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Abstract Variable selection is an important method to analyze large quantity
of data and extract useful information. Although least square regression is the
most widely used scheme for its flexibility in obtaining explicit solutions, least
absolute deviation (LAD) regression combined with lasso penalty becomes
popular for its resistance to heavy-tailed errors in response variable, denoted as
LAD-LASSO. In this paper, we consider the LAD-LASSO problem for variable
selection. Based on a dynamic optimality condition of nonsmooth optimization
problem, we develop a descent method to solve the nonsmooth optimization
problem. Numerical experiments are conducted to confirm that the proposed
method is more efficient than existing methods.

Keywords Least absolute deviation · LASSO · Nonsmooth optimization ·
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1 Introduction

At an era of information explosion, the extraction of useful information from
massive datasets becomes an important issue. The process often involves se-
lecting a subset of variables to explain certain observations and phenomena.
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It can be posed as a regression problem. Since the number of variables are not
known in advance, a large dataset is often deployed in the selection process
in order not to miss the key variables. In this way, the regression problem
becomes a sparse fitting problem. Motivated by the non-negative garrote pro-
cedure of Breiman in [1], Tibshirani added sparsity into regression problems
in [2] and constructed the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) penalty. By adding a bound to the absolute sum of coefficients,
LASSO could shrink some coefficients to zeroes and retain significant variables
to maintain model interpretability. As a convex penalty, LASSO is solvable and
flexible. Hastie et al. systematically summarized a series of lasso problems in
[3], and displayed that LASSO could be extended to generalized linear models
and multivariate analysis. The comprehensive advantages made lasso popular
and active in engineering, finance, marketing, bioinformatics and other related
fields.

In practical applications, cases with heavy-tailed errors contain outliers are
ubiquitous and would deteriorate estimation accuracy significantly. As an al-
ternative to ordinary least square regression, Least Absolute Deviation (LAD)
regression maintains robustness against fat tailed errors or extreme outliers due
to its connection with L1 norm and double exponential distribution. There are
several approaches combining LAD regression with certain penalty terms for
variable selection problems. For example, Zeebari united the LAD regression
with ridge penalty, and alleviated the multi-collinearity between variables in
[4]. Wang et al. proposed a consistent tuning parameter selection technique for
LAD-LASSO, and extensively studied the relative asymptotic properties in [5].
In [6], Gao studied the high dimensional LAD-LASSO problem systematically,
and confirmed the corresponding asymptotic properties. In [7], Arslan intro-
duced the weighted LAD-LASSO by adaptively adding up a weighting process
to mitigate the influence of outliers against both explanatory variables and
response variable. In [8], Xu introduced a two-stage method for tuning pa-
rameter selection and obtained the oracle property. Various LAD-lasso related
studies have been conducted and the corresponding theoretical properties are
well constructed.

Since LAD-LASSO is more robust and could be easily extended to other
situations, efficient solution to this problem become imperative and necessary.
Generally, LAD-LASSO could be transformed to classical linear programming
problem so that they could be computed easily. As an alternative to simplex
method, Koender proposed the interior point with a preprocessing step in [9].
Watson and Yiu [10] dealt with the error-in-variable l1 norm regression using
Levenberg-Marquardt method, and robust solutions are obtained accordingly.
Yiu et al. [11] applied l1-norm to beamforming design and proposed an algo-
rithm with a set of adaptive grids to speed up the calculation process. However,
existing algorithms for solving LAD-LASSO is restrictive and rely heavily on
the linear programming solvers. In this paper, we study and propose a more
efficient method by selecting a sequence of fastest descent directions based on
dynamic optimality condition.

The rest of this paper is organized as follows. In section 2, the LAD-lasso
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based linear programming problem is formulated. The optimality condition
of this nonsmooth optimization problem is derived in section 3. To solve this
problem, we analyze the optimality condition and develop a descent method in
section 4. Simulation experiments and real data examples are given in section
5. Conclusions are given in section 6.

2 LAD-LASSO Problem

Consider linear regression problem

Y = Xβ + ε, (2.1)

where X is the n×p design matrix with row vectors Xi ∈ Rp, i = 1, · · · , n, and
Y = (y1, · · · , yn)T is the response vector, β = (β1, · · · , βp)T is the parameter
vector we are concerned. Generally, the LAD-LASSO regression is to minimize
the l1 norm loss function

min
β

n∑
i=1

|yi −Xiβ|

subject to the constraint
p∑
i=1

|βi| < c,

where c is a positive constant.
This problem can be transformed into the following optimization problem:

min
β

n∑
i=1

|yi −Xiβ|+ γ

p∑
j=1

|βj |,

or the matrix representation

min
β
‖Y −Xβ‖1 + γ‖β‖1. (2.2)

Note that the terms in (2.2) are nonsmooth. A typical way to tackle this
problem is to transform it into a linear programming problem. Denote

‖Y −Xβ‖1 = u1 + v1, ‖β‖1 = u2 + v2, (2.3)

where u1,v1,u2,v2 ≥ 0 and u1,v1 ∈ Rn, u2,v2 ∈ Rp are defined as

u1 = max
(
Y −Xβ,0

)
v1 = max

(
− (Y −Xβ

)
,0)

u2 = max(β,0)

v2 = max(−β,0)

Hence
Y −Xβ = u1 − v1,β = u2 − v2
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and (2.2) is equivalent to the following minimization problem:

min 0 · β + u1 + v1 + γu2 + γv2

s.t. Xβ + u1 − v1 = Y

β − u2 + v2 = 0

u1,v1,u2,v2 ≥ 0

Denote

A =

(
X I −I 0 0
I 0 0 −I I

)
, b =

(
Y
0

)
,

the optimization problem becomes

min cTx

s.t. Ax = b

u1,v1,u2,v2 ≥ 0,

(2.4)

where x = (βT ,uT1 ,v
T
1 ,u

T
2 ,v

T
2 )T , c = (0, I, I, γI, γI).

Thus, (2.4) is a canonical linear programming problem and interior point
method can be applied to solve it. This is currently the state-of-art technique
for tackling the LAD-LASSO problem. However, when n and p become large,
the computational time still grows significantly and becomes very expensive.

3 Optimality Condition

Problem (2.2) can be written as a canonical form by introducing the symbols
as follows:

Y ∗ =

(
Y
0

)
, X∗ =

(
X
γ · I

)
,

where 0 is p × 1 vector, I is p-dimensional identity matrix. Then, Problem
(2.2) becomes

min
β
‖Y ∗ −X∗β‖1. (3.1)

For simplicity of notation, we omit the superscript ∗ and consider the canonical
form

min
β
‖Y −Xβ‖1. (3.2)

Introducing the objective function f(β), the optimization problem (3.2) is
standardized as

min
β∈Rp

f(β) =

n∑
i=1

|Xiβ − yi| =
n∑
i=1

fi(β), (3.3)

where

fi(β) = |Xiβ − yi| =

Xiβ − yi, if Xiβ − yi > 0,
−Xiβ + yi, if Xiβ − yi < 0,
0, if Xiβ − yi = 0.
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To develop an efficient method for solving Problem (3.2), the optimality con-
ditions are needed. The derivative of fi with respect to β is given by

∂fi
∂β

=

{
Xi, if Xiβ − yi > 0,
−Xi, if Xiβ − yi < 0.

At the point when Xiβ−yi = 0, it’s not differentiable. However, its directional
derivative exists. For a direction d ∈ Rn, the directional derivative of fi along
d is defined as

∇d+fi = lim
λ→0+

|Xi(β + λd)− yi| − |Xiβ − yi|
λ‖d‖

=
|Xid|
‖d‖

.

Similarly, for the direction −d, directional derivative of fi along −d is defined
as

∇d−fi = lim
λ→0+

|Xi(β − λd)− yi| − |Xiβ − yi|
λ‖d‖

=
|Xid|
‖d‖

.

Hence, for the absolute linear function, we have

∇d−fi = ∇d+fi.

Furthermore, if Xiβ − yi 6= 0, then fi is smooth and we have

∇d−fi = −∇d+fi.

Denote Xiβ − yi = ui, we rewrite the objective function as

f(β) = A(β) + C(β),

where A(β) is the smooth part of f(β),

A(β) =

n∑
i=1

χ(ui > 0)(Xiβ − yi) +

n∑
i=1

χ(ui < 0)(−Xiβ + yi) , a
Tβ + b,

in which

χ(ν) =

{
1, if ν is true,
0, otherwise,

aT =

n∑
i=1

χ(ui > 0)Xi −
n∑
i=1

χ(ui < 0)Xi,

b = −
n∑
i=1

χ(ui > 0)yi +

n∑
i=1

χ(ui < 0)yi,

and C(β) is the nonsmooth part of f(β).
Denote the zero set in each iteration by Ωk = {k1, · · · , km}, which is the set
of all the indices i such that ui = 0. Then

C(β) =

n∑
i=1

χ(ui = 0)|Xiβ − yi| =
m∑
i=1

|Xkiβ − yki | =
∑
i∈Ωk

|Xiβ − yi|.
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Since f(β) is the sum of n convex functions, it is convex and its local min-
imizer is also the global minimizer. The optimality condition of the minimizer
is that any directional derivatives are greater than or equal to zero. That is,
β∗ is the optimal solution of (3.3) if and only if

∇df(β∗) =
(
∇dA(β∗) +∇dC(β∗)

)
≥ 0, ∀d ∈ Rp. (3.4)

However, it is not easy to verify this condition during computation since d is
arbitrary. We should derive an equivalent condition such that it can be verified
easily. Consider the function C(β) such that

Xkiβ = yki , i = 1, · · · ,m.

Denote

Xa =

Xk1
...

Xkm

 ,

and suppose that the rank of Xa is m, we can find its generalized inverse
matrix as V such that XaV = Im, where Im is the m×m identity matrix and
V = (V1, · · · , Vm).

Consider the null space {V ∈ Rp|XaV = 0}. There exist p − m linear
independent vectors Vj , j = m+1, · · · , p, which are the basis of the null space.
Hence, we have

XaVj = 0,∀j = m+ 1, · · · , p.

Therefore, {Vi : i = 1, · · · , p} form a basis of Rp and the following orthonor-
mality holds:

XkiVj =

{
1, when i = j;
0, when i 6= j,

i = 1, · · · ,m, j = 1, · · · , p, (3.5)

and we can obtain the directional derivatives of f along the vectors {Vj : j =
1, · · · , p}. If i ∈ {1, · · · ,m}, we have

∇V +
i
C(β) =

∑m
j=1 |XkjVi|
‖Vi‖

=
1

‖Vi‖
, i = 1, · · · ,m,

∇V −
i
C(β) =

∑m
j=1 |Xkj (−Vi)|
‖ − Vi‖

=
1

‖Vi‖
, i = 1, · · · ,m.

If i ∈ {m+ 1, · · · , p}, we have

∇ViC(β) =

∑m
j=1 |XkjVi|
‖Vi‖

= 0, i = m+ 1, · · · , p.
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Consequently, we have

∇V +
i
f(β) = ∇V +

i
A(β) +

1

‖Vi‖
= (aTVi + 1)/‖Vi‖, i = 1, · · · ,m.

∇V −
i
f(β) = ∇V −

i
A(β) +

1

‖Vi‖
= (−aTVi + 1)/‖Vi‖, i = 1, · · · ,m.(3.6)

∇Vi
f(β) = ∇Vi

A(β) = aTVi/‖Vi‖, i = m+ 1, · · · , p.

An equivalent optimal condition of (3.4) is given by the following theorem.

Theorem 1 β∗ is the optimal solution if and only if the directional derivatives
satisfy

∇V +
i
f(β∗) ≥ 0, i = 1, · · · ,m.

∇V −
i
f(β∗) ≥ 0, i = 1, · · · ,m. (3.7)

∇Vi
f(β∗) = 0, i = m+ 1, · · · , p.

Proof. Note that (3.7) is a special case of (3.4), the necessary condition is
obvious. Therefore, we only proof the sufficient condition, that is, we prove
that if (3.7) are satisfied, then (3.4) holds.

For any direction d, since {Vi : i = 1, · · · , p} is a basis of Rp, there exists
a vector λ, such that

d =

p∑
i=1

λiVi. (3.8)

Without loss of generality, we can set λi ≥ 0,∀i = 1, · · · , p, because if λi < 0,
we have λiVi = (−λi) ·V −i . Then V +

i is replaced by V −i , and λi is replaced by
−λi > 0.

Hence, by adjusting the order adequately, (3.8) can be reorganized as

d =

m1∑
i=1

λiV
+
i +

m∑
i=m1+1

λiV
−
i +

p∑
i=m+1

λiVi.

where λi ≥ 0,∀i = 1, · · · , p. It follows from (3.6) that

∇dC(β∗) =

∑m
i=1 |Xkid|
‖d‖

=

∑m
i=1

∣∣Xki

(∑m1

j=1 λjV
+
j +

∑m
j=m1+1 λjV

−
j +

∑p
j=m+1 λjVj

)∣∣
‖d‖

=

∑m1

i=1

∣∣λiXkiV
+
i

∣∣+
∑m
i=m1+1

∣∣λiXkiV
−
i

∣∣
‖d‖

=

∑m
i=1 λi
‖d‖

.
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Hence, by (3.6), we have

∇df(β∗) =

(
m1∑
i=1

λia
TV +

i +

m∑
i=m1+1

λia
TV −i +

p∑
i=m+1

λia
TVi +

m∑
i=1

λi

)/
‖d‖

=

(
m1∑
i=1

λi(a
TV +

i + 1) +

m∑
i=m1+1

λi(a
TV −i + 1) +

p∑
i=m+1

λia
TVi

)/
‖d‖

=

(
m1∑
i=1

∇V +
i
f(β∗) · ‖Vi‖+

m∑
i=m1+1

∇V −
i
f(β∗) · ‖Vi‖

)/
‖d‖

≥ 0.

Thus for any direction d, the directional derivative is greater than or equals to
zero. Hence, (3.4) holds and β∗ is the optimal solution. The proof is completed.

�

Remark 1 If the rank of Xa is l, and l < m, we can find l rows such that
they are rank l. Then, the generalized inverse matrix V = (V1, · · · , Vl) can be
computed, and Theorem 1 still holds by replacing m by l. The proof is similar
to that of Theorem 1.

4 Computational method

4.1 Descent direction

If the condition (3.7) is not satisfied, then there exists a direction d such that
the cost function value decreases along with this direction. If the ith condition
is not satisfied, that is,

∇V +
i
f(β) ≥ 0, and ∇V −

i
f(β) ≥ 0

can not be satisfied at the same time, then V +
i or V −i is the descent direction.

For an iterative point β(k), denote the zero set by Ωk. The function can be
rewritten as

f(β) = a(k)Tβ +
∑
i∈Ωk

|Xiβ − yi|+ b(k). (4.1)

We need to find a descent direction such that (4.1) decreases along it whenever
the condition (3.7) is not satisfied.

Since there exists at least one i ∈ {1, · · · ,m} such that condition (3.7) is
not satisfied. Denote the set of all the indices ki by Ω′k, where (3.7) is not
satisfied for V +

i or V −i . Then, we can choose the descent direction d in the
space spanned by

{Vi : ki ∈ Ω′k} ∪ {Vi : i = m+ 1, · · · , p}.
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To speed up the search, we check the descent directional derivatives ∇V +
i
f or

∇V −
i
f , and choose the indices where they descent most. That is, we choose a

subset Λ1 of Ω′k, which is a proportional α of the indices in Ω′k such that the
corresponding descent directional derivatives ∇V +

i
f or ∇V −

i
f is less than the

other 1− α of the directional derivatives. Denote

Ω0k = Ωk\Λ1,

we choose the descent direction d in the space spanned by

{Vi : ki ∈ Λ1} ∪ {Vi : i = m+ 1, · · · , p}

such that

d =
∑
ki∈Λ1

λiVi +

p∑
i=m+1

λiVi.

It can be verified that

Xid = 0, ∀i ∈ Ω0k.

Hence, the descent direction should keep the set Ω0k unchanged, we set the
descent direction d(k) as the optimal solution of

max
h∈Rp

− a(k)h

s.t. Xih = 0,∀i ∈ Ω0k.
(4.2)

It means that the solution h is chosen as the vector nearest to the deepest
descent direction −a(k), and still keep the set Ω0k unchanged at the same
time. The optimal solution of Problem (4.2) is

d̃ = −a(k) −XT
0k(X0kX

T
0k)−1X0k · (−a(k)), (4.3)

where XT
0k(X0kX

T
0k)−1X0k(−a(k)) is the projected direction of −a(k) in the

subspace {h : Xih = 0, i ∈ Ω0k}, and

X0k =

Xk1
...

Xkl

 , k1, · · · , kl ∈ Ω0k.

Hence, the descent direction d(k) can be chosen as the normalized vector of d̃

d(k) = d̃/‖d̃‖, (4.4)

and the zero set is updated as Ωk = Ω0k.
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4.2 Optimum Step Length

The cost function value will decrease along the descent direction d(k), when
the step length is small. The next iteration point will be generated by

β(k+1) = β(k) + λkd
(k), λk > 0,

where λk is the step length, which should be maximized such that the cost
function value is reduced in largest magnitude. For this, we define a new prob-
lem as

min
λ≥0

g(λ)

where

g(λ) = f(β(k+1)) = f(β(k) + λd(k)), λ ≥ 0.

Since f is convex, g(λ) is also convex, we can choose λk as the optimal solution
of the problem min

λ
g(λ). This problem is equivalent to the problem as follows:

max
λ≥0

λ

s.t. ∇d(k)f(β(k) + λd(k)) ≥ 0 (4.5)

∇−d(k)f(β(k) + λd(k)) ≥ 0.

For this problem, we have the following observation.

Theorem 2 There exists an optimal solution λ(k) > 0 and at least one i in
{1, · · · , n} such that Xi(β

(k) + λ(k)d(k)) = yi, that is, i is in the zero set at
the point β(k) + λ(k)d(k).

Proof. If λ = 0, d(k) is a descent direction at β(k), that is,

∇d(k)f(β(k)) < 0.

Since g(λ) is convex, ∂g(λ)
∂λ is monotonically increasing.

Note that

∂g(λ)

∂λ
= lim

∆λ→0

g(β(k) + (λ+∆λ)d(k))− g(β(k) + λd(k))

∆λ

= ‖d(k)‖∇d(k)f(β(k) + λd(k)),

then, the directional derivative

∇d(k)f(β(k) + λd(k))

is monotonically increasing with respect to λ.
Note that each term is absolute linear function, f(β(k)+λd(k)) is piecewise

linear and ∇d(k)f(β(k) + λd(k)) is piecewise constant. For each point where
∇d(k)f(β(k) + λd(k)) increases, there exists at least one index i such that ui
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changes from negative to positive or from positive to negative. All these indices
i is in {1, · · · , n}, which is finite. Suppose that

lim
λ→+∞

∇d(k)f(β(k) + λd(k)) < 0,

we have

lim
λ→+∞

∇d(k)f(β(k) + λd(k)) = ∇d(k)f(β(k) + λ′d(k)) < 0,

where λ′ is a sufficiently large value. Therefore

f(β(k) + λ′d(k)) ≤ f(β(k)) +∇d(k)f(β(k) + λ′d(k))→ −∞.

This contracts to the fact that f ≥ 0, which is impossible. Thus we must have

lim
λ→+∞

∇d(k)f(β(k) + λd(k)) ≥ 0.

Since ∇d(k)f(β(k) +λd(k)) is piecewise linear, we can find a point λ′ such that
∇d(k)f(β(k) + λ′d(k)) becomes positive or zero in the first time. That is,

∇d(k)f(β(k) + λd(k)) < 0, λ < λ′,

∇d(k)f(β(k) + λd(k)) ≥ 0, λ ≥ λ′.

Hence, β(k) + λ′d(k) is the minimum point of f(β(k) + λd(k)).
Note that ∇d(k)f(β(k) + λd(k)) is discontinuous at λ′, there exists at least

one index i in {1, · · · , n} such that

Xi(β
(k) + λ′d(k)) = 0.

The proof is completed. Hence, we can find the optimum step length in each
iteration.

�

4.3 Algorithm

We denote λk as the optimum step length along the direction d(k). By using
the step length λk, the cost function becomes

f(β(k+1)) = (a(k+1))Tβ(k+1) +
∑

i∈Ωk+1

|Xiβ
(k+1)|+ b(k+1),

and the kth iteration terminated and moved to the (k+1)th iteration. For this
update, the indices in Λ1 have been removed from the zero set Ωk. It follows
from Theorem 2 that some indices move to the zero set. We denote all these
indices by Λ2, then a new zero set at (k + 1)th iteration is generated as

Ωk+1 = Ωk ∪ Λ2.
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Hence, we find a new iterate as β(k+1) = β(k) + λkd
(k), and the zero set is

updated as Ωk+1. We continue the iteration until the optimal condition (3.7)
is satisfied. In summary, the algorithm is as follows:

Algorithm 1

Initialization: Choose an initial point β(0), compute the corresponding set Ω0, and com-
pute the cost function f(β(0)). Set k = 0.
Step 1: (Terminate)
Generate the matrix V for the zero set Ωk. If the condition (3.7) is satisfied, then stop and
return the optimal solution and value. Otherwise, go to Step 2.
Step 2: (Descent Direction)
Find the α fastest descent directions as Λ1, where α denotes the percentage of selected
descent directions that decrease faster than the other 1 − α directions. Set Ω0k = Ωk\Λ1,
and compute the descent direction d(k) using (4.4).
Step 3: (Optimal Step Length) Find the best step length λk by (4.5).
Step 4: (Iteration) Update β(k+1) = β(k) + λkd

(k). Find Λ2 and update the zero set as
Ωk+1 = Ω0k ∪ Λ2. Then we compute the cost function f(β(k+1)), let k = k + 1 and go to
Step 1.

5 Numerical Examples

In this section, Algorithm 1 is implemented to solve the LAD-LASSO problem,
where parameter α controls the percentage of directions selected from the
descent direction set. Too small or too large α values may result in unsteadiness
or time inefficiency. Here α is set as 0.05 to reach a balance between stability
and time consumption. We compare our proposed method with Interior Point
method and Gurobi based on Matlab platform, where the default solver of
function linprog is Interior Point method.

To solve LAD-LASSO problem, a key consideration is the tuning param-
eter selection. In [12], Wang focused on the high dimensional penalized least
absolute deviation problem, and a tuning parameter selection procedure is
given. Denote xi as the ith column vector of design matrix X, we first scaled
the dataset such that ‖xi‖22 = n, i = 1, · · · , p, and choose λ =

√
2n log p, which

is rate consistent.

5.1 Simulation Study

Similar to Gao and Huang [6], we consider 4 simulation examples with data
generated by

Y = Xβ + ε, ε ∼ N(0, 1),

where design matrix X follows multivariate Gaussian distribution with zero
mean vector and covariance matrix Σ, the elements of Σ is given by (Σ)ij =
0.5|i−j| such that the correlation between xi and xj is 0.5|i−j|. For simplicity,
the true coefficient β is given by

β = (2, 2, 2, 2, 2, 0, · · · , 0),
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where the first five elements equal to 2 and the remaining p− 5 elements are
zeroes, thus there are 5 nonzero components.

We consider four cases of p as 10, 50, 100, 500, respectively. For each p, the
value of n increases from 500 (100 for p = 10 case) to 10000 gradually. For each
p and n, the data X and Y are simulated 100 times. Interior point method, the
proposed method and Gurobi are applied to these problems for comparison.
The running time of these methods are depicted in Figure 1. It can be seen
that the proposed method is more efficient than the other methods, especially
when n increases. That is, the larger n/p is, the more efficient the proposed
method becomes.

Fig. 1 p=10,50,100,500 n–time plot
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Several representative simulation results are listed in Table 1 - 4, where
Running Time denotes the average time taken; MSE evaluates the average
prediction error; Degree of Freedom (Zou[13]) refers to the number of nonzero
components of the estimator; Correctly Fitted Ratio indicates accurate estima-
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tion of nonzero component locations relative to the total simulation. Results
show that Running Time, MSE and Correctly Fitted Ratio are same for all
methods, which indicate that they have converged to the same optimal solu-
tion. Thus, our proposed method achