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Abstract

In this paper, we investigate an interesting and important stopping problem mixed
with stochastic controls and a nonsmooth utility over a finite time horizon. The paper
aims to develop new methodologies, which are significantly different from those of mixed
dynamic optimal control and stopping problems in the existing literature, to figure out
a manager’s decision. We formulate our model to a free boundary problem of a fully
nonlinear equation. By means of a dual transformation, however, we can convert the
above problem to a new free boundary problem of a linear equation. Finally, using the
corresponding inverse dual transformation, we apply the theoretical results established
for the new free boundary problem to obtain the properties of the optimal strategy
and the optimal stopping time to achieve a certain level for the original problem over
a finite time investment horizon.
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1 Introduction

Optimal stopping problems have important applications in many fields such as science, engi-

neering, economics and, particularly, finance. The theory in this area has been well developed

for stochastic dynamic systems over the past decades. In the field of financial investment,

however, an investor frequently runs into investment decisions where investors stop investing
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in risky assets so as to maximize their expected utilities with respect to their wealth over

a finite time investment horizon. These optimal stopping problems depend on underlying

dynamic systems as well as investors’ optimization decisions (controls). This naturally re-

sults in a mixed optimal control and stopping problem, and Ceci-Bassan (2004) is one of the

typical representatives along this line of research. In the general formulation of such models,

the control is mixed, composed of a control and a stopping time. The theory has also been

studied in Bensoussan-Lions (1984), Elliott-Kopp (1999), Yong-Zhou (1999) and Fleming-

Soner (2006), and applied in finance in Dayanik-Karatzas (2003), Henderson-Hobson (2008),

Li-Zhou (2006), Li-Wu (2008, 2009), Shiryaev-Xu-Zhou (2008) and Jian-Li-Yi (2014).

In the finance field, finding an optimal stopping time point has been extensively studied

for pricing American-style options, which allow option holders to exercise the options before

or at the maturity. Typical examples that are applicable include, but are not limited to, those

presented in Chang-Pang-Yong (2009), Dayanik-Karatzas (2003) and Rüschendorf-Urusov

(2008). In the mathematical finance literature, choosing an optimal stopping time point is

often related to a free boundary problem for a class of diffusions (see Fleming-Soner (2006)

and Peskir-Shiryaev (2006)). In many applied areas, especially in more extensive investment

problems, however, one often encounters more general controlled diffusion processes. In real

financial markets, the situation is even more complicated when investors expect to choose as

little time as possible to stop portfolio selection over a given investment horizon so as to max-

imize their profits (see Samuelson (1965), Karatzas-Kou (1998), Karatzas-Sudderth (1999),

Karatzas-Wang (2000), Karatzas-Ocone (2002), Ceci-Bassan (2004), Henderson (2007), Li-

Zhou (2006) and Li-Wu (2008, 2009)).

The initial motivation of this paper comes from our recent studies on choosing an optimal

point at which an investor stops investing and/or sells all his risky assets (see Carpenter

(2000) and Henderson-Hobson (2008)). The objective is to find an optimization process

and stopping time so as to meet certaininvestment criteria, such as, the maximum of an

expected nonsmooth utility value before or at the maturity. This is a typical yet important

problem in thearea of financial investment. However, there are fundamental difficulties in

handling such mixed controls and stopping problems. Firstly, our investment problem, which

is signifcantly different from the classical American-style options, involves portfolio process in

the objective over the entire time horizon. Secondly, itinvolves the portfolio in the drift and

volatility terms of the dynamic systems so that the problem including multi-dimensional

financial assets is more realistic than those addressed in finance literature (see Capenter

(2000)). Therefore, it is difficult to solve these problems either analytically or numerically

using current methods developed in the framework of studying American-style options. In
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our model, the corresponding HJB equation of the problem is formulated into a variational

inequality of a fully nonlinear equation. We make a dual transformation for the problem to

obtain a new free boundary problem with a linear equation. Tackling this new free boundary

problem, we characterize the properties of the free boundary and optimal strategy for the

original problem.

The main innovations of this paper include that: Firstly, we consider general non-smooth,

non-concave utility function g(x) and rigorously prove the limit of the value function when

t→ T is its concave hull ϕ(x)(see Theorem 2.1). Secondly, we prove the equivalence between

the linear problem (3.4) and the original problem (2.12) under some easing restriction impose

on g(x). Thirdly, in a special model, we show a new method to study the free boundary while

the exercise region is not connected (see (6.3)-(6.5) and Lemma 6.1) so that we can shed

light on the monotonicity and differentiability of the free boundaries (see Figure 6.7-6.10.)

under any cases of parameters.

In our previous works the closest one to this paper is Jian-Li-Yi (2014), where the utility

function is smooth and concave. And the value function is continuous up to the terminal

time T , moreover the exercise region is connected. So the problem in this paper is much

difficult than the one in Jian-Li-Yi (2014).

The remainder of the paper is organized as follows. In Section 2, the mathematical

formulation of the model is presented, and the corresponding HJB equation with certain

boundary-terminal condition is posed. In Section 3, we make a dual transformation to con-

vert the free boundary problem of a fully nonlinear PDE (2.12) to a new free boundary

problem of a linear equation (3.4). Section 4 devotes to the study for variational inequality

problem (3.4). In Section 5, using the corresponding inverse dual transformation, we con-

struct the solution of the original problem (2.12). Section 6 gives a application of our results,

moreover, under such a special model, we present the properties (including the monotonicity

and differentiability) of its free boundaries under different cases. In Section 7, we present

conclusions. Appendix gives the proof of Theorem 2.1. Appendix B gives the verification

theorem to prove the solution of problem (2.12) is the value function defined in (2.3).

2 Model Formulation

2.1 The manager’s problem

The manager operates in a complete, arbitrage-free, continuous-time financial market con-

sisting of a riskless asset with instantaneous interest rate r and n risky assets. The risky
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asset prices Si are governed by the stochastic differential equations

dSi,t
Si,t

= (r + µi)dt+ σidW
j
t , for i = 1, 2, · · · , n, (2.1)

where the interest rate r, the excess appreciation rates µi, and the volatility vectors σi are

constants, W is a standard n-dimensional Brownian motion. In addition, the covariance

matrix σσ′ is strongly nondegenerate.

A trading strategy for the manager is an n-dimensional process πt whose i-th component,

where πi,t is the holding amount of the i-th risky asset in the portfolio at time t. An admissible

trading strategy πt must be progressively measurable with respect to {Ft} such that Xt ≥ 0.

Note that Xt = π0,t +
n∑
i=1

πi,t, where π0,t is the amount invested in the money. Hence, the

wealth Xt evolves according to

dXt = (rXt + µ′πt)dt+ π′tσdWt,

the portfolio πt is a progressively measurable and square integrable process with constraint

Xt ≥ 0 for all t ≥ 0.

Now, we begin with any fix time t and suppose the wealth at the time t is x, then

dXs = (rXs + µ′πs)ds+ π′sσdWs, s ≥ t, (2.2)

Xt = x,

where πs, s ∈ [t, T ] belongs to

Πt := {πs ∈ L2
F([t, T ];R) | Xs ≥ 0, t ≤ s ≤ T}.

The manager’s dynamic problem is to choose an admissible trading strategy π ∈ Πt and

a stopping time τ (t ≤ τ ≤ T ) to maximize his expected utility of the exercise wealth before

or at the terminal time T :

V (x, t) = sup
π,τ≥t

Et,x[e−β(τ−t)g(Xτ )] := sup
π,τ≥t

E[e−β(τ−t)g(Xτ )|Xt = x], (2.3)

where β is the discounted factor. g(x) is the utility function mapping from [0,+∞) onto

[0,+∞).

In order to let (2.3) be well defined (be a finite function) and accordance with the actual

case in finance, some constraints should be impose on g(x). Without loss of generality, we

suppose:
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Condition I: The function g(x) is non-negative increasing and satisfies

lim
x→+∞

g(x) = +∞. (2.4)

Condition II: There is a γ ∈ (0, 1) and M > 0 such that for all x, y ≥ 0,

|g(x)− g(y)| ≤M
1

γ
|x− y|γ. (2.5)

which also implies a growth condition that

g(x) ≤ g(0) +M
1

γ
xγ. (2.6)

Condition III: The function g(x) is twice differentiable piecewise and

g′′(x) > −∞, ∀x > 0, (2.7)

which is equivalent to

g′(x−) ≤ g′(x+), ∀x > 0.

2.2 The boundary condition on x = 0

Here, we prove the boundary condition on x = 0. If Xt = 0, in order to keep Xs ≥ 0, the

only choice of πs is 0 and thus Xs ≡ 0, t ≤ s ≤ T . Therefore

V (0, t) = sup
π,τ≥t

Et,x[e−β(τ−t)g(0)] = g(0).

Which means the optimal stopping time τ is the present moment t.

2.3 The terminal condition under g(x) is Non-concave

If g(x) is non-concave, denote ϕ(x) as its concave hull, i.e. ϕ(x) is the minimal concave

function not less than g(x) (See Figure 2.1).

-
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Because g(x) is an increasing continuous function, thus ϕ(x) is also increasing and con-

tinuous, so {x > 0|ϕ(x) > g(x)} is an open set which can be written as (in general case)

{ϕ(x) > g(x)} =
∞⋃
m=1

(xm, xm), (2.8)

where {(xm, xm)}∞m=1 are countable disjoint open intervals. Inner these intervals, ϕ(x) is a

linear function.

It is not hard to see that ϕ(x) also satisfies (2.4)- (2.7) and ϕ(0) = g(0).

Since the portfolio πt is unconstrained, we point out that the terminal condition of

V (x, t) should be ϕ(x) but not g(x). In fact, in a short time, the asset price is behavior

like a martingale. When time approaches the terminal date and the current asset price x

located in (xm, xm)(m ∈ Z), the investors could adopt such a strategy that buy much risk

assets to enlarge the volatility and then Xs will rapidly touch xm or xm (with probability

approximately equal to
x−xm
xm−xm

and xm−x
xm−xm

, respectively) and then keep it still (stop invest in

risk assets). Therefore, the contribution of Et,xg(XT ) to the value function is approximate to
x−xm
xm−xm

g(xm) + xm−x
xm−xm

g(xm) = ϕ(x). So the value function is not less than ϕ(x) when t→ T .

Under this idea, we could prove

Theorem 2.1 Under Condition II, V (x, t) defined in (2.3) satisfies

lim
t→T−

V (x, t) = ϕ(x). (2.9)

The rigorous proof is presented in Appendix A.

2.4 The HJB equation

Using the theory of viscosity solution in differential equations(See e.g. Crandall and Li-

ons(1983), Fleming and Soner(2006)), one can obtain the following HJB equation

min
{
− Vt −max

π
[
1

2
(π′σσ′π)Vxx + µ′πVx]− rxVx + βV, V − g(x)

}
= 0 (2.10)

Note that the Hamiltonian operator

max
π

[1

2
(π′σσ′π)Vxx + µ′πVx

]
− rxVx + rV

is singular if Vxx > 0, or Vxx = 0 and Vx 6= 0, thus, Vxx ≤ 0. Moreover, if Vx = 0 holds on

(x0, t0), then for all x ≥ x0, Vx(x, t0) ≤ 0, which contradicts V (x, t) ≥ g(x) → +∞, x →
+∞. The above analysis gives us reason to find the solution of (2.10) satisfies

Vx > 0, Vxx < 0, x > 0, 0 < t < T. (2.11)
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Note that the gradient of π′σσ′π with respect to π is

5π(π′σσ′π) = 2σσ′π.

Hence, the optimal

π∗ = −(σσ′)−1µ
Vx(x, t)

Vxx(x, t)
.

Applying Vxx < 0, we have

V − g(x) > 0 if and only if V − ϕ(x) > 0.

Define a2 = µ′(σσ′)−1µ, then the variational inequality (2.10) is reduce to

min
{
− Vt +

a2

2

V 2
x

Vxx
− rxVx + βV, V − ϕ(x)

}
= 0,

Hence, we formulate our problem into the following variational inequality problem
min

{
− Vt +

a2

2

V 2
x

Vxx
− rxVx + βV, V − ϕ(x)

}
= 0, x > 0, 0 < t < T,

V (0, t) = g(0), 0 < t < T,

V (x, T ) = ϕ(x), x > 0.

(2.12)

We will show that problem (2.12) has a solution V̂ (x, t) in the sense that

V̂ ∈ C([0,+∞)× [0, T ]), (2.13)

V̂x ∈ C((0,+∞)× (0, T )), (2.14)

V̂t ∈ C((0,+∞)× (0, T )), (2.15)

V̂xx ∈ L∞loc((0,+∞)× (0, T )). (2.16)

Also, in Appendix B we will present the verification theorem to ensure this solution is just

V defined in (2.3).

2.5 The Höder continuity (w.r.t. x) of the value function

We first introduce the case of g(x) = 1
γ
xγ, we can get the expression of solution ”from

scratch” that

V (x, t) = eB(T−t) 1

γ
xγ,

where

B = max
{a2

2

γ

1− γ
+ rγ − β, 0

}
. (2.17)
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that means if a2

2
γ

1−γ + rγ > β, V (x, t) > g(x) = 1
γ
xγ for all t < T , i.e. the optimal stopping

time τ ∗ = T ; Otherwise, a2

2
γ

1−γ +rγ ≤ β, V (x, t) = 1
γ
xγ, the optimal stopping time is present

moment, i.e. τ ∗ = t.

Lemma 2.2 Under Condition II, the value function defined in (2.3) satisfies

|V (x, t)− V (y, t)| ≤MeB(T−t) 1

γ
|x− y|γ

for M > 0 determined by (2.5).

Proof: Suppose (Xs, πs) satisfies (2.2) and π ∈ Πt with initial condition Xt = x. For y < x,

let (Ys, π
Y
s ) = ( y

x
Xs,

y
x
πs), (Zs, π

Z
s ) = (x−y

x
Xs,

x−y
x
πs), then (Ys, π

Y
s ), (Zs, π

Z
s ) also satisfy the

equation in (2.2) with initial conditions Yt = y, Zt = x − y, respectively, and πY , πZ ∈ Πt.

