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Abstract

This paper investigates an insurance design problem, in which a bonus will be given
to the insured if no claim has been made during the whole lifetime of the contract, for
an expected utility insured. In this problem, the insured has to consider the so-called
optimal action rather than the contracted compensation (or indemnity) due to the
existence of the bonus. For any pre-agreed bonus, the optimal insurance contract is
given explicitly and shown to be either the full coverage contract when the insured
pays high enough premium, or a deductible one otherwise. The optimal contract and
bonus are also derived explicitly if the insured is allowed to choose both of them. The
contract turns out to be of either zero reward or zero deductible. In all cases, the
optimal contracts are universal, that is, they do not depend on specific form of the
utility of the insured. A numerical example is also provided to illustrate the main
theoretical results of the paper.

Keywords: optimal insurance design; bonus-malus system; insurance contract with
bonus; personalized contract; expected utility.

1 Introduction

Risk sharing, also known as “risk distribution”, is a method of managing or reducing risk
exposure by spreading the burden of loss among each member of a group based on a pre-
determined formula. It can be mathematically formulated as a multi-objective optimization
problem in which a Pareto optimality is sought with respect to each member’s risk preference.
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In the context of insurance, the primary risk sharing problem is the designing of an
insurance contract that achieves Pareto optimal for the (typically two) involved parties: the
insurer and the insured. Specifically, given an upfront premium that the insured pays the
insurer, the classical insurance design problem is to determine the (contracted) amount of
loss I(X) covered by the insurer - called compensation or indemnity - for a random lossX. In
order to let the insurer have sufficient incentive to offer the contract, on top of the actuarial
value of the contracted compensation, the premium should also cover a safety loading in
addition - this is the so-called participation constraint of the insurer in the literature. Once
the loss occurs, the insured will claim it and ask the insurer to cover the contracted amount
of loss I(X). Not only in theory but also in practice, the optimal designing of insurance
contract is fundamentally important.

In the designing of an insurance contract, the insured’s and the insurer’s risk preferences
manifestly play the key role. To model them, the classical expected utility theory (EUT),
non-EUTs or mixed risk preferences have been considered in the insurance literature. The
EUT models are vast, and in these models the insurer is often assumed to be risk-neutral
while the insured is assumed to be risk-averse; see, e.g., Arrow [2, 3], Raviv [15], and Gollier
and Schlesinger [11]. The optimal compensation usually turns out to be a deductible one in
which the insurer covers the amount of loss exceeding a deductible level. Such theoretical
result is consistent with most of the insurance contracts available in practice. However, the
EUT has received many criticisms for its failure in describing numerous human behaviors or
explaining experimental observations (see, e.g., Allais [1], Mehra and Prescott [13]), so that
many non-EUTs have been introduced to overcome the drawback of the EUT. For instance,
Quiggin [14] proposed the rank-dependent utility theory (RDUT); Tversky and Kahneman
[16] proposed the cumulative prospect theory (CPT) (see [4] for an excellent survey). A
number of papers have already studied insurance contract design problems in the RDUT
or CPT frameworks; see, e.g., Chateauneuf, Dana, and Tallon [9], Carlier and Dana [8],
Dana and Scarsini [10], Bernard, He, Yan, and Zhou [5], Xu, Zhou, and Zhuang [20]. At the
meanwhile, other risk preferences including VaR and CTE have also been widely considered,
see, e.g., [6] and [7].

At the meanwhile, in many standard insurance contracts today, the bonus-malus system
is in place. The term bonus-malus is Latin for good-bad. This system records the insured’s
history (including both good and bad events) to determine her premium today. For instance,
when the insured made a claim due to a car accident, her premium for the next contract
may increase. This paper investigates an insurance design problem in which a bonus will be
given to the insured if no claim has been made during the whole lifetime of the contract.
This is a bonus-malus system problem. In such a system, the insured will compare the
compensation with the potential bonus to be awarded by hiding her losses. This makes her
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to consider the so-called optimal action rather than the contracted compensation to optimize
her risk preference. The problem is considered in the classical expected utility framework
in this paper. The explicit contract is derived for each pre-agreed reward, either being the
full coverage contract when the insured pays high enough premium, or being a deductible
one otherwise. The optimal compensation and bonus are also derived when the insured is
allowed to choose both of them. In all cases, the optimal contracts are universal, that is,
they do not depend on specific form of the utility of the insured.

