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Abstract

We consider sample size calculation to obtain sufficient estimation precision and

control the length of confidence intervals under high dimensional assumptions.

In particular, we intend to provide more general results for sample size determi-

nation when a large number of parameter values need to be computed for a fixed

sample. We consider three design approaches: normal approximation, inequal-

ity method and regression method. These approaches are applied to sample

size calculation in estimating the Net Reclassification Improvement (NRI) and

the Integrated Discrimination Improvement (IDI) for a diagnostic or screening

study. Two medical examples are also provided as illustration. Our results sug-

gest the regression method in general can yield a much smaller sample size than

other methods.

Keywords: Bernstein inequality, Bonferroni inequality, IDI, NRI, Sample size

calculation, Training sample

1. Introduction

Diagnostic or screening tests are used to detect the patient disease status in

medical practice. The accuracy of these tests may be assessed by all kinds of
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traditional statistical methods such as sensitivity and specificity (Zhou, Obu-

chowski and McClish, 2011). In recent population studies it becomes more and5

more imperative to evaluate the accuracy gain when new information such as

new biomarker or new model structure has been added into the existing diag-

nostic procedure. In practice in order to study the general diagnostic accuracy

performance of statistical methods, we must obtain an appropriate data set with

a reasonable sample size. A study with inadequate sample size may not have10

sufficient statistical efficiency to achieve a meaningful finding. On the other

hand, it may be wasteful and unethical to conduct a study with too large a

sample size. There are abundant sample size calculation approaches for various

statistical problems; see for example Chow, Wang and Shao (2007). Within the

diagnostic medicine literature, one can find a comprehensive review for sample15

size calculation in chapter 6 of Zhou, Obuchowski and McClish (2011). Ad-

ditionally, Obuchowski and Zhou (2002) considered sample size calculation for

diseased and non-diseased subjects required for attaining a prespecified con-

ditional power to test hypotheses regarding diagnostic accuracy measures. Li

and Fine (2004) extended earlier sample size formula for case-control studies to20

prospective cohort studies and provided a justification for the commonly used

prevalence inflation method. Steinberg, Fine and Chappell (2009) investigat-

ed sample size methods for positive and negative predictive values which may

depend on the disease prevalence.

In general, sample size calculation is performed to meet certain optimality25

criteria, controlling either the Type I/II errors in a hypothesis test problem or

the length and confidence level of a confidence interval in an estimation problem

(Zhou, Obuchowski and McClish, 2011). Earlier authors (Pencina, D’agostino

and Demler, 2012; Leening et al., 2014) usually prefer the confidence interval

approach to make inference in lieu of the hypothesis test approach. In this paper30

we aim at designing the sample size to attain sufficient estimation precision and

controlling the length of confidence intervals, and we will focus on sample size

methods for the interval estimation.

Accuracy measures are frequently reported for biomarker studies where a
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large number of tests are evaluated simultaneously using the same data set. See35

Li and Fine (2008) and Li, Jiang and Fine (2013) for examples. Sample size

calculation thus needs to acknowledge the high-dimension feature of the data

set. A common approach is to use the asymptotic distribution of the estimator.

However, if the study does not admit very large number of subjects, asymptotic

approximation may be questionable. Without assuming the asymptotic distri-40

bution, van der Laan and Bryan (2001) proposed an inequality approach to

calculate sample size for the mean estimation using Bernstein’s inequality. This

method provides a bound for the sample size required for a fixed significance

level and only requires the existence of second order moments. We will adopt

a similar method of using probability inequalities to calculate the sample size45

needed to obtain certain estimation accuracy. We further propose a regression

approach when a training set is available. This approach may be less conserva-

tive than the normal approximation and the inequality approach. A regression

calibration method has been used recently in Dobbin and Song (2013) for the

estimation of regression coefficients in proportional hazards models. However,50

the authors considered a deterministic sample size computation under a very

complicated calibration model. In this paper, we propose three sample size cal-

culation approaches. The first approach is based on the normal approximation

while the second approach is based on the probability inequalities. These meth-

ods may lead to very large sample size requirement. A third approach based on55

regression calibration is also proposed and may provide more realistic sample

sizes in practice.