For any stopping time τ ∈ [t, T ], owing to (2.5), we have

Et,x[e−β(τ−t)g(Xτ )] = Et,x[e−β(τ−t)g(Yτ )] + Et,x[e−β(τ−t)[g(Xτ )− g(Yτ )]]

≤ Et,x[e−β(τ−t)g(Yτ )] +MEt,x[e−β(τ−t)[
1

γ
(Xτ − Yτ )γ]]

≤ Et,x[e−β(τ−t)g(Yτ )] +MEt,x[e−β(τ−t)
1

γ
Zγ
τ ]

≤ sup
πY ,τ

Et,x[e−β(τ−t)g(Yτ )] +M sup
πZ ,τ

Et,x[e−β(τ−t)
1

γ
Zγ
τ ],

the second term above is the value function of the case g(x) = 1
γ
xγ, so

Et,x[e−β(τ−t)g(Xτ )] ≤ V (y, t) +MeB(T−t) 1

γ
(x− y)γ.

Taking supremum to the left, we have

V (x, t) ≤ V (y, t) +MeB(T−t) 1

γ
(x− y)γ.

�

Thanks to Lemma 2.2, we have

V (x, t) ≤ g(0) +MeB(T−t) 1

γ
xγ. (2.18)

(2.18) gives a growth condition to problem (2.12).
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3 Dual Problem

In this section, we will formulate the duel problem (3.4) subject to the original problem (2.12).

After this section, we will begin with problem (3.4), using inverse dual transformation to

construct the solution to problem (2.12).

3.1 The duel transformation of ϕ(x)

Firstly, we introduce the concept of dual transformation.

Definition 3.1 If u : (0,+∞)→ R is increasing, concave on (0,+∞), then the duel trans-

formation of it is the function ũ : (0,+∞)→ R ∪ {+∞} that

ũ(y) = sup
x>0

(u(x)− xy), y > 0.

The next proposition collects some results used in this section.

Proposition 3.2 ũ is a decreasing function, convex on (0,+∞), and we have the conjugate

relation

u(x) = inf
y>0

(ũ(y) + xy), x > 0.

Denote dom(ũ) = {y > 0 : ũ(y) < +∞}. Suppose one of the two following equivalent

conditions:

(i) u is differentiable on (0,+∞)

(ii) ũ is strictly convex on int(dom(ũ))

is satisfied, then the derivative u′ is a mapping from (0,+∞) into int(dom(ũ)) 6= ∅ and we

have

u′(x) = arg min
y≥0

(ũ(y) + xy), ∀x > 0.

Moreover, we can define ũ′(y±) = lim
z→y±

ũ(z)−ũ(y)
z−y , then

ũ′(y−) ≤ ũ′(y+) ≤ 0, ∀y ∈ dom(ũ),

and

arg max
x≥0

(u(x)− xy) = {x ≥ 0 : u′(x) = y} = [−ũ′(y+),−ũ′(y−)], ∀y ∈ dom(ũ).
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If we further suppose that u is strictly concave, then ũ is differentiable with ũ′(y) =

−(u′)−1(y).

Finally, under the additional conditions

u′(0) = +∞, u′(+∞) = 0,

we have int(dom(ũ)) = dom(ũ) = (0,+∞).

Proof: See Appendix B of Pham [25]. �

Now, let us define the duel transformation of ϕ(x) as

ψ(y) = sup
x>0

(ϕ(x)− xy), y > 0.

(see Figure 3.1)

-

6

ψ(y)

y2

q
y1

q
y

Fig 3.1 ψ(y).

-6

ψ′(y±)

y2q y1q y−x1 q
−x1 q
−x2 q
−x2 q

Fig 3.2 ψ′(y±).

Then, by Proposition 3.2, ψ(y) is a decreasing and convex function and

ϕ(x) = inf
y>0

(ψ(y) + xy).

Because ϕ(x) is not strictly concave, thus ψ(y) is not continuously differentiable. How-

ever, since ψ(y) is convex, we can define

ψ′(y±) = lim
z→y±

ψ(z)− ψ(y)

z − y
.

Corresponding to the description of ϕ(x) in (2.8) we can define

ym = ϕ′(x), x ∈ (xm, xm), m = 1, 2, ...,

and we have

ψ′(ym+) = −xm, ψ′(ym−) = −xm, m = 1, 2, ...
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(see Figure 3.2).

On the other hand, by (2.6), we have

ψ(y) = sup
x>0

(ϕ(x)− xy) ≤ sup
x>0

(
g(0) +M

1

γ
xγ − xy

)
= g(0) +M

1
1−γ

1− γ
γ

y
γ
γ−1 , (3.1)

due to (2.4),

ψ(y) = sup
x>0

(ϕ(x)− xy) ≥ ϕ(
1

y
)− 1→ +∞, y → 0. (3.2)

and we will use them latter.

3.2 The duel problem of (2.12)

Let us define dual transformation of V (x, t). For any t ∈ (0, T ), let

v(y, t) := max
x≥0

(V (x, t)− xy), y > 0. (3.3)

Then we can formulate the duel problem subject to (2.12) that min{−vt −
a2

2
y2vyy − (β − r)yvy + βv, v − ψ} = 0, (y, t) ∈ Qy,

v(y, T ) = ψ(y), y > 0,

(3.4)

where, Qy = {y > 0, 0 < t < T}. The derivation is left to the interested reader.

Remark 3.3 The equation in (3.4) is degenerate on the boundary y = 0. According to

Fichera’s theorem (see Olĕinik and Radkević [23]), we must not put the boundary condition

on y = 0.

Owing to (2.18),

v(y, t) = max
x≥0

(V (x, t)− xy) ≤ max
x≥0

(
g(0) +MeB(T−t) 1

γ
xγ − xy

)
= g(0) + (MeB(T−t))

1
1−γ

1− γ
γ

y
γ
γ−1 ,

which give a growth condition to problem (3.4).
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4 The solution to (3.4)

In this section, we will prove the existence and uniqueness of problem (3.4) and some prop-

erties, in preparation for the construction of solution to problem (2.12).

Theorem 4.1 Problem (3.4) has a unique solution v(y, t) ∈ W 2,1
p, loc(Qy)∩C(Qy∪{t = 0, T})

for any p > 2. Moreover, under Condition I and II,

ψ(y) ≤ v ≤M
1

1−γ
1− γ
γ

e
B

1−γ (T−t)y
γ
γ−1 + g(0), (4.1)

vt ≤ 0, (4.2)

vy ≤ 0, (4.3)

vyy ≥ 0, (4.4)

where, M , B are defined in (2.5) and (2.17), respectively.

Proof: According to the results of existence and uniqueness of W 2,1
p solutions[19], the

solution of system (3.4) can be proved by a standard penalty method(see Friedman [10]).

Furthermore, by Sobolev embedding theorem,

vy ∈ C(Qy), (4.5)

and the method of [10] further gives

vt ∈ C(Qy), (4.6)

here, we omit the details. The first inequality in (4.1) follows from (3.4) directly, we now

prove the second inequality in (4.1).

