Geophys. Res., Atmos. 101, 1743-1762. 16 615
- 17 Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. Noaa's 616 18 19 617 Hysplit Atmospheric Transport and Dispersion Modeling System. B. Am. Meteorol. Soc. 20 618 96, 2059-2077.
- 21 Talukdar, R.K., Burkholder, J.B., Hunter, M., Gilles, M.K., Roberts, J.M., Ravishankara, A.R., 619 22 23 620 1997a. Atmospheric fate of several alkyl nitrates. 2. UV absorption cross-sections and 24 photodissociation quantum yields. J. Chem. Soc., Faraday Trans. 93, 2797-2805. 621 25
- Talukdar, R.K., Herndon, S.C., Burkholder, J.B., Roberts, J.M., Ravishankara, A.R., 1997b. 26 622 27 623 Atmospheric fate of several alkyl nitrates. 1. Rate coefficients of the reactions alkyl 28 29 624 nitrates with isotopically labelled hydroxyl radicals. J. Chem. Soc., Faraday Trans. 93, 30 625 2787-2796. 31
 - Wang, M., Shao, M., Chen, W.T., Lu, S.H., Wang, C., Huang, D.K., Yuan, B., Zeng, L.M., 626 627 Zhao, Y., 2013. Measurements of C_1 - C_4 alkyl nitrates and their relationships with carbonyl compounds and O₃ in Chinese cities. Atmos. Environ. 81, 389-398. 628
- 36 629 Wang, T., Ding, A.J., Blake, D.R., Zahorowski, W., Poon, C.N., Li, Y.S., 2003. Chemical 37 630 characterization of the boundary layer outflow of air pollution to Hong Kong during 38 February-April 2001. J. Geophys. Res., Atmos. 108, 251-261. 39 631
- 40 632 Williams, J.E., Le Bras, G., Kukui, A., Ziereis, H., Brenninkmeijer, C.A.M., 2014. The 41 42 633 impact of the chemical production of methyl nitrate from the NO + CH_3O_2 reaction on the 43 634 global distributions of alkyl nitrates, nitrogen oxides and tropospheric ozone: a global 44 modelling study. Atmos. Chem. Phys. 14, 2363-2382. 635 45
- 46 636 Worton, D.R., Reeves, C.E., Penkett, S.A., Sturges, W.T., Slemr, J., Oram, D.E., Bandy, B.J., Bloss, W.J., Carslaw, N., Davey, J., Emmerson, K.M., Gravestock, T.J., Hamilton, J.F., 637 Heard, D.E., Hopkins, J.R., Hulse, A., Ingram, T., Jacob, M.J., Lee, J.D., Leigh, R.J., 49 638 Lewis, A.C., Monks, P.S., Smith, S.C., 2010. Alkyl nitrate photochemistry during the 639 52 640 tropospheric organic chemistry experiment. Atmos. Environ. 44, 773-785.
- Wu, Z.Y., Wang, X.M., Chen, F., Turnipseed, A.A., Guenther, A.B., Niyogi, D., Charusombat, 641 55 642 U., Xia, B.C., Munger, J.W., Alapaty, K., 2011. Evaluating the calculated dry deposition 56 643 velocities of reactive nitrogen oxides and ozone from two community models over a temperate deciduous forest. Atmos. Environ. 45, 2663-2674. 644
- 645 Xu, Z., Xue, L.K., Wang, T., Xia, T., Gao, Y., Louie, P.K.K., Luk, C.W.Y., 2015. 59 60
 - 27

8

11

12

14

15

32 33

34

35

47

48

50

51

53

54

57

58

61

	646	Measure	ements of P	eroxyacetyl	Nitra	ate at a B	ackground	Site in th	ne Pe	earl Ri	ver D) elta
1	647	Region:	Production	Efficiency	and	Regional	Transport.	Aerosol	Air	Qual.	Res.	15,
∠ 3	648	833-841				U	-					
4	649											
5	670											
6 7	650											
8	651											
9 10												
11												
12												
13												
15												
16												
17												
18 19												
20												
21												
22												
23 24												
25												
26												
27 28												
29												
30												
31												
33												
34												
35												
37												
38												
39												
40 41												
42												
43												
44 45												
46												
47												
48 49												
50												
51												
52												
53 54												
55												
56												
57												
59												
60												
61 62						28						
63												
64												

Second	Entire sampling	g period	Summer	Winter mean			
Species	mean	range	mean				
RONO ₂ (pptv)							
MeONO ₂	10.4 ± 2.9	5.8-18.2	12.0 ± 2.9	8.8 ± 1.9			
EtONO ₂	8.5 ± 3.8	1.8-17.3	7.2 ± 4.1	9.8 ± 3.1			
2-PrONO ₂	18.9 ± 11.0	2.0-43.7	11.7 ± 8.3	26.1 ± 8.4			
1-PrONO ₂	2.5 ± 1.6	0.5-6.9	1.8 ± 1.4	3.3 ± 1.4			
2-BuONO ₂	25.5 ± 17.8	2.1-66.9	13.5 ± 11.0	37.6 ± 15.0			
$\Sigma_5 RONO_2$	65.9 ± 33.0	15.4-143.7	46.1 ± 25.4	85.6 ± 27.7			
Parent hydrocarbons (pp	tv)						
Methane (ppmv)	1.96 ± 0.08	1.80-2.14	1.97 ± 0.11	1.95 ± 0.04			
Ethane	1751 ± 1274	236-4937	831 ± 613	2672 ± 1083			
Propane	1070 ± 690	108-2657	671 ± 499	1470 ± 625			
<i>n</i> -Butane	763 ± 491	178-2502	767 ± 631	759 ± 309			
Meteorological parameters							
Temperature (°C)	23.6 ± 5.6	12.3-30.9	28.1 ± 2.2	19.1 ± 4.2			
Relative humidity (%)	79 ± 8	60-99	78 ± 7	80 ± 9			
Wind speed (m/s)	5.7 ± 2.7	1.7-13.0	4.0 ± 1.6	7.5 ± 2.4			

Table 1 Mixing ratios of C1-C4 RONO2, their parent hydrocarbons and meteorological parameters measured at HKUST in May August November 2011 and February 2012

7 8

Fig. 1. Location of the sampling site, Hong Kong University of Science and Technology

5 (HKUST).

Fig. 2. Three-day backward air mass trajectories were calculated in the month of (a) May

658 2011, (b) August 2011, (c) November 2011 and (d) February 2012 at HKUST.

Fig. 3. Factor profiles (percentages of each species) resolved by PMF model at HKUSTduring the entire sampling period.

Fig. 4. Photochemical evolutions of C₂-C₃ RONO₂/RH versus 2-BuONO₂/*n*-Butane. The black circles represent the observed ratios in: (a) summer and (b) winter. The solid curves represent the photochemical evolution curves, plotting on the basis of $[RONO_2]_0/[RH]_0= 0$ (red) and non-zero $[RONO_2]_0/[RH]_0$ with the lowest seasonal $[RONO_2]/[RH]$ (blue). The given photochemical evolution time ranged from 1 minute to 10 days (squares).

Supplementary Material Click here to download Supplementary Material: Song_HKUST_RONO2_Supplement_Revised.docx