Pencina, D’agostino and Vasan (2008) proposed two quantitative criteria

based on reclassification to directly evaluate the extent which a new predictor

improves classification performance: the net reclassification improvement (NRI)60

and integrated discrimination improvement (IDI). These new statistics received

wide acceptance in health science research. Uno et al. (2013) and Li, Jiang and

Fine (2013) extended the formulation of NRI and IDI to failure time outcomes

and multicategory outcomes, respectively. Because the NRI and the IDI yield lu-

cid probability assess on diagnostic accuracy improvement, they have both been65
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widely reported and discussed in medical literature since their creation (Penci-

na, D’agostino and Vasan, 2008). Recently Steyerberg et al. (2010) assessed the

performance of prediction models using a variety of methods and metrics and

suggested that the NRI and the IDI can gain insight into the value of adding

a novel predictor to an established model; Pencina et al. (2012) compared the70

NRI, the IDI and the ROC curve under nested models and recommended to re-

port these three measures together to characterize the performance of the final

model as these three measures offered complementary information. Some au-

thors suggest combining these reclassification statistics with various calibration

measures and decision analytic measures to avoid spurious claims of improved75

prediction and erroneous clinical inference (Pencina, D’agostino and Steyerberg,

2011; Pencina, D’agostino and Demler, 2012; Leening et al., 2014; Kerr et al.,

2014). However, very little research work is available on the design of an epi-

demiological study for the estimation of the NRI and the IDI. As an application

of our approaches we obtain explicit sample size calculation for studies aiming80

to evaluate the NRI and the IDI.

In the rest of this paper we will first introduce three approaches for sample

size calculation, followed by extensive simulations results and two medical exam-

ples when these approaches are applied to evaluate the NRI and IDI estimation.

Some remarks will also be provided in the end of this paper.85

2. Methods

Suppose we are interested in estimating a parameter θ = (θ1, · · · , θp)T ∈ Rp

with a sample of size n where n << p. This is the so-called large-p-small-n

setting. We usually construct an estimator θ̂ = (θ̂n1, · · · , θ̂np)T from the sample

which may have nice asymptotic properties. The research question of this article90

is to design a sample size n such that the estimation errors of all the covariates

are bounded by ε with high probability 1− α.
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2.1. Method 1: Normal Approximation

In this section we assume that the distribution or asymptotic distributions

of
√
n
(
θ̂nj − θj

)
is N

(
0, σ2

j

)
for k = 1, · · · , p. This is achievable for many95

parameter estimation problems. We may use such asymptotic results to compute

the sample size. For large n, we have

P

(√
n|θ̂nj − θj |

σj
> zα/2

)
< α, (1)

where zα is the upper α quantile of the standard normal distribution. Let

ε = |θ̂nj − θj | be the anticipated error margin. We obtain the following sample

size formula100

n∗ =
z2α/2σ

2
j

ε2
. (2)

Using this formula ensures that the estimation error for θk is bounded by ε with

probability 1 − α. However, this formula is appropriate if we only study one

parameter (p = 1).

Now to extend the above formula for multiple parameters, we may apply the

Bonferroni inequality

P
(

maxj |θ̂nj − θj | > ε
)
≤

p∑
j=1

P
(
|θ̂nj − θj | > ε

)
,

and bound the error probability for each marker equally to be α/p. The jth

estimator satisfies105

P

(√
n|θ̂nj − θj |

σj
> zα/(2p)

)
≤ α/p, (3)

to achieve the overall error probability α. This leads to the generalization of

the sample size formula (2) to be

n∗ =
z2α/(2p)v

ε2
, (4)

where v = maxj σ
2
j .
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2.2. Method 2: Inequality

Sometimes it is not desirable to apply normal approximation using the cen-110

tral limit theorem. The symmetric unimodal distribution may not be an appro-

priate shape to describe the estimated parameters in finite samples, especially

when the true parameters are naturally bounded. To relax the distributional

conditions, we consider probability inequalities that provide a uniform bound

for the estimation error. These inequalities only need moment conditions and115

are more flexible in practical studies.

Suppose that each estimate may be written as θ̂nj = n−1
∑n
i=1 ψij where

ψij is an evaluable quantity computed from the ith subject such that |ψij | ≤M

for some constant M > 0 and limn→∞Eθ̂n,j = θj . We denote vj = E(ψij−θj)2

and v = max1≤j≤p vj .120

Bernstein. Using Bernstein’s inequality (Bennett, 1962), we have for the

jth estimator

P
(
|θ̂nj − θj | > ε

)
= P (|

∑n
i=1[ψij − θj ]| > nε) ≤ 2 exp

(
−nε2

2vj+2Mε3

)
.

To achieve an error probability bound α we may bound each estimation error

probability with α/p using the Bonferroni correction.125

Consequently we have the following sample size formula

n∗ =
2v + 2Mε

3

ε2

(
log p+ log

2

α

)
. (5)

Bennett. Using Bennett’s inequality (Bennett, 1962), we have for the jth

estimator,

P
(
|θ̂nj − θj | > ε

)
≤ 2 exp

(
−nε
M

[(1 +
vj
Mε

) log(1 +
Mε

vj
)− 1]

)
.

Note that right hand side of the above inequality is a decreasing function of

vj . To achieve an error probability bound α we have the following sample size130

formula

n∗ =
{ ε

M

[(
1 +

v

Mε

)
log
(

1 +
Mε

v

)
− 1
]}−1

·
(

log p+ log
2

α

)
. (6)
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2.3. Method 3: Regression

We next propose a regression approach to the sample size calculation prob-

lem. Suppose we have a training data set with size n0. Practically, such a train-

ing data set might be obtained either from existing literature or by conducting135

a pilot study. We assume that for
√
nE|θ̂nj − θj | → Cj < ∞, nE|θ̂nj − θj |2 →

σ2
j <∞ as n→∞ for j = 1, . . . , p. For θj , the computation procedure is given

below:

1. Generate K random resamples from the training data set. For iteration

k = 1, · · · ,K, we generate a random number Njk from a uniform dis-140

tribution over [n0/2, n0] and obtain a sample of size Njk. We denote

estimators of θj computed based on the kth sample as θ̂jk . We then use

θ̄j =

∑K

k=1

√
Njk θ̂jk∑K

k=1

√
Njk

as a reference value and evaluate the estimation error

εjk = |θ̂jk − θ̄j | for each simulated sample.

2. Note that for a given sample size Njk, we have Eεj = E|θ̂jk − θj | ≈145

Cj/
√
Njk and asymptotically V ar(εj) ∝ 1/Njk. Motivated by this, after

we acquire K pairs of (Njk, εjk) from Step 1, we treat Njk as predictor

and εjk as response and fit the following regression model:

εjk =
bj√
Njk

+
ejk√
Njk

, k = 1, · · · ,K, (7)

where bj is a parameter to be estimated and ejk is a random error with

mean 0. We estimate bj by a weighted least squares estimation and obtain150

b̂j =
1

K

K∑
k=1

√
Njkεjk.

3. Based on the fitted model (7), we can then compute the sample size Nj

for any desired ε value. Specifically, let zj be the 1 − α/p quantiles of

{
√
Njkεjk − b̂j , k = 1, · · · ,K}. By solving

ε =
b̂j√
Nj

+
zj√
Nj

,

we have:

Nj =

(
b̂j + zj

ε

)2

.
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We then set the overall sample size to be155

n = max{Nj : 1 ≤ j ≤ p}. (8)

Remark 1. As kindly pointed out by an anonymous reviewer, our regres-

sion method can be framed under the bootstrap approach (Shao and Tu, 2012)

by resampling the absoluted deviation εjk. We use different sample size Njk in

each iteration since we intend to treat it as a random variable. In this setting we

may be able to obtain estimates with varying degree of efficiency and therefore160

resemble closely to a hetergeneous population. If the population is homogeneous

equal sample size is sufficient as is usually adopted in bootstrap.

2.4. Theoretical justification when the variances are unknown

In practice, σ2
i , the variances of

√
nθ̂ni, i = 1, . . . , p, are usually unknown.

However, in many cases σ2
i can be well estimated. In this section, we establish165

some theoretical results for the normal approximation method when a proper

estimator σ̂2
i is used in the above sample size calculation methods. Similar

results can be obtained for the inequality methods and is omitted for space

consideration.

Assumption 1 There exist m training samples (for example, samples from170

historical studies) and using these training samples, σ2
i can be well estimated

by σ̂2
i , 1 ≤ i ≤ p such that:

P (|σ̂2
i − σ2

i | ≥ t) ≤ C1 exp{−C2mt
2}.

for some positive constants C1, C2.

Assumption 2 There exists a positive constantB s.t. B−1 ≤ min1≤i≤p σ
2
i ≤

max1≤i≤p σ
2
i ≤ B.175

Assumption 1 states that the tail probability of the estimation error of σ̂2
i

is decreasing in a exponential rate for 1 ≤ i ≤ p. This assumption is satisfied

in many scenarios especially in cases where σ̂2
i can be written as a U-statistic,

such as the sample variance and the estimates based on regression residual sum

of squares; see for example Merlevede, Peligrad and Rio (2009); Ravikumar et180
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al. (2011) and the references therein. Assumption 2 is to ensure that the σ2
i ’s

are estimable.

Given σ̂2
i , 1 ≤ i ≤ p, we then obtain a sample version of (4):

n̂∗ =
z2α/(2p)v̂

ε2
, (9)

where v̂ = maxj σ̂
2
j .

Theorem 1. Let n∗ and n̂∗ be defined as in (4) and (9) respectively. Un-185

der Assumptions 1 and 2, for α < 2Φ(−1), we have

n̂∗ − n∗ = O

ε−2
√

log3 p

m

 ,

with probability greater than 1−O(p−M ) for some constant M > 1.

Proof of Theorem 1 By Assumptions 1 and 2 , for any constant M > 1, by

choosing t =
√

(M+1) log p
C2m

, we have with probability greater than 1 − O(p−M ),

|σ̂2
i −σ2

i | ≤
√

(M+1) log p
C2m

for i = 1, . . . , p. Hence we have with probability greater190

than 1−O(p−M ),

n̂∗ − n∗ =
z2α/(2p)(v̂ − v)

ε2
=
z2α/(2p)

ε2

√
(M + 1) log p

C2m
. (10)

Since α < 2Φ(−1), it can be easily shown that z2α/(2p) > 1. By Lemma 11 in

Liu, Lafferty and Wasserman (2009) we have that

φ(zα/(2p))

2zα/(2p)
≤ Φ(zα/(2p)) =

α

2p
.

By taking a logarithm on both sides of the above inequality and after some

simple calculation we obtain:195

z2α/(2p) ≤ 2 log
2p

α
.

Theorem 1 is then proved by plugging the above inequality into (10).

Theorem 1 indicates that when σ2
i can be well estimated by σ̂2

i , the plug-in

version (9) is asymptotically equivalent to (4) as long as the training sample size
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m is of order o(ε−4 log3 p). With a high probability the sample size computed

using an estimated variance is very close to the sample size based on known200

variance. The theorem only requires some mild conditions in practice. Using

similar arguments in the proofs of (10) we can also show that:

Theorem 2. Under the assumptions of Theorem 1 and assume that log p�

m� ε−2 log p, we have

(i) m� n∗;205

(ii)

n̂∗

n∗
= 1 + op

(√
log p

m

)
.

Theorem 2 characterizes the dependence of sample size estimation on the

training data. Part (i) of this theorem implies that the historical or training

sample for estimating the variance can be much smaller than the actual sample

size needed for the study. Part (ii) provides an assessment on the approximation

error rate.210

3. Numerical examples: application to NRI and IDI estimation in

biomarker identification

In this section we consider explicit sample size calculation for studies aiming

to evaluate the net reclassification improvement (NRI) and integrated discrimi-

nation improvement (IDI). Both simulation study and real data analysis will be215

provided in the following.

3.1. NRI and IDI

We first introduce some notations. Suppose we intend to collect a sequence

of samples {Ui, Xi1, · · · , Xip, Yi : i = 1, · · · , n}, where Yi is the binary outcome

taking value in {1, 2}, Ui is the baseline explanatory variable in the traditional220

risk prediction and Xij is the jth biomarker for the ith subject. The baseline

modelM1 involves U only and the improved modelM2j involves Xj in addition

to U . Usually a binary logistic regression model can be used for the model
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construction and we may obtain model-based risk prediction for each subject

as p̂i(M) = (p̂1i(M), p̂2i(M)) indicating the probabilities of belonging to the225

two categories (Li, Jiang and Fine, 2013). We denote the class sample size

nm =
∑n
i=1 I(Yi = m) for the mth category, m = 1, 2.

Let S represent the NRI and R represent the IDI in the following presen-

tation. Suppose we have p biomarkers and we intend to estimate NRI and IDI

for these markers with the same sample of observations. For the jth biomarker,230

we denote its NRI and IDI by Sj and Rj respectively, j = 1, · · · , p. It can be

shown that sample estimates Ŝj and R̂j can be written as an independent sum

Ŝj =
n∑
i=1

2∑
m=1

wm
nm
{I(p̂mi(M2j) = max p̂i(M2j), Yi = m)

−I(p̂mi(M1) = max p̂i(M1), Yi = m)}

=
1

n

n∑
i=1

Sij , (11)

and

R̂j =
n∑
i=1

2∑
m=1

wm
nm(1− nm/n)

{[p̂mi(M2j)− p̂m(M2j)]
2

−[p̂mi(M1)− p̂m(M1)]2}

=
1

n

n∑
i=1

Rij , (12)

where wm is the class weight, p̂m(Mj) = 1
n

∑n
i=1 p̂mi(Mj) and p̂i(Mj) =

(p̂1i(Mj), p̂2i(Mj)) is the probability assessment vector, usually computed from235

a fitted logistic regression model (Li, Jiang and Fine, 2013). We note that there

may be multiple types of estimators for IDI. They are similar in practice and all

lead to consistent estimation for the true parameters. What we display above

is one that can be easily extended to multiple categories.

We intend to obtain a sample size using the three approaches introduced in240

this paper such that we may apply the above formulas to estimate the NRI and
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the IDI values with certain accuracy. Next we provide a simulation study and

two real data examples to evaluate the three methods.