Denote

w(y, t) = M
1

1−γ
1− γ
γ

e
B

1−γ (T−t)y
γ
γ−1 + g(0),

then

−wt −
a2

2
y2wyy − (β − r)ywy + βw

= M
1

1−γ
1− γ
γ

e
B

1−γ (T−t)y
γ
γ−1

( B

1− γ
− a2

2

( γ

γ − 1

)( γ

γ − 1
− 1
)
− (β − r)

( γ

γ − 1

)
+ β

)
+ βg(0)

= M
1

1−γ
1

γ
e

B
1−γ (T−t)y

γ
γ−1

(
B − a2

2

γ

1− γ
− rγ + β

)
+ βg(0)

≥ 0,
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and w(y, T ) = M
1

1−γ 1−γ
γ
y

γ
γ−1 + g(0) ≥ ψ(y)(see (3.1)). Using the comparison principle of

variational inequality (see Friedman [10]), we know that w is a super solution of (3.4).

Next we prove (4.2). Let ṽ(y, t) = v(y, t− δ) for small δ > 0, then ṽ satisfies{
min{−ṽt − a2

2
y2ṽyy − (β − r)yṽy + βṽ, ṽ − ψ(y)} = 0, y > 0, δ < t < T,

ṽ(y, T ) ≥ ψ(y), y > 0.

Hence, by the comparison principle, we have ṽ ≥ v, i.e. vt ≤ 0.

Define

εRy = {(y, t) ∈ Qy|v = ψ}, exercise region,

CRy = {(y, t) ∈ Qy|v > ψ}, continuation region.

Note that (ym)m=1,2... are the discontinuous points of ψ′(y) and ψ′′(y). Now, we claim

(ym, t), m = 1, 2..., t ∈ (0, T ) could not be contained in εRy. Otherwise, if (ym, t) ∈ εRy for

some m and t < T , then it belongs to the minimum points of v − ψ(y), thus vy(ym−, t) ≤
ψ′(ym−) < ψ′(ym+) ≤ vy(ym+, t), which implies vy does not continue at the point (ym, t),

that contradicts (4.5).

Here, we present the proof of (4.3) and (4.4). Recall that

ψ′ ≤ 0, ψ′′ ≥ 0, y 6= ym, m = 1, 2....

Note that

vy = ψ′ ≤ 0, (y, t) ∈ εRy. (4.7)

Taking the derivative for the following equation

−vt −
a2

2
y2vyy − (β − r)yvy + βv = 0 in CRy

with respect to y leads to

−∂tvy −
a2

2
y2∂yyvy − (a2 + β − r)y∂yvy + rvy = 0 in CRy. (4.8)

Note that vy = ψ′ ≤ 0 on ∂(CRy), where ∂(CRy) is the boundary of CRy in the interior of

Qy, using the maximum principle we obtain

vy ≤ 0, (y, t) ∈ CRy (4.9)

(4.7) and (4.9) yields (4.3).
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In addition, ψ′′(y) ≥ 0 and v(y, t) ≥ ψ(y) implies

lim
CRy3y→∂(CRy)

vyy(y, t) ≥ 0.

and vyy(y, T ) = ψ′′ ≥ 0. Taking the derivative for equation (4.8) with respect to y, we have

−∂tvyy −
a2

2
y2∂yyvyy − 2a2y∂yvyy + (r − a2)vyy = 0 in CRy.

Using the maximum principle, we obtain

vyy ≥ 0 in CRy. (4.10)

Together with vyy ≥ ψ′′(y) ≥ 0 in εRy we have (4.4). �

5 The solution to original problem (2.12)

Thanks to the properties of solution to problem (3.4), we could construct the solution to

(2.12). Before that, we should research a spacial free boundary line

f(t) := inf{y > 0|v(y, t) = g(0)}.

We will prove that f(t) = V̂x(0, t) in Theorem 5.4, where V̂ is the solution to (2.12) defined

in (5.8).

Define

k := inf{y > 0|ψ(y) = g(0)}.

Note that ψ(y) = g(0), i.e. max
x≥0

(ϕ(x)− xy) = ϕ(0) is equivalent to y ≥ ϕ′(0), thus

k = ϕ′(0),

and v(y, t) ≥ ψ(y) implies

f(t) ≥ k.

Lemma 5.1 Under Condition I-III, the solution to (3.4) satisfies

vyy > 0, 0 < y < f(t), 0 < t < T. (5.1)

Proof: Apply strong maximum principle,

vyy > 0 in CRy,

14



Since v − ψ takes minimal value 0 in εRy, thus

vyy ≥ ψ′′ in εRy.

For (y, t) ∈ εRy ∩ {0 < y < f(t)}, by the definition of f(t) and k, we have εRy ∩ {k < y <

f(t)} = ∅, so (y, t) ∈ εRy ∩ {0 < y < k}. Since y 6= ym ∀m ∈ Z+(see the prove of Theorem

4.1),

vyy ≥ ψ′′(y) = −[−ψ′(y)]′ = −[(ϕ′)−1(y)]′ = − 1

ϕ′′(−ψ′(y))
= − 1

g′′(−ψ′(y))
> 0,

the last inequality is due to Condition III. Then (5.1) follows. �

Lemma 5.2 Under Condition I-III, the solution to (3.4) satisfies

lim
y→0+

vy(y, t) = −∞, 0 < t < T, (5.2)

lim
y→f(t)−

vy(y, t) = 0, 0 < t < T. (5.3)

Proof: For any t ∈ (0, T ), it is not hard to see that lim
y→0+

v(y, t) ≥ lim
y→0+

ψ(y) = +∞(see

(3.2)), and by vyy ≥ 0, thus for some fix y0 > 0,

vy(y, t) ≤
v(y0, t)− v(y, t)

y0 − y
→ −∞, y → 0 + .

Let us prove (5.3). If f(t) < +∞, the results follows from the continuity of vy and

vy(y, t) = ψ′(y) = 0 for y > f(t); If f(t) = +∞, owing to vyy > 0 for any y > 0, there exists

vy(y, t) ≥
v(y, t)− v(y

2
, t)

y
2

.

Using (4.1),

vy(y, t) ≥
ψ(y)− g(0)−M

1
1−γ eA(T−t) 1−γ

γ

(
y
2

) γ
γ−1

y
2

≥ −Cy
1

γ−1 → 0, y → +∞.

Combine with vy ≤ 0, we obtain (5.3). �

Thanks to Lemma 5.1 and Lemma 5.2, we can define a transformation

y = J(x, t) =

{
(vy(·, t))−1(−x), for x > 0;
f(t), for x = 0,

, 0 < t < T, (5.4)

then we have

J(x, t) ∈ C((0,+∞)× (0, T )). (5.5)
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Lemma 5.3 The function J(x, t) defined in (5.4) satisfies

lim
x→0+

J(x, t) = f(t), 0 < t < T, (5.6)

lim
x→+∞

J(x, t) = 0, 0 < t < T. (5.7)

Proof: (5.6) and (5.7) are the results of (5.3) and (5.2), respectively. �

Now, we set

V̂ (x, t) = min
y≥0

(v(y, t) + xy). (5.8)

From Lemma 5.1 and Lemma 5.2, it is easily seen that J(x, t) ∈ arg min
y>0

(v(y, t) + xy) for all

(x, t) ∈ Qx, thus

V̂ (x, t) = v(J(x, t), t) + xJ(x, t), (x, t) ∈ Qx. (5.9)

Theorem 5.4 V̂ which is defined in (5.9) is the solution to (2.12) satisfying (2.13)-(2.16)

and the following estimations

ϕ(x) ≤ V̂ (x, t) ≤ g(0) +MeB(T−t) 1

γ
xγ, (5.10)

V̂t ≤ 0, (5.11)

V̂x > 0, (5.12)

V̂xx < 0. (5.13)

Moreover,

lim
x→0+

V̂x(x, t) = f(t), lim
x→+∞

V̂x(x, t) = 0, ∀t ∈ (0, T ).