The rest of this paper is organized as follows. We mathematically formulate the problem
in Section 2. We derive the optimal contract for any pre-agreed bonus in Section 3 and
provide a numerical example to illustrate the theoretical results. Section 4 is devoted to
the study of optimal personalized contract, i.e., a contract that allows the insured to choose
both the compensation and bonus. We conclude the paper in Section 5.

2 Model formulation

In this section, we formulate an optimal insurance design problem in which a bonus will be
given to the insured if no claim has been made during the whole lifetime of the contract.

Let (Ω,F ,P) be a probability space. An insured, endowed with an initial wealth $ > 0,
faces a random loss X > 0. She chooses an insurance contract, by paying a premium π to the
insurer in return for a compensation (or indemnity) in the case of a loss, to protect herself
from the loss. This contracted compensation is a function of the loss, denoted by I(·). In
this paper, the compensation is also called contract as it clearly determines the essentials
of the insurance contract. In our model, the insured will be paid a pre-agreed bonus θ if
no claim has been made during the whole lifetime of the contract. It is this bonus feature
that distinguishes our model from those in insurance design literature. Intuitively speaking,
when facing a loss, the insured shall compare the instant loss with the potential bonus to
decide whether to claim the loss. Such consideration leads her to take actions deviating from
the contracted compensation I(·). We assume the insured will act as a function of the loss,
denoted by A(·), called an action. We should note that any action is a consequence of some
contracted compensation. In the absent of bonus, the action and the compensation are the
same. In contrast, in our model, the insured will receive a bonus θ if no claim has been
made, therefore we have the realized compensation

C(X) =

A(X), A(X) > 0;
θ, A(X) = 0;

 = A(X) + θ 1A(X)=0 .

This is the real amount that the insured will receive from the insurer. Its right hand side
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highlights the bonus feather of the model. As usual, here and hereafter, we use 1S to denote
the indicator function of a sentence S, thus 1S equals 1 when S is true and equals zero
otherwise.

The insurer designs an insurance contract from the insured’s point of view. For a potential
lossX, the insured aims to choose an insurance contract (and hence the corresponding action)
that provides the best tradeoff between the premium and the realized compensation based
on her risk preference. In this paper, we consider an expected utility preference insured
whose utility is u(·) mapping R to R+, so that her objective is to maximize

E
[
u
(
$ − π −X + C(X)

)]
= E

[
u
(
$ − π −X + A(X) + θ 1A(X)=0

)]
.

On the other hand, the insurer is risk-neutral and the cost of offering the contract is propor-
tional to the expectation of the realized compensation, so the premium to be charged for a
realized compensation should satisfy the participation constraint

π > (1 + ρ) E[C(X)] = (1 + ρ) E
[
A(X) + θ 1A(X)=0

]
,

where the constant ρ > 0 is the safety loading coefficient of the insurer.
It is natural to require any contracted compensation to satisfy

I(0) = 0, 0 6 I(x) 6 x, ∀ x > 0,

a constraint that has been imposed in most insurance design literature. In our framework,
the action A(·) may be different from the contracted compensation I(·). But clearly in no
situation, the insured can claim more than I(·). Hence it is natural to require

0 6 A(x) 6 I(x), ∀ x > 0.

On the other hand, the insured will choose the best realized compensation (rather than the
contracted compensation) in the presence of bonus, so the above constraint can be relaxed
to

A(0) = 0, 0 6 A(x) 6 x, ∀ x > 0. (2.1)

Once the best action has been found, one should recover a contract (namely contracted
compensation) that will lead to this best action. At the meanwhile, we require the action
to be globally increasing. Economically speaking, this means the insured’s compensation
is comonotone increasing with respect to the loss, asking more when a bigger loss occurs.
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Mathematically speaking, we require

A(y) 6 A(x), ∀ y 6 x.

We can now formulate our bonus-malus system insurance design problem with a (pre-
agreed) bonus θ > 0 as

max
A(·)∈A

E
[
u
(
$ − π −X + A(X) + θ 1A(X)=0

)]
(2.2)

subject to (1 + ρ) E
[
A(X) + θ 1A(X)=0

]
6 π,

where the set of admissible actions is given by

A = {A(·) : A(0) = 0, A(y) 6 A(x) 6 x, ∀ 0 6 y 6 x}. (2.3)

We denote by F (·) the probability distribution function of the potential loss X. For
simplicity we assume that F (·) is strictly increasing and differentiable on (0,+∞) so that
X has no atoms on (0,+∞). This assumption however allows the loss X to have a mass at
0, which is of course the most common case in insurance practice. Since X > 0, we have
F (0−) = P(X < 0) = 0. In addition, we also assume that the loss X has a finite expectation
so that

∫
[0,∞) x dF (x) = E[X] <∞. All these assumptions are technical and can be relaxed

to more general cases without too much difficulties; this, however, is not the pursuit of the
present paper.