3.2. Simulation

We consider the following true model:245

log
P

1− P
= β0 + βuU + β1X1 + · · ·βpXp, (13)

where P is the response probability given the covariates, U is a baseline variable

and Xj ’s are high-dimensional covariates. We assume that β1, · · · , βp0 are non-

zero coefficients and βj = 0 when j > p0. Such a sparsity assumption is usually

adopted in high-dimensional data analysis. U is generated randomly from the

standard normal distribution and X = (X1, . . . , Xp)
T is generated randomly250

from a p−dimensional multivariate normal distribution.

We intend to evaluate the NRI and the IDI of each Xj for its contribution

on the response probability in addition to the baseline variable U . In order to

estimate such accuracy improvement parameters for all p markers with sufficient

precision, we need to determine the sample size with appropriate statistical255

methods.

We carry out the sample size calculation using the following five approaches:

(i) Normal approximation as in (4); (ii) Bernstein inequality as in (5); (iii)

Bennett inequality as in (6); (iv) The regression approach as in (8). In all

simulations, we set α = .05 and ε = 0.05, 0.1. Knowledge on the variance260

parameter is usually unavailable and we take a conservative choice by setting

v = 1 in all formula since both NRI and IDI are difference of two bounded

probabilities. For the regression approach, we consider training samples of size

n0 = 200.

Once the required sample size n∗ is obtained from a particular method, we265

evaluate the estimation performance based on the computed sample size. We

repeat the following procedure for MR = 200 times: for the kth ( 1 ≤ k ≤MR)

replication, we randomly generate n∗ observations from model (13). Using the

generated data, we then evaluate the sample NRI for each marker and compute
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the observed errors ε̂ki = |Ŝki − S0
i |, i = 1, . . . , p. Here Ŝki is the NRI estimator270

for the ith covariate based on the n∗ random samples generated in the kth

replication, and S0
i is the true NRI value for the ith covariate computed using a

large number of Monte Carlo samples. The observed errors ε̂ki , i = 1, . . . , p for

IDI are computed similarly. We then record the following quantities:

• mean ε̂ := 1
pMR

∑p
i=1

∑MR

k=1 ε̂
k
i ;275

• ε̂max: mean of the maximum of ε̂i over MR replications, i.e., ε̂max =

1
MR

∑MR

k=1 max{ε̂ki , 1 ≤ i ≤ p};

• cover: the proportion of cases that all the p true NRI/IDI values are

captured inside the interval formed by the estimate ± the error margin

among MR replications.280

• avr.out: the average of the proportion of markers having estimation errors

larger than ε among the cases that not all the p NRI/IDI values are covered

inside the error margin. Clearly, we have avr.out:=

∑MR

k=1

∑p

i=1
I{ε̂ki>ε}

p
∑MR

k=1
I{(max1≤i≤p ε̂

k
i
)>ε}

.

If all p estimation errors are smaller than ε for all MR replications, we set

avr.out= 0.285

We consider the following cases of parameter specification:

Case 1. p = 200, β0 = 0.5, βu = 0.5, (β1, β2, β3) = (1.5, 1.5, 2) and βj = 0

for j = 4, . . . , 200. U,X1, . . . , Xp are generated independently from N(0, 1).

Case 2. p = 600, β0 = 0.5, βu = 0.5, (β1, β2, β3, β4, β5, β6) = (0.5, 0.5, 0.5, 0.25,

0.25, 0.25) and βj = 0 for j = 7, . . . , 600. U ∼ N(0, 1) and X = (X1, . . . , Xp)
T ∼290

N(0,Σ) where Σ = (σij)p×p and σi,j = 0.5|i−j| for 1 ≤ i, j ≤ p.

Case 3. p = 1000, β0 = 0.5, βu = 0.5, (β1, β2, β3) = (3, 4, 5) and βj = 0

for j = 4, . . . , 1000. U ∼ N(0, 1) and X = (X1, . . . , Xp)
T ∼ N(0,Σ) where

Σ = (σij)p×p. We set σii = 1, 1 ≤ i ≤ p, σi,i−1 = σi−1,i = 0.5 for 2 ≤ i ≤ p and

σij = 0 otherwise.295

Case 4. β0 = 0.5, βu = 0.5, (β1, β2, β3) = (1.5, 1.5, 2) and βj = 0 for j =

4, . . . , p. U,X1, . . . , Xp are generated independently from N(0, 1). We consider

p = 6, 20, 63, 200, 632, 2000, 6324, 20000. These eight values for p are chosen

13



such that the logarithm of them are equally distributed. The designed error

magin ε is set to be 0.05.300

Cases 1 to 3 cover different covariance structures, different dimensions and

magnitude of the nonzero βj ’s. Case 1 has the simplest covariance structure

(independence) and the magnitude of the nonzero βj ’s are moderate. In Case

2 we consider a dense covariance matrix and the nonzero βj ’s are set to be

small. In Case 3 we use a partially sparse covariance matrix and the nonzero305

βj ’s are set to be relatively large. Note that the covariance matrix in Case 2

can also be seen as a sparse matrix in the looser sense that most of its elements