Proof: Firstly, due to the first inequlity in (4.1),

V̂ (x, t) = min
y>0

(v(y, t) + xy) ≥ min
y>0

(ψ(y) + xy) ≥ ϕ(x).

Due to the second inequlity in (4.1),

V̂ (x, t) ≤ min
y>0

(
M

1
1−γ

1− γ
γ

e
B

1−γ (T−t)y
γ
γ−1 + g(0) + xy

)
= g(0) +MeB(T−t) 1

γ
xγ.

In addition

V̂x(x, t) = vy(J(x, t), t)Jx(x, t) + xJx(x, t) + J(x, t) = J(x, t) ≥ 0, (5.14)

V̂xx(x, t) = Jx(x, t) = ∂x[(vy(·, t))−1(x)] =
−1

vyy(J(x, t), t)
< 0, (5.15)

V̂t(x, t) = vy(J(x, t), t)Jt(x, t) + vt(J(x, t), t) + xJt(x, t) = vt(J(x, t), t) ≤ 0, (5.16)
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So

lim
x→0+

V̂x(x, t) = lim
x→0+

J(x, t) = f(t), 0 < t < T.

lim
x→+∞

V̂x(x, t) = lim
x→+∞

J(x, t) = 0, 0 < t < T.

Together with (5.5), (5.8), (5.14), (5.15), (5.16), (4.6) and (5.1) imply (2.13)-(2.16).

Now, we verify V̂ is the solution to (2.12). Firstly, taking limits x → 0+ to (5.10), the

boundary condition V̂ (0+, t) = g(0) holds.

Secondly, thanks to (4.1), which implies v(y, t) ≥ ψ(y), Note that

V̂ (x, t) = min
y≥0

(v(y, t) + xy) ≤ v(ϕ′(x), t) + xϕ′(x).

Let t→ T− we get

lim sup
t→T−

V̂ (x, t) ≤ lim
t→T−

v(ϕ(x), t) + xϕ(x) = ψ(ϕ′(x)) + xϕ′(x) = ϕ(x). (5.17)

together with V̂ (x, t) ≥ ϕ(x), the terminal condition

lim
t→T−

V̂ (x, t) = ϕ(x)

is met. Thirdly, we come to verify the variational inequality in (2.12). Due to (5.14), (5.15)
and (5.16),(
− V̂t +

a2

2

V̂ 2
x

V̂xx
− rxV̂x + βV̂

)
(x, t) =

(
− vt −

a2

2
y2vyy − (β − r)yvy + βv

)
(J(x, t), t) ≥ 0,(5.18)

together with the first ineqality in (5.10), we have

min
{
− V̂t +

a2

2

V̂ 2
x

V̂xx
− rxV̂x + βV̂ , V̂ − ϕ

}
≥ 0 in Qx.

It remains to prove that

V̂ (x, t) > ϕ(x)⇒
(
− V̂t +

a2

2

V̂ 2
x

V̂xx
− rxV̂x + βV̂

)
(x, t) = 0. (5.19)

Before that we first claim

V̂ (x, t) > ϕ(x)⇒ v(J(x, t), t) > ψ(J(x, t)). (5.20)

If v(J(x, t), t) = ψ(J(x, t)), then

x = −vy(J(x, t), t) = −ψ′(J(x, t)),
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so

J(x, t) = (ψ′)−1(−x),

V̂ (x, t) = v(J(x, t), t) + xJ(x, t) = ψ((ψ′)−1(−x)) + x(ψ′)−1(−x) = ϕ(x).

So we have (5.20).

Combining with (5.20), the variational inequality in (3.4) and (5.18) yields

V̂ (x, t) > ϕ(x)

⇒ v(J(x, t), t) > ψ(J(x, t))

⇒
(
− vt − a2

2
y2vyy − (β − r)yvy + βv

)
(J(x, t), t) = 0

⇒
(
− V̂t + a2

2
V̂ 2
x

V̂xx
− rxV̂x + βV̂

)
(x, t) = 0.

Therefore, V̂ (x, t) satisfies the variational inequality in (2.12). So far, we have proved V̂ (x, t)

is the solution to (2.12). �

6 An Example: Stopping Problem of a Call Option

with Risk Averse Utility

Consider the manager’s wealth at the terminal date T is the payoff of a call option on the

assets plus a constant K > 0, that includes fixed compensation and personal wealth, suppose

the strike price is b > 0, so the wealth at T is

WT = (XT − b)+ +K.

The manager chooses an investment policy to maximize his expected utility of wealth at

T . His utility function U on behavior of risk averse, is strictly increasing, strictly concave

function

U(W ) =
1

γ
W γ

with 0 < γ < 1.

So in this model,

g(x) := U((x− b)+ +K) =
1

γ
((x− b)+ +K)γ.

It is straightforward to verify that it meets Condition I-III. Its concave hull

ϕ(x) =

{
kx+ 1

γ
Kγ, 0 < x < x̂,

1
γ
(x− b+K)γ, x ≥ x̂,
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where k and x̂ satisfy {
kx̂+ 1

γ
Kγ = 1

γ
(x̂− b+K)γ,

k = (x̂− b+K)γ−1.
(6.1)

see Figure 6.1.

-

6

Utility

ϕ(x)

b
q

x̂
q

x

1
γ
[(x− b)+ +K]γ

@R

�

Fig 6.1 ϕ(x).

1
γ
Kγ

6.1 The free boundary to (3.4)

The duel transformation of ϕ(x):

ψ(y) = max
x≥0

(ϕ(x)− xy), y > 0,

can be obtain by the following derivation:

The optimal x to fix y, which we denote by xϕ(y), is

xϕ(y) =


y

1
γ−1 − (K − b), for 0 < y < k,

∈ [0, x̂], for y = k,

0, for y > k.

So we have

ψ(y) = ϕ(xϕ(y))− xϕ(y)y

=

{
1−γ
γ
y

γ
γ−1 + (K − b)y, for 0 < y < k,

1
γ
Kγ, for y ≥ k,

(6.2)

(see Fig. 6.2).

19



-

6 ψ(y)

k

q
y

1
γ
Kγ

Fig. 6.2. ψ(y)

Note that k is the discontinuous point of ψ′ and ψ′′, thus (k, t) ∈ εRy. (see the proof of

Theorem 4.1). Now we define the free boundaries to (3.4) that

q(t) = inf{y ∈ [0, k]|v(y, t) = ψ(y)}, 0 < t < T, (6.3)

p(t) = sup{y ∈ [0, k]|v(y, t) = ψ(y)}, 0 < t < T, (6.4)

f(t) = inf{y ∈ [k,+∞)|v(y, t) = ψ(y)}, 0 < t < T. (6.5)

Owing to ∂t(v(y, t)− ψ(y)) = vt ≤ 0, functions q(t) and f(t) are decreasing in t and p(t) is

increasing in t.

Substituting the first expression in (6.2) into the equation in (3.4) yields

−∂tψ −
a2

2
y2∂yyψ − (β − r)y∂yψ + βψ

=
a2

2

( γ

γ − 1
− 1
)
y

γ
γ−1 − (β − r)y

[
− y

1
γ−1 + (K − b)

]
+ β

[1− γ
γ

y
γ
γ−1 + (K − b)y

]
=

(β − rγ
γ

− a2

2

1

1− γ

)
y

γ
γ−1 + r(K − b)y, y < k, (6.6)

and noting that

−∂tψ −
a2

2
y2∂yyψ − (β − r)y∂yψ + βψ =

β

γ
Kγ > 0, y > k.

Denote the right hand side of (6.6) by Ψ(y). i.e.

Ψ(y) :=
(β − rγ

γ
− a2

2

1

1− γ

)
y

γ
γ−1 + r(K − b)y.

It is not hard to see that

εRy ⊂ [{Ψ(y) ≥ 0, y < k} ∪ (k,+∞)]× (0, T ). (6.7)
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Lemma 6.1 The set εRy is expressed as

εRy = {(y, t) ∈ Qy|q(t) ≤ y ≤ p(t)} ∪ {(y, t) ∈ Qy|y ≥ f(t)}. (6.8)

Proof: By the definitions of q(t), p(t) and f(t), we get

εRy ⊂ {(y, t) ∈ Qy|q(t) ≤ y ≤ p(t)} ∪ {(y, t) ∈ Qy|y ≥ f(t)}.

Now, we prove

Ω := {(y, t) ∈ Qy|q(t) ≤ y ≤ p(t)} ⊂ εRy. (6.9)

Since {(q(t), t), (p(t), t)} ∩ Qy ⊂ εRy ∩ {y < k} ⊂ {Ψ ≥ 0} and {Ψ ≥ 0} is a connected

region, we have

Ω ⊂ {Ψ ≥ 0}.

Assume that (6.9) is false, since CRy is an open set, there exists its open subset N such that

N ⊂ Ω and ∂pN ⊂ εRy, where ∂pN is the parabolic boundary of N . Thus,
−vt −

a2

2
y2vyy − (β − r)yvy + βv = 0 in N ,

−ψt −
a2

2
y2ψyy − (β − r)yψy + βψ ≥ 0 in N ,

v = ψ on ∂pN .

(6.10)

By the comparison principle, v ≤ ψ in N , which implies N = ∅.
Similar proof yields

{(y, t) ∈ Qy|y ≥ f(t)} ⊂ εRy.

Therefore, the desired result (6.8) holds. �

Thanks to Lemma 6.1, q(t), p(t) and f(t) are three free boundaries of (3.4).

Theorem 6.2 The free boundaries q(t), p(t) and f(t) ∈ C∞(0, T ) and have the following

classification

Case I: β ≥ a2

2
γ

1−γ + rγ, Ψ(k) ≥ 0.

q(t) ≡ 0 ≤ p(t) ≤ p(T−) = k = f(T−) ≤ f(t),

see Fig 6.3.

Case II: β ≥ a2

2
γ

1−γ + rγ, Ψ(k) < 0.
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If β > a2

2
γ

1−γ + rγ,

q(t) ≡ 0 ≤ p(t) ≤ p(T−) =
( −r(K − b)
β−rγ
γ
− a2

2
1

1−γ

)γ−1
< k = f(T−) ≤ f(t),

see Fig 6.4.

If β = a2

2
γ

1−γ + rγ,

εRy ∩
(

(0, k)× (0, T )
)

= ∅, k = f(T−) ≤ f(t),

see Fig 6.6.

Case III: β < a2

2
γ

1−γ + rγ, Ψ(k) > 0.( −r(K − b)
β−rγ
γ
− a2

2
1

1−γ

)γ−1
= q(T−) ≤ q(t) ≤ p(t) ≤ p(T−) = k = f(T−) ≤ f(t),

see Fig 6.5.

Case IV: β < a2

2
γ

1−γ + rγ, Ψ(k) ≤ 0.

εRy ∩ (0, k)× (0, T ) = ∅, k = f(T−) ≤ f(t),

see Fig 6.6.

-

6T kq
εRy CRy εRy

p(t) f(t)

y

Fig 6.3. β ≥ a2

2
γ

1−γ + rγ, Ψ(k) ≥ 0.

-

6T kq
εRy CRy εRy

yT

y

p(t) f(t)

Fig 6.4. β > a2

2
γ

1−γ + rγ, Ψ(k) < 0.

-

6T k

CRy εRy

yT

y

p(t) f(t)q(t)

Fig 6.5. β < a2

2
γ

1−γ + rγ, Ψ(k) > 0.

-

6T k q
εRy

CRy

εRy
CRy

y

f(t)

Fig 6.6. β < a2

2
γ

1−γ + rγ, Ψ(k) ≤ 0,

or β = a2

2
γ

1−γ + rγ, Ψ(k) < 0.

.

Proof: By the method of [10], we could prove q(t), p(t), f(t) ∈ C∞(0, T ), we omit the

details.
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Here, we only prove the results in Case II, the remaining situations are similar. If

β > a2

2
γ

1−γ + rγ and Ψ(k) < 0, then K < b, Denote yT =
(

−r(K−b)
β−rγ
γ
−a2

2
1

1−γ

)γ−1
, then Ψ(k) < 0

implies yT < k. By (6.7) and {Ψ ≥ 0} = (0, yT ],

εRy ⊂
(

(0, yT ] ∪ (k,∞)
)
× (0, T ).

thus

0 ≤ q(t) ≤ p(t) ≤ yT < k ≤ f(t).

Now, we prove q(t) ≡ 0. Set N := {(y, t)|0 < y ≤ q(t), 0 < t < T}. It follows from

(6.10) that we have v ≤ ψ in N . By the definition of q(t), N = ∅ as well as q(t) ≡ 0.

Here, we aim to prove f(T−) := lim
t↑T

f(t) = k. Otherwise, if k < f(T−), then there exists

a contradiction that

0 = −vt −
a2

2
y2vyy − (β − r)yvy + βv

= −vt −
a2

2
y2ψyy − (β − r)yψy + βψ = −∂tv +

1

γ
Kγ > 0, k < y < f(T−), t = T.

So f(T−) = k. The proof of p(T−) = yT is similar that if p(T−) < yT , there exists

contradiction

0 = −vt −
a2

2
y2vyy − (β − r)yvy + βv

= −vt −
a2

2
y2ψyy − (β − r)yψy + βψ = −∂tv + Ψ(y) > 0, p(T−) < y < yT , t = T.

If β = a2

2
γ

1−γ + rγ and Ψ(k) < 0, then K < b as well as Ψ(y) < 0 for all 0 < y < k, thus

(0, k]× (0, T ) ⊂ CRy, so q(t), p(t) do not exist. �

6.2 The free boundary to original problem (2.12)

Now, we discuss the free boundary of (2.12). Define

εRx = {V̂ = ϕ}, exercise region,

CRx = {V̂ > ϕ}, continuation region.

And

Q(t) = sup{x > 0|V̂ (x, t) = ϕ(x)}, 0 < t < T,

P (t) = inf{x > 0|V̂ (x, t) = ϕ(x)}, 0 < t < T.
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On the two free boundaries y = q(t) and y = p(t),

v(y, t) =
1− γ
γ

y
γ
γ−1 + (K − b)y,

vy(y, t) = −y
1

γ−1 + (K − b).

Note that

x = −vy(y, t). (6.11)

Then the corresponding two free boundaries of (2.12) are

Q(t) = −vy(q(t), t) = q(t)
1

γ−1 − (K − b),

P (t) = −vy(p(t), t) = p(t)
1

γ−1 − (K − b).

Moreover

Q′(t) =
1

γ − 1
q(t)

1
γ−1
−1q′(t) ≥ 0,

P ′(t) =
1

γ − 1
p(t)

1
γ−1
−1p′(t) ≤ 0,

and

Q(T−) = q(T−)
1

γ−1 − (K − b),

P (T−) = p(T−)
1

γ−1 − (K − b).

On the other hand, by (5.14) and (5.6),

V̂x(0, t) = J(0, t) = (v(·, t))−1(0) = f(t).

The above analysis conclude that

Theorem 6.3 The two free boundaries of (2.12): Q(t), P (t) ∈ C∞(0, T ) and Q′(t) ≥
0, P ′(t) ≤ 0, V̂x(0, t) = f(t). Moreover, they have the following classification.

Case I: β ≥ a2

2
γ

1−γ + rγ, Ψ(k) ≥ 0.

Q(t) ≡ +∞, k
1

γ−1 − (K − b) = P (T−) ≤ P (t),

i.e.

Q(t) ≡ +∞, x̂ = P (T−) ≤ P (t),

see Fig 6.7.
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Case II: β ≥ a2

2
γ

1−γ + rγ, Ψ(k) < 0.

If β > a2

2
γ

1−γ + rγ,

Q(t) ≡ +∞, yT =
( −r(K − b)
β−rγ
γ
− a2

2
1

1−γ

)
− (K − b) = P (T−) < P (t),

see Fig 6.8.

If β = a2

2
γ

1−γ + rγ,

εRx = ∅,

see Fig 6.10.

Case III: β < a2

2
γ

1−γ + rγ, Ψ(k) > 0.

k
1

γ−1 − (K − b) = P (T−) ≤ P (t) ≤ Q(t) ≤ Q(T−) =
( −r(K − b)
β−rγ
γ
− a2

2
1

1−γ

)
− (K − b),

see Fig 6.9.

Case IV: β < a2

2
γ

1−γ + rγ, Ψ(k) ≤ 0.

εRx = ∅,

see Fig 6.10.

-

6T x̂ q
CRx εRx

x

P (t)

Fig 6.7. β ≥ a2

2
γ

1−γ + rγ, Ψ(k) ≥ 0.

-

6

T

CRx εRx

x

x̂q
P (t)

Fig 6.8. β > a2

2
γ

1−γ + rγ, Ψ(k) < 0.

-

6T x̂q q
εRx

CRxCRx

x

P (t) Q(t)

Fig 6.9. β < a2

2
γ

1−γ + rγ, Ψ(k) > 0.

-

6T

CRx

x

Fig 6.10. β < a2

2
γ

1−γ + rγ, Ψ(k) ≤ 0,

or β = a2

2
γ

1−γ + rγ, Ψ(k) < 0.
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7 Conclusions

In this paper we adopt dual method of partial differential equations, to obtain the existence

of solution to fully nonlinear problem (2.12) under the utility function g(x) is non-smooth,

non-concave (under Condition I-III). Meanwhile, we present a new method to study the

free boundaries while the exercise region is not connected (see (6.3)-(6.5) and Lemma 6.1)

so that we can shed light on the behaviors of the free boundaries for a fully nonlinear

variational inequality without any restrictions on parameters (see Figure 5.1-5.4.). The

financial meaning is that if at time t, investor’s wealth x is located in CRx, then he should

continue to invest; and if investor’s wealth x is located in εRx, then he should stop to

investing.
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Appendix A

In this section, we prove Theorem 2.1. It can be accomplished by the following two lemmas.

Lemma A.1 Under Condition II, the value function defined in (2.3) satisfies

lim sup
t→T−

V (x, t) ≤ ϕ(x). (A.1)

Proof: Define

ζs = e−(r+
1
2
µ′(σ′σ)−1µ)s−µ′σ−1Ws ,

then

dζs = ζs[−rds− µ′σ−1dWs]

and

d(ζsXs) = ζsdXs +Xsdζs + dζsdXs

= ζs[(rXs + µ′πs)ds+ π′sσdWs − rXsds− µ′σ−1XsdWs − (µ′σ−1)(π′sσ)′ds]

= ζs[π
′
sσ − µ′σ−1Xs]dWs. (A.2)

Thus, ζsXs is a martingale. For any admissible π, by Jensen’s inequality, we have

Et,xϕ
(ζT
ζt
XT

)
≤ ϕ

(
Et,x
(ζT
ζt
XT

))
= ϕ(x).

Then

lim sup
t→T−

sup
π

Et,xϕ
(ζT
ζt
XT

)
≤ ϕ(x). (A.3)

We come to prove

lim
t→T−

sup
π

Et,x
∣∣∣ϕ(XT )− ϕ

(ζT
ζt
Xτ

)∣∣∣ = 0. (A.4)

For any admissible π, since

|ϕ(x)− ϕ(y)| ≤ C|x− y|γ,

where, C = M/γ,

Et,x
∣∣∣ϕ(XT )− ϕ

(ζT
ζt
XT

)∣∣∣ ≤ CEt,x
((ζT

ζt
XT

)γ∣∣∣ ζt
ζT
− 1
∣∣∣γ).
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Using Hölder inequality, we obtain

Et,x
∣∣∣ϕ(XT )− ϕ

(ζT
ζt
XT

)∣∣∣ ≤ C
(
Et,x
(ζT
ζt
XT

))γ(
Et,x
∣∣∣ ζt
ζT
− 1
∣∣∣ γ
1−γ
)1−γ

≤ Cxγ
(
Et,x
∣∣∣ ζt
ζT
− 1
∣∣∣ γ
1−γ
)1−γ

.

Hence,

lim
t→T−

sup
π

Et,x
∣∣∣ϕ(XT )− ϕ

(ζT
ζt
XT

)∣∣∣ ≤ Cxγ lim
t→T−

(
Et,x
∣∣∣ ζt
ζT
− 1
∣∣∣ γ
1−γ
)1−γ

= 0.

Therefore,

lim sup
t→T−

V (x, t) = lim sup
t→T−

sup
π

Et,x
[
e−r(τ−t)g(Xτ )

]
≤ lim sup

t→T−
sup
π

Et,xϕ(Xτ )

≤ lim sup
t→T−

sup
π

Et,xϕ
(ζτ
ζt
Xτ

)
+ lim

t→T−
sup
π

Et,x
∣∣∣ϕ(Xτ )− ϕ

(ζτ
ζt
Xτ

)∣∣∣
≤ ϕ(x).

�

Lemma A.2 Under Condition II, the value function defined in (2.3) satisfies

lim inf
t→T−

V (x, t) ≥ ϕ(x). (A.5)

Proof: For fix t < T , if x ∈ {ϕ(x) = g(x)}, then

V (x, t) ≥ g(x) = ϕ(x).