Remark 2.1. In contrast to Xu, Zhou and Zhuang [20], we donot require both the action
and the real retention to be globally increasing. Different from Bernard, He, Yan, and Zhou
[5] where a severe problem of moral hazard has arisen as their contract is not increasing with
respect to the loss due to lack of the requirement, our optimal contract eventually turns out
to satisfy the requirement automatically. The reason behind it is that we consider an EU
preference insured rather than a RDUT one as in [5]. The moral hazard problem must be
carefully treated if one considers a RDUT preference insured.

3 Optimal action for a pre-agreed bonus

Our main target is to solve the optimal insurance design problem (2.2) for a pre-agreed bonus
θ > 0. To describe our main result more precisely we need some notation.

Define

G(γ) := γF (γ) +
∫

(γ,∞)
x dF (x)− γ, (3.1)
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for γ > 0, with the convention that

G(+∞) := 0. (3.2)

Note

G(0) =
∫

(0,∞)
x dF (x) = E[X] , (3.3)

and

G(γ) = γF (γ) +
∫

(γ,∞)
x dF (x)− γ

=
∫

(γ,∞)
x dF (x)− γ(1− F (γ))

=
∫

(γ,∞)
x dF (x)−

∫
(γ,∞)

γ dF (x)

=
∫

(γ,∞)
(x− γ) dF (x)

=
∫

[0,∞)
max{x− γ, 0} dF (x)

= E[(X − γ)+] , (3.4)

which is indeed the ordinary deductible. By the monotone convergent theorem,

lim
γ→+∞

G(γ) = lim
γ→+∞

E[(X − γ)+] = E
[

lim
γ→+∞

(X − γ)+

]
= 0,

so we see that G(·) is a continuous and strictly decreasing bijective function mapping [0,∞]
to [0,E[X]]. Therefore, it has a unique continuous inverse function, denoted by G−1(·),
mapping [0,E[X]] to [0,∞].

Let

πθ := π
1+ρ − θ, (3.5)

for −∞ < θ <∞. When π
1+ρ − E[X] 6 θ 6 π

1+ρ , one has

G(0) = E[X] > π
1+ρ − θ = πθ > 0 = G(+∞),
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so that we can define

γθ := G−1(πθ), (3.6)
kθ := γθ − θ. (3.7)

It is easy to see that γθ is a continuous and strictly increasing bijective function mapping[
π

1+ρ − E[X] , π
1+ρ

]
to [0,∞].

We are now ready to present our first main result.

Theorem 3.1 (Optimal insurance contract for a pre-agreed bonus θ > 0). The op-
timal insurance contract and the optimal action to the problem (2.2) are given as below.

• If π
1+ρ > E[X] + θ, then the optimal insurance contract is the full coverage contract

with the bonus θ, and the optimal action is

A(x) =

x, x > θ;
0, x 6 θ.

(3.8)

• If π
1+ρ < θ, then there is no feasible action, so the problem is ill-posed.

• If π
1+ρ = θ, then the optimal insurance contract is a deductible contract with the de-

ductible +∞ and the bonus θ. The case is not economic meaningful.

• If E[X]+θ > π
1+ρ > θ, then the optimal insurance contract is the full coverage contract

with the bonus θ, provided

θF (θ) +
∫

(θ,∞)
x dF (x) 6 π

1+ρ , (3.9)

(which can happen only when π
1+ρ > E[X]); otherwise, the optimal insurance contract

is a deductible contract with the deductible kθ > 0 and the bonus θ, and the optimal
action is

A(x) =

x− kθ, x > kθ + θ;
0, x 6 kθ + θ,

(3.10)

where kθ is defined in (3.7).

Remark 3.1. In the insurance literature, the optimal contract (3.8) is called as “Franchise
Deductible”. It can be regard as the sum of an ordinary deductible (x− θ)+ and a bonus θ.

We are now going to prove this result.
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3.1 Neodeductible contract

We call an action A(·) neodeductible if it can be expressed in the form of

A(x) =

x− k, x > x0;
0, x 6 x0.

(3.11)

for some non-negative constants k and x0. Here we allow x0 = +∞ so that A(x) ≡ 0 is
regarded as a neodeductible action, which is doing nothing. The neodeductible action (3.11)
reduces to the classical deductible compensation when k = x0. Neodeductible action appears
naturally when a bonus is presented in the insurance contract. Before giving an economic
explanation for this fact, we first show that the optimal action to the problem (2.2), if it
exists, must be neodeductible. The claim follows if we can find a feasible neodeductible action
that gives a higher or the same performance as any given feasible action A0(·) (namely, an
action that satisfies the constraint of the problem (2.2)).

Let

x∗ = sup{x > 0 | A0(x) = 0}.

Then it is nonnegative. Because any feasible action by (2.3) is increasing, one has

A0(x)

> 0, x > x∗;
= 0, x 6 x∗.

(3.12)

If x∗ = +∞, then A0(x) ≡ 0 and itself is a neodeductible action. So we only need to consider
the case 0 6 x∗ <∞ below.

In view of (3.12), the objective of the problem (2.2) boils down to

E
[
u
(
$ − π −X + θ

)
1X6x∗

]
+ E

[
u
(
$ − π −X + A0(X)

)
1X>x∗

]
, (3.13)

and the constraint to

(1 + ρ)
(
θP(X 6 x∗) + E[A0(X)1X>x∗ ]

)
6 π. (3.14)

We define a constant c via the equation

E
[(
$ − π −X + A0(X)

)
1X>x∗

]
= cP(X > x∗),
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and define a function

L1(x) =

$ − π − x+ A0(x), x > x∗;
c, x 6 x∗.

Then one has

E[L1(X)] = E[L1(X)1X>x∗ ] + E[L1(X)1X6x∗ ]
= E

[(
$ − π −X + A0(X)

)
1X>x∗

]
+ E[c1X6x∗ ]

= cP(X > x∗) + cP(X 6 x∗)
= c.

Applying Jensen’s inequality to the concave utility function u(·), we see that

E
[
u
(
$ − π −X + A0(X)

)
1X>x∗

]
= E

[
u
(
L1(X)

)
1X>x∗

]
= E

[
u
(
L1(X)

)]
− E

[
u
(
L1(X)

)
1X6x∗

]
6 u

(
E[L1(X)]

)
− u(c)P(X 6 x∗)

= u(c)− u(c)P(X 6 x∗)
= u(c)P(X > x∗). (3.15)

We next define an action

A(x) =

x− k, x > x∗;
0, x 6 x∗,

where the constant k is determined by the identity

E[A0(X)1X>x∗ ] = E[A(X)1X>x∗ ] . (3.16)

Because

E[(X − k)1X>x∗ ] = E[A(X)1X>x∗ ] = E[A0(X)1X>x∗ ] 6 E[X 1X>x∗ ] ,

we see that k > 0 and hence A(·) is a neodeductible action. Using (3.16), we have

(1 + ρ)
(
θP(X 6 x∗) + E[A(X)1X>x∗ ]

)
= (1 + ρ)

(
θP(X 6 x∗) + E[A0(X)1X>x∗ ]

)
6 π,
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and so conclude that A(·) is a feasible neodeductible action of the problem (2.2). Using
(3.16) again and by the definition of A(·), we now see that

cP(X > x∗) = E
[(
$ − π −X + A0(X)

)
1X>x∗

]
= E

[(
$ − π

)
1X>x∗

]
− E[X 1X>x∗ ] + E[A0(X)1X>x∗ ]

= ($ − π)P(X > x∗)− E[X 1X>x∗ ] + E[A(X)1X>x∗ ]
= ($ − π)P(X > x∗)− E

[(
X − A(X)

)
1X>x∗

]
= ($ − π)P(X > x∗)− E[k 1X>x∗ ]
= ($ − π − k)P(X > x∗);

and it yields c = $ − π − k and thus

E
[
u
(
$ − π −X + A(X)

)
1X>x∗

]
= E

[
u
(
$ − π − k

)
1X>x∗

]
= u($ − π − k)P(X > x∗)
= u(c)P(X > x∗).

Together with (3.15) this leads to

E
[
u
(
$ − π −X + A0(X)

)
1X>x∗

]
6 E

[
u
(
$ − π −X + A(X)

)
1X>x∗

]
;

and consequently,

E
[
u
(
$ − π −X + A0(X)

)]
= E

[
u
(
$ − π −X + θ

)
1X6x∗

]
+ E

[
u
(
$ − π −X + A0(X)

)
1X>x∗

]
6 E

[
u
(
$ − π −X + θ

)
1X6x∗

]
+ E

[
u
(
$ − π −X + A(X)

)
1X>x∗

]
= E

[
u
(
$ − π −X + A(X)

)]
.

As desired, we have shown that the feasible neodeductible action A(·) gives a higher or the
same performance as A0(·).

Let us now give an economical explanation for the above result. When holding a classical
deductible compensation without bonus

A0(x) =

x− k, x > k;
0, x 6 k;

and facing a loss X, the insured may claim the loss so as to receive a compensation X − k
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from the insurer. Such an action is harmless to her performance if X is bigger than the
deductible k, so she will do it whenever such a loss occurs. In contrast, when holding a
compensation with a bonus, the insured shall compare the immediate compensation X − k
with the potential bonus θ so as to maximize her performance. If the compensation is too
small compared to the bonus (namely, X − k < θ), she will, instead of making a claim, hide
her loss and wait for the bonus. Such a consideration pushes her to take the action

A(x) =

x− k, x > k + θ;
0, x 6 k + θ,

a neodeductible action.
To solve the problem (2.2), we only need to focus on neodeductible actions. In the

following section, we will seek for the best neodeductible action.

3.2 Optimal deductible for a pre-agreed bonus

For a pre-agreed bonus 0 6 θ <∞, we are going to find the best neodeductible action of the
form

A(x) =

x− k, x > k + θ;
0, x 6 k + θ,

over all possible deductibles 0 6 k 6∞.
Given such an action, the objective of the problem (2.2) reads

E
[
u
(
$ − π −X + A(X) + θ 1A(X)=0

)]
=
∫

[0,∞)
u
(
$ − π − x+ A(x) + θ 1A(x)=0

)
dF (x)

=
∫

[0,k+θ]
u
(
$ − π − x+ θ

)
dF (x) +

∫
(k+θ,∞)

u
(
$ − π − k

)
dF (x)

=
∫

[0,k+θ]
u
(
$ − π − x+ θ

)
dF (x) + u

(
$ − π − k

)(
1− F (k + θ)

)
, (3.17)
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and the constraint reads

π > (1 + ρ) E
[
A(X) + θ 1A(X)=0

]
= (1 + ρ)

∫
[0,∞)

(
A(x) + θ 1A(x)=0

)
dF (x)

= (1 + ρ)
(∫

[0,k+θ]
θ dF (x) +

∫
(k+θ,∞)

(x− k) dF (x)
)

= (1 + ρ)
(
θF (k + θ) +

∫
(k+θ,∞)

(x− k) dF (x)
)

= (1 + ρ)
(

(θ + k)F (k + θ) +
∫

(k+θ,∞)
x dF (x)− k

)

= (1 + ρ)
(

(θ + k)F (k + θ) +
∫

(k+θ,∞)
x dF (x)− (k + θ) + θ

)
,

= (1 + ρ) (G(θ + k) + θ) . (3.18)

The problem (2.2) hence reduces to

max
k

∫
[0,k+θ]

u
(
$ − π − x+ θ

)
dF (x) + u

(
$ − π − k

)(
1− F (k + θ)

)
(3.19)

subject to G(θ + k) 6 π
1+ρ − θ = πθ, k > 0.

Set γ = k + θ and set

J(γ) :=
∫

[0,γ]
u
(
$ − π − x+ θ

)
dF (x) + u

(
$ − π − γ + θ

)(
1− F (γ)

)
.

It is easy to see that if γ∗ solves the problem

max
γ

J(γ) (3.20)

subject to G(γ) 6 πθ, γ > θ,

then k∗ = γ∗ − θ solves the problem (3.19), vice versa. Our problem thus reduces to finding
the optimal solution to the problem (3.20).

We first note that

J ′(γ) = u ($ − π − γ + θ)F ′(γ)− u′ ($ − π − γ + θ) (1− F (γ))
− u ($ − π − γ + θ)F ′(γ)

= −u′ ($ − π − γ + θ) (1− F (γ))
6 0

12



for γ > 0, so solving the problem (3.20) reduces to finding the smallest γ that satisfies its
constraints G(γ) 6 πθ and γ > θ. On the other hand, we also note from (3.4) that G(·) is
continuous and strictly decreasing on [0,∞]. Therefore

• When π
1+ρ > E[X] + θ, we have

G(γ) 6 G(0) = E[X] 6 π
1+ρ − θ = πθ

for any 0 6 γ 6 +∞, so the constraint of the problem (3.20) reduces to γ > θ only;
and hence its optimal solution is γ∗ = θ. Consequently, the optimal solution to the
problem (3.19) is k∗ = γ∗ − θ = 0 and the optimal action to the problem (2.2) is

A(x) =

x, x > θ;
0, x 6 θ.