are very close to zero. We remark that sparse assumptions on the covariance

matrix are commonly used in the high dimensional literature; see for example

Bickel and Levina (2008). For the Breast Cancer study given in the real data310

analysis section, we obtain a sparsity of 0.912 (Jiang, 2015), indicating that the

covariance matrix is very sparse in that over 90% of the off-diagonal elements are

zero. Case 4 is designed to check the robustness of our methods. In addition,

the setting that p = 6 and p = 20000 are close to settings of the two real

data examples in the next section. Simulation results are given in Tables 1-3315

and Figures 1 and 2. For better presentation, a logarithm transformation has

been applied to the x-axis of Figures 1 and 2. We summarize the following key

observations:

• Methods (i), (ii), (iii) and (iv) work well in that the ε̂max values are all

smaller than the desired error margins and the coverage probabilities for320

all cases are all satisfactory, larger than 1− α = 0.95. The mean ε̂ values

are very small, indicating the sample sizes are large enough to control the

overall estimation errors. The “avr.out” values are also small, indicating

for those cases where not all the p markers are estimated within the desired

error margin, only a very small proportion of the pmarkers have estimation325

errors larger than ε.

• Compared to the inequality methods (ii) and (iii), the normal approx-

imation method (i) is more desirable with relatively small sample size
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and equally high coverage probability. When large sample assumption

is satisfied as in our simulation settings, normal approximation method330

can provide more reasonable estimation of the sample size than the crude

inequality adjustment.

• Sample sizes computed using the regression methods (iv) are remarkably

smaller than those using other methods. For example, under Case 1, to

estimate NRI closely enough to the true value, method (iv) requires 1863335

observations, less than 10% of the sample sizes required by methods (ii)

and (iii). The regression approach presents an appealing saving on the

planned sample sizes and may be favored in practice. Figures 1 and 2 also

indicate that all the methods are robust with respect to the change of p

under case 4. In addition, regression method can provide a much more340

parsimonious upper bound for the required sample size when p increases.

3.3. STAR*D data

We consider a real example taken from the Sequenced Treatment Alterna-

tives to Relieve Depression (STAR*D) project conducted in the United States

(Rush et al., 2004; Kuk, Li and Rush, 2010). STAR*D is a multisite, prospec-345

tive, randomized, multistep clinical trial of outpatients with nonpsychotic major

depressive disorder. The study compares various treatment options for those

who do not obtain a satisfactory response with citalopram, a selective serotonin

reuptake inhibitor antidepressant. Details of the study have been described

previously in Rush et al. (2004). The primary research question is whether an350

individual patient could respond to the treatment. The outcome variable is de-

fined as the 16-item Quick Inventory of Depression Symptomatology (QIDS16)

is reduced by 50%. Investigators were trying to study the relationship between

the probability of response and a set of baseline measures.

The baseline variable U we consider in this paper is the initial QIDS16 score355

(base). We then intend to evaluate the added predictive accuracy for demo-

graphic variables such as age, sex, duration of chronic disease (chr), general
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Figure 1: Simulation results for NRI under case 4. Top left: computed sample size using the

five methods versus dimension p; Top right: mean ε̂ versus p; Bottom left: ε̂max versus p;

Bottom right: coverage rate versus p.
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Figure 2: Simulation results for IDI under case 4. Top left: computed sample size using the

five methods versus dimension p; Top right: mean ε̂ versus p; Bottom left: ε̂max versus p;

Bottom right: coverage rate versus p.
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medical condition (gmc) and the anxiety/somatization factor (anx). The anxi-

ety/somatization factor, derived from Cleary and Guy’s factor analysis, includes

six items from the original 17-item Hamilton Depression Rating Scale: the items360

for psychic anxiety, somatic anxiety, gastrointestinal somatic symptoms, gener-

al somatic symptoms, hypochondriasis, and insight. Furthermore, the change

of QIDS score from baseline to week 2 (change) is also commonly used as a

meaningful marker for the response (Kuk, Li and Rush, 2010). We consider the

problem of estimating the NRI and IDI for p = 6 covariates. In the following we365

compute sample sizes adequate for estimating these accuracy parameters using

the methods proposed in this paper.

Let S0 and R0 be estimates of NRI and IDI based on all the 2280 observa-

tions. We treat S0 and R0 as the true values since they are based on abundant

samples and then randomly sampled n0 = 200 observations to construct a train-370

ing sample. We consider α = 0.05 and ε = 0.05, 0.1. Once a required sample

size n∗ is obtained, we then randomly sample n∗ observations from the remain-

ing 2280 observations with replacement and compute estimates of NRI and IDI.