So lim inf
t→T−

V (x, t) ≥ ϕ(x).

Otherwise, if x ∈ (xm, xm) for a m ∈ Z, choose πs to let the coefficient of (A.2) that

ζs
ζt

[π′sσ − µ′σ−1Xs] = (πNs )′ := Nχ{
xm<

ζs
ζt
Xs<xm

}I ′n, ∀ N > 0,

where In is an n-dimensional unit column vector. Let XN
s = ζs

ζt
Xs. Then using (A.2) we

have

dXN
s = (πNs )′dWs, t ≤ s ≤ T.

It is not hard to obtain

xm ≤ XN
s ≤ xm, t ≤ s ≤ T,
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and since

{xm < XN
T < xm} = {xm < XN

s = x+NI ′n(Ws −Wt) < xm, t ≤ s ≤ T}

⊂ {xm < x+NI ′n(WT −Wt) < xm},

we have

P(xm < XN
T < xm) ≤ P(xm < x+NI ′n(WT −Wt) < xm)→ 0, N →∞.

So

xmP(XN
T = xm) + xmP(XN

T = xm)→ Et,xXN
T = x, N →∞.

Therefore,

lim
N→∞

P(XN
T = xm) =

xm − x
xm − xm

, lim
N→∞

P(XN
T = xm) =

x− xm
xm − xm

.

As a result,

lim
N→∞

Et,xg(XN
T ) =

xm − x
xm − xm

g(xm) +
x− xm
xm − xm

g(xm) = ϕ(x).

So

sup
π

Et,x
(
g
(ζT
ζt
XT

))
≥ lim

N→∞
Et,xg(XN

T ) = ϕ(x).

Meanwhile, similar to (A.4), we have

lim
t→T−

sup
π

Et,x
∣∣∣g(XT )− g

(ζT
ζt
XT

)∣∣∣ = 0.

Hence,

lim inf
t→T−

V (x, t) ≥ lim inf
t→T−

sup
π

Et,x
(
g(XT )

)
≥ lim inf

t→T−
sup
π

Et,x
(
g
(ζT
ζt
XT

))
− lim

t→T−
sup
π

Et,x
∣∣∣g(XT )− g

(ζT
ζt
XT

)∣∣∣
≥ ϕ(x).

�
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Appendix B

In this section, we will prove V̂ (x, t) (the solution of (2.12)) is the value function V (x, t) (de-

fined in (2.3)). To this end, we first introduce the following so called dynamic programming

principle. For any stopping time θ (t ≤ θ ≤ T ),

V (x, t) = sup
π,τ≥t

Et,x
[
e−β(τ−t)g(Xτ )χ{θ>τ} + e−β(θ−t)V (Xθ, θ)χ{θ≤τ}

]
. (B.1)

Lemma B.1 V (x, t) which is defined in (2.3) satisfies

V (x, t) ≥ sup
π,τ≥t

Et,x
[
e−β(τ−t)g(Xτ )χ{τ<T} + e−β(T−t)ϕ(XT )χ{τ=T}

]
.

Proof: For any (Xs, πs) satisfies (2.2) and π ∈ Πt. Choose θ = T − ε in (B.1) we have

V (x, t) ≥ Et,x
[
e−β(τ−t)g(Xτ )χ{T−ε>τ} + e−β(T−ε−t)V (XT−ε, T − ε)χ{T−ε≤τ}

]
. (B.2)

Letting ε→ 0,

V (x, t) ≥ Et,x
[
e−β(τ−t)g(Xτ )χ{τ<T} + e−β(T−t)V (XT−, T−)χ{τ=T}

]
.

By using Theorem 2.1, we have

V (x, t) ≥ Et,x
[
e−β(τ−t)g(Xτ )χ{τ<T} + e−β(T−t)ϕ(XT )χ{τ=T}

]
.

Since π and τ are arbitrary, we complete the proof. �

Theorem B.2 Suppose V̂ (x, t) is the solution to problem (2.12) satisfies (2.13)-(2.16),

V̂ (x, t) is the value function defined in (2.3), then

V̂ (x, t) = V (x, t).

Proof: For any admissible π ∈ Πt, suppose Xs satisfies (2.2), by Itô formula,

d[e−βsV̂ (Xs, s)] = e−βs
[
− βV̂ (Xs, s) + V̂t(Xs, s) + (rXs + µ′πs)V̂x(Xs, s)

+
1

2
π′s(σσ

′)πsV̂xx(Xs, s)
]
ds+ e−βsV̂x(Xs, s)π

′
sσdWs.
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Thus, for any stopping time τ (t ≤ τ ≤ T ),

V̂ (x, t) = Et,x[e−β(τ−t)V̂ (Xτ , τ)] + Et,x
[ ∫ τ

t

e−β(s−t)
(
βV̂ − V̂t − (rXs + µπs)V̂x

−1

2
π′s(σσ

′)πsV̂xx

)
(Xs, s)ds

]
+ Et,x

[ ∫ τ

t

e−βsV̂x(Xs, s)π
′
sσdWs

]
≥ Et,x[e−β(τ−t)V̂ (Xτ , τ)] + Et,x

[ ∫ τ

t

e−β(s−t)
(
− V̂t − sup

π

(1

2
π′(σσ′)πV̂xx + µ′πV̂x

)
−rXsV̂x + βV̂

)
(Xs, s)ds

]
≥ Et,x[e−β(τ−t)ϕ(Xτ )]

≥ Et,x[e−β(τ−t)g(Xτ )].

Since π and τ are arbitrary, we have V̂ (x, t) ≥ V (x, t).

On the other hand, define

π̂(x, t) := −(σσ′)−1µ
V̂x(x, t)

V̂xx(x, t)
.

Let X∗s be the solution of the following SDE,{
dXs = (rXs + µ′π̂(Xs, s))ds+ π̂(Xs, s)

′σdWs,
Xt = x,

and let

τ ∗ = inf{s ∈ [t, T ]| V̂ (X∗s , s) = ϕ(X∗s )}, π∗s = π̂(X∗s , s).

By Itô formula,

V̂ (x, t) = Et,x[e−β(τ
∗−t)V̂ (X∗τ∗ , τ

∗)] + Et,x
[ ∫ τ∗

t

e−β(s−t)
(
βV̂ − V̂t − (rX∗s + µπ∗s)V̂x

−1

2
π∗s
′(σσ′)π∗s V̂xx

)
(X∗s , s)ds

]
+ Et,x

[ ∫ τ∗

t

e−βsV̂x(X
∗
s , s)π

ε′
s σdWs

]
= Et,x[e−β(τ

∗−t)ϕ(X∗τ∗)].

Note that by the result in Section 6, εRx ⊂ {x ≥ x̂}, i.e. {V̂ (x, t) = ϕ(x)} = {V̂ (x, t) =

g(x)} for any t < T , thus

V̂ (x, t) ≤ Et,x[e−β(τ
∗−t)ϕ(X∗τ∗)χ{τ<T} + ϕ(X∗T )χ{τ=T}]

= Et,x[e−β(τ
∗−t)g(X∗τ∗)χ{τ<T} + ϕ(X∗T )χ{τ=T}].

Thanks to Lemma B.1, we have V̂ (x, t) ≤ V (x, t). �
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