(3.21)

This action is a consequence of the contracted compensation

I(x) = x,

namely the full coverage contract. Economically speaking, the insured pays high
enough premium so that the insurer can cover all the loss with the bonus θ (which
is however no more than π

1+ρ − E[X]).

• When π
1+ρ < θ, we have

G(γ) > G(+∞) = 0 > π
1+ρ − θ = πθ

for any 0 6 γ 6 +∞, so there is no γ satisfying the constraint of the problem (3.20);
and hence the problem is ill-posed. Economically speaking, the insurance premium
is too low (or equivalently, the desired bonus is too high) such that the participation
constraint can not be satisfied and the insurer can not offer any contract.

• When π
1+ρ = θ, we have

G(γ) > G(+∞) = 0 = π
1+ρ − θ = πθ

for any 0 6 γ < +∞ and G(+∞) = 0 = πθ. Hence γ = +∞ is the unique feasible (and
thus the optimal) solution to the problem (3.20); and this means k∗ = +∞ solves the
problem (3.19) and the optimal action to the problem (2.2) is A(x) ≡ 0. Economically
speaking, as the deductible is +∞, no insured will buy such insurance contract and
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hence it is not an economic meaningful case.

• When E[X] + θ > π
1+ρ > θ, we see from (3.6) that

G(γ) 6 πθ if and only if γ > γθ. (3.22)

Hence the constraint of the problem (3.20) boils down to γ > max{θ, γθ}; and its
optimal solution is thus γ∗ = max{θ, γθ}. As a consequence, the optimal solution to
the problem (3.19) is k∗ = γ∗ − θ = max{0, γθ − θ} and the optimal action to the
problem (2.2) is

A(x) =

x− k
∗, x > k∗ + θ;

0, x 6 k∗ + θ.
(3.23)

This is a neodeductible action and a consequence of the contracted compensation

I(x) =

x− k
∗, x > k∗;

0, x 6 k∗.
(3.24)

This contract can be the full coverage one (if k∗ = 0) or a deductible one (if k∗ > 0).
We will discuss them in the following sections.

We have until now proved Theorem 3.1 except for the last case. The proof will be completed
in the following section.

3.2.1 Full coverage contract

To finish the proof of Theorem 3.1, we need to identify under which condition the contract
(3.24) is the full coverage contract.

The contract (3.24) is the full coverage contract if and only if k∗ = 0, that is, θ > γθ.
This however by (3.22) is equivalent to G(θ) 6 πθ, namely

θF (θ) +
∫

(θ,∞)
x dF (x)− θ 6 π

1+ρ − θ

which is obviously equivalent to the desired inequality (3.9). This is the necessary and
sufficient condition for the contract being full coverage.
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Denote by H(θ) the left hand side of (3.9). We see from (3.4) that

H(θ) = θF (θ) +
∫

(θ,∞)
x dF (x)

= G(θ) + θ

=
∫

[0,∞)
max{x− θ, 0} dF (x) + θ

=
∫

[0,∞)
max{x− θ, 0} dF (x) +

∫
[0,∞)

θ dF (x)

=
∫

[0,∞)
max{x, θ} dF (x)

is a strictly increasing function. Moreover,

H(0) =
∫

[0,∞)
x dF (x) = E[X] ,

and by the monotone convergent theorem,

H(+∞) = lim
θ→+∞

H(θ) = lim
θ→+∞

∫
[0,∞)

max{x, θ} dF (x) = +∞.

Therefore, the inequality (3.9) can only happens when π > (1 + ρ) E[X] as H(θ) > H(0) =
E[X].

If the contract (3.24) is not the full coverage contract, then k∗ > 0 so that k∗ = γθ − θ =
kθ. And consequently the action (3.23) boils down to (3.10). This completes the proof of
Theorem 3.1.

The economic meaning is very clear: if the insured pays high enough insurance premium
(namely π > (1 + ρ) E[X]), she can be offered the full coverage insurance contract with
a reasonable bonus (up to some amount determined by her insurance premium, namely
H−1

(
π

1+ρ

)
); otherwise no full coverage contract with a nonnegative bonus can be offered by

the insurer.
In the case H(θ) > π

1+ρ , the insurer can only offer a deductible contract with the bonus θ.
We are interested in the relationship between the deductible and the bonus in such situation.
This will be discussed in the following section.

3.2.2 Deductible contract

As is discussed in the previous section, we only need to consider the case

E[X] + θ > π
1+ρ > θ, H(θ) > π

1+ρ , (3.25)

which is hence assumed in this section.
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In this case, the optimal action is (3.10) where kθ = γθ − θ > 0 and γθ is determined by
γθ = G−1(πθ) that is equivalent to

G(γθ) = πθ.

Differentiation on both sides of the last equation with respect to θ gives

G′(γθ)γ′θ = π′θ = −1. (3.26)

At the same time

G′(γ) = F (γ) + γF ′(γ)− γF ′(γ)− 1 = F (γ)− 1 ∈ (−1, 0), (3.27)

so we obtain γ′θ > 1; and consequently,

k′θ = γ′θ − 1 > 0. (3.28)

Therefore, the optimal deductible should increase if one wants a higher bonus but does not
want to pay more premium.

Now let us study an extreme case. Note

lim
θ↑ π

1+ρ

G(γθ) = lim
θ↑ π

1+ρ

πθ = 0,

so we conclude by the monotonicity of G(·) and (3.2) that

lim
θ↑ π

1+ρ

γθ = +∞;

and consequently,

lim
θ↑ π

1+ρ

kθ = lim
θ↑ π

1+ρ

(γθ − θ) = +∞. (3.29)

It says that the insured has to bear extremely large loss if she wants to have a very big bonus
but not to pay more premium.

In the case

E[X] > π
1+ρ ,
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the insured can choose a contract without any bonus but with a deductible

k0 = γ0 = G−1(π0) = G−1
(

π
1+ρ

)
> G−1 (E[X]) = 0. (3.30)

This deductible is monotonic decreasing with respect to the premium and it becomes zero
when π > (1 + ρ) E[X].

3.3 Numerical example: The bonus and the optimal deductible

In this section, we give a numerical example to verify the theoretical results obtained thus
far.

We assume the loss X follows an exponential distribution with mean 4 and the safety
loading of the insurer is ρ = 20%.

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

 

 

4.2
3.6

Figure 1: The bonus θ and the optimal deductible kθ.

Figure 1 illustrates the relationship between the bonus θ and the optimal deductible
kθ. The horizontal axis and vertical axis stand for the bonus and the optimal deductible
respectively. The red curve illustrates the case π = 4.2, while the blue dot one illustrates the
case π = 3.6. We see from Figure 1 that the optimal deductible is strictly increasing with
respect to the bonus (as predicted by (3.28)) and it goes to infinity as the bonus approaches
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to π
1+ρ (as predicted by (3.29)). Moreover, the optimal deductible will reduce if one pays a

higher premium.
Until now, we have only discussed the optimal contract design problem for a pre-agreed

bonus. What happens if the insured is allowed to choose the bonus as well? In another
words, what is the best point on the θ−kθ curve for the insured? This will be addressed in
the following section.

4 Optimal personalized contract

One should note the important fact that the optimal contract obtained thus far, for a pre-
agreed bonus, does not dependent on the insured’s utility function. We are going to determine
the optimal contract if the insured is allowed to choose the bonus, or equivalently, the
deductible. Surprisingly, it turns out that the optimal contract does not depended on the
risk preference as well.

We only need to consider the case

0 6 θ < π
1+ρ , (4.1)

otherwise no contract can be offered by the insurer.
If the insured is allowed to choose the bonus θ, then her target becomes maximizing

Ĵ(θ) := E
[
u
(
$ − π −X + A(X) + θ 1A(X)=0

)]
,

over all θ satisfying (4.1). Here A(·) is the optimal action given in Theorem 3.1, which has
difference expressions in different regions. Let us consider the problem case by case.

• When π > (1 + ρ) E[X], we see from (3.21) and (3.23) that the optimal action is

A(x) =



x− kθ, x > kθ + θ, π
1+ρ − E[X] < θ < π

1+ρ ;

0, x 6 kθ + θ, π
1+ρ − E[X] < θ < π

1+ρ ;

x, x > θ, 0 6 θ 6 π
1+ρ − E[X] ;

0, x 6 θ, 0 6 θ 6 π
1+ρ − E[X] .

(4.2)
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– If 0 6 θ 6 π
1+ρ − E[X], we have

Ĵ(θ) = E
[
u
(
$ − π −X + θ

)
1X6θ

]
+ E

[
u
(
$ − π

)
1X>θ

]
=
∫

[0,θ]
u
(
$ − π − x+ θ

)
dF (x) + u

(
$ − π

)(
1− F (θ)

)
.

Differentiation both sides yields

Ĵ ′(θ) =
∫

[0,θ]
u′
(
$ − π − x+ θ

)
dF (x) + u

(
$ − π

)
F ′(θ)− u

(
$ − π

)
F ′(θ)

=
∫

[0,θ]
u′
(
$ − π − x+ θ

)
dF (x) > 0

for θ > 0. Intuitively speaking, the contract in this situation is of full coverage,
so the insured prefers the bonus as high as possible.

– If π
1+ρ − E[X] < θ < π

1+ρ , we have

Ĵ(θ) = E
[
u
(
$ − π −X + θ

)
1X6kθ+θ

]
+ E

[
u
(
$ − π − kθ

)
1X>kθ+θ

]
=
∫

[0,kθ+θ]
u
(
$ − π − x+ θ

)
dF (x) + u

(
$ − π − kθ

)(
1− F (kθ + θ)

)
.

Differentiation both sides yields

Ĵ ′(θ) =
∫

[0,kθ+θ]
u′
(
$ − π − x+ θ

)
dF (x) + u

(
$ − π − kθ

)
F ′(kθ + θ)(k′θ + 1)

− u
(
$ − π − kθ

)
F ′(kθ + θ)(k′θ + 1)− u′

(
$ − π − kθ

)(
1− F (kθ + θ)

)
k′θ

=
∫

[0,kθ+θ]
u′
(
$ − π − x+ θ

)
dF (x)− u′

(
$ − π − kθ

)(
1− F (kθ + θ)

)
k′θ

6
∫

[0,kθ+θ]
u′
(
$ − π − (kθ + θ) + θ

)
dF (x)− u′

(
$ − π − kθ

)(
1− F (kθ + θ)

)
k′θ

= u′
(
$ − π − kθ

)
F (kθ + θ)− u′

(
$ − π − kθ

)(
1− F (kθ + θ)

)
k′θ

= u′
(
$ − π − kθ

)(
F (kθ + θ)−

(
1− F (kθ + θ)

)
k′θ
)

for θ > 0, where we used the concavity of the utility function u(·) to obtain the
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inequality. But we see from (3.26), (3.27) and (3.28) that
(
1− F (kθ + θ)

)
k′θ =

(
1− F (kθ + θ)

)
(γ′θ − 1)

=
(
1− F (kθ + θ)

)( −1
G′(γθ)

− 1
)

=
(
1− F (kθ + θ)

)( −1
F (kθ + θ)− 1 − 1

)
= F (kθ + θ).

Therefore, we deduce Ĵ ′(θ) 6 0.

From the above discussion, we conclude that the optimal contract should be the full
coverage one with the optimal bonus

θ∗ = π
1+ρ − E[X] .

• When π < (1 + ρ) E[X], the optimal contract must be a deductible one. We see from
(3.23) that the optimal action is

A(x) =


x− kθ, x > kθ + θ, 0 6 θ < π

1+ρ ;

0, x 6 kθ + θ, 0 6 θ < π
1+ρ .

(4.3)

Same as the previous case, one can show that Ĵ(θ) is decreasing on
[
0, π

1+ρ

)
, thus the

optimal bonus is θ∗ = 0 and correspondingly kθ∗ = G−1
(

π
1+ρ

)
by (3.30).

We summarize the above results in the following

Theorem 4.1 (Optimal personalized contract). The optimal contract is the full cover-
age contract with the bonus π

1+ρ − E[X] if π > (1 + ρ) E[X]. Otherwise, it is a deductible
contract with zero bonus and the deductible G−1

(
π

1+ρ

)
, where G(·) is defined by (3.1).

We see that the optimal contract has either a zero deductible or a zero bonus.

5 Concluding remarks

In all cases, the optimal contract turns out to be universal, meaning that it does not depend
on specific form of the utility function of the insured. This makes it very easy to implement
the contract in practice.
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In this paper, we have assumed that the insurer knows the insured’s action and realized
compensation so as to determine the participation constraint. If the insurer has no such
knowledge, then the participation constraint will be

π > (1 + ρ) E[I(X)] .

This has been imposed in most insurance design literature. Such change of the participation
constraint in our problem will make it very hard to tackle. On the other hand, this paper has
considered a risk-averse EUT preference insured. It is clearly very important to study the
problem for RDUT preference insureds. The method used in this paper may not be suitable
to solve the problem in that case. We believe the quantile formulation should be adopted
to tackle the problem; see, e.g., He and Zhou [12], Xu and Zhou [19], Xu [17], Hou and Xu
[18]. The aforementioned problems will be addressed in forthcoming works.
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