The above procedure is repeated for M = 200 times and we compute (a) mean

ε̂; (b)ε̂max; (c) cover and (d) avr.out defined as in the simulation section. The375

results are summarized in Table 4.

Eyeballing Table 4, we notice that sample sizes computed using the regres-

sion methods perform very well and are most desirable. For example, based on

method (iv), to estimate NRI as accurately as using the full sample, we only

need 218 subjects, about 30% of those required by normal approximation and380

20% of those required by inequality methods. Such findings agree with our

previous simulation results.

3.4. Breast cancer study

Breast cancer is the second leading cause of deaths from cancer among wom-

en in the United States. Despite major progresses in breast cancer treatment,385

the ability to predict the metastatic behavior of tumor remains limited. The

breast cancer study was first reported in van’t Veer et al. (2002). 97 lymph
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node-negative breast cancer patients 55 years old or younger participated in this

study. Among them, 46 developed distant metastases within 5 years (metastat-

ic outcome coded as 1) and 51 remained metastases free for at least 5 years390

(metastatic outcome coded as 0). Clinical risk factors (confounders) collected

include age, tumor size, histological grade, angioinvasion, lymphocytic infiltra-

tion, estrogen receptor (ER), and progesterone receptor (PR) status. All these

low-dimensional variables are considered as the baseline variable U in this study.

Expression levels for 24,481 gene probes were collected in the study. After395

the removal of genes with severe missingness there are still 24,188 genes. To

quantify the accuracy improvement for predicting the disease using each gene

on top of the baseline variables is a main scientific goal.

For this high-dimensional gene expression setting, we consider applying our

methods to evaluate how large a sample is needed in a future study to estimate400

the NRI and IDI for all p = 24188 genes with adequate estimation accuracy. We

set α = 0.05, ε = 0.05, 0.1. The sample sizes computed using the five different

approaches are given in Table 5.

We notice that the results in this example agree with previous numerical

results. The regression approach yield much smaller sample size requirement405

for the study. For example, we need roughly 452 subjects to estimate all 24,188

NRI values with a uniform error bound 0.1 at a 95% confidence level. To achieve

the same accuracy, the normal approximation and inequality approaches would

require tens of thousands of subjects.

4. Remarks410

There could be further extensions for the proposed sample size calculation

methods. Besides the Bonferroni correction, we may also adopt other adjust-

ment to control the overall error probability. These correction methods may

have better performance under some special assumptions. Also, the models

considered in the regression approach of this paper could be fine-tuned with415

more complicated structure to achieve more reasonable results. From our sim-
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ulations the simple nonlinear model seem to work well and could serve as a

convenient starting point for more sophisticated design consideration.

The methods proposed in this paper can also be suitable for estimating

parameters other than NRI and IDI under high-dimensional settings. When we420

need to deal with extremely large number of parameters, many familiar sample

size calculation methods for standard parameter estimation must be modified in

the same way as we have done this paper. Our proposed methods are expected

to be useful for various large scale study designs. Among the three methods,

regression method tends to produce relative smaller sample size requirement.425

The reduction is quite general and not limited to NRI and IDI. The regression

method explicitly models the analytic relationship between sample size and

estimation error and therefore the model prediction may be more informative

than approximation and inequality methods. One may need to seek external

information to obtain a sharper variance bound v used in these two approaches430

in order to improve them.
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Table 1: Simulation study to compare the five different approaches under case 1: (i) Normal

approximation as in (4); (ii) Bernstein inequality as in (5); (iii) Bennett inequality as in (6); (iv)

The regression approach as in (8). ε is the designed error margin . n∗ is the sample size computed

from the individual methods. ε̂ is the observed error margin for the estimation for all p markers.

NRI

ε = 0.05 (i) (ii) (iii) (iv)

n* 5365 7310 7309 1863

mean ε̂ 0.001 0.001 0.001 0.003

ε̂max 0.012 0.010 0.010 0.022

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

ε = 0.1 (i) (ii) (iii) (iv)

n* 1341 1857 1856 558

mean ε̂ 0.005 0.003 0.003 0.008

ε̂max 0.029 0.024 0.024 0.045

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

IDI

ε = 0.05 (i) (ii) (iii) (iv)

n* 5365 7310 7309 2510

mean ε̂ <0.001 <0.001 <0.001 0.001

ε̂max 0.012 0.010 0.010 0.017

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

ε = 0.1 (i) (ii) (iii) (iv)

n* 1341 1857 1856 497

mean ε̂ 0.001 0.001 0.001 0.002

ε̂max 0.023 0.017 0.017 0.039

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000
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Table 2: Simulation study to compare the five different approaches under case 2: (i) Normal

approximation as in (4); (ii) Bernstein inequality as in (5); (iii) Bennett inequality as in (6); (iv)

The regression approach as in (8). ε is the designed error margin . n∗ is the sample size computed

from the individual methods. ε̂ is the observed error margin for the estimation for all p markers.

NRI

ε = 0.05 (i) (ii) (iii) (iv)

n* 6192 8203 8202 2101

mean ε̂ 0.001 0.001 0.001 0.002

ε̂max 0.012 0.010 0.010 0.021

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

ε = 0.1 (i) (ii) (iii) (iv)

n* 1548 2084 2083 412

mean ε̂ 0.002 0.002 0.002 0.006

ε̂max 0.025 0.022 0.022 0.042

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

IDI

ε = 0.05 (i) (ii) (iii) (iv)

n* 6192 8203 8202 1755

mean ε̂ <0.001 <0.001 <0.001 0.001

ε̂max 0.012 0.009 0.009 0.020

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

ε = 0.1 (i) (ii) (iii) (iv)

n* 1548 2084 2083 586

mean ε̂ 0.001 0.001 0.001 0.002

ε̂max 0.024 0.019 0.020 0.039

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000
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Table 3: Simulation study to compare the five different approaches under case 3: (i) Normal

approximation as in (4); (ii) Bernstein inequality as in (5); (iii) Bennett inequality as in (6); (iv)

The regression approach as in (8). ε is the designed error margin . n∗ is the sample size computed

from the individual methods. ε̂ is the observed error margin for the estimation for all p markers.

NRI

ε = 0.05 (i) (ii) (iii) (iv)

n* 6579 8619 8617 2421

mean ε̂ 0.002 0.002 0.002 0.004

ε̂max 0.015 0.012 0.012 0.027

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

ε = 0.1 (i) (ii) (iii) (iv)

n* 1645 2190 2189 579

mean ε̂ 0.005 0.004 0.004 0.010

ε̂max 0.035 0.024 0.026 0.061

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

IDI

ε = 0.05 (i) (ii) (iii) (iv)

n* 6579 8619 8617 3032

mean ε̂ <0.001 <0.001 <0.001 <0.001

ε̂max 0.013 0.012 0.012 0.019

cover 1.000 1.000 1.000 1.000

avr.out 0.000 0.000 0.000 0.000

ε = 0.1 (i) (ii) (iii) (iv)

n* 1645 2190 2189 692

mean ε̂ 0.001 <0.001 <0.001 0.002

ε̂max 0.033 0.021 0.021 0.039

cover 1.000 1.000 1.000 0.990

avr.out 0.000 0.000 0.000 0.001
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Table 4: Real data analysis to compare the five different approaches using the STAR*D data: (i)

Normal approximation as in (4); (ii) Bernstein inequality as in (5); (iii) Bennett inequality as in

(6); (iv) The regression approach as in (8). ε is the designed error margin . n∗ is the sample size

computed from the individual methods. ε̂ is the observed error margin for the estimation for all p

markers.

NRI

ε = 0.05 (i) (ii) (iii) (iv)

n* 2784 4458 4457 1360

mean ε̂ 0.012 0.010 0.010 0.015

ε̂max 0.024 0.020 0.020 0.032

cover 0.975 0.990 0.995 0.945

avr.out 0.167 0.167 0.167 0.182

ε = 0.1

n* 696 1133 1132 218

mean ε̂ 0.018 0.016 0.016 0.026

ε̂max 0.038 0.034 0.034 0.054

cover 1.000 1.000 1.000 0.980

avr.out 0.000 0.000 0.000 0.167

IDI

ε = 0.05 (i) (ii) (iii) (iv)

n* 2784 4458 4457 1374

mean ε̂ 0.003 0.002 0.003 0.004

ε̂max 0.009 0.009 0.009 0.015

cover 1.000 1.000 1.000 0.990

avr.out 0.000 0.000 0.000 0.167

ε = 0.1

n* 696 1133 1132 454

mean ε̂ 0.006 0.005 0.005 0.008

ε̂max 0.022 0.016 0.016 0.030

cover 1.000 1.000 1.000 0.985

avr.out 0.000 0.000 0.000 0.167
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Table 5: Sample size calculation for the high-dimensional Breast Cancer data using the five different

approaches: (i) Normal approximation as in (4); (ii) Bernstein inequality as in (5); (iii) Bennett

inequality as in (6); (iv) The regression approach as in (8).

(i) (ii) (iii) (iv)

NRI (ε, α)

(0.05, 0.05) 9013 11210 11208 1747

(0.1, 0.05) 2253 2848 2847 452

IDI (ε, α)

(0.05, 0.05) 9013 11210 11208 6192

(0.1, 0.05) 2253 2848 2847 1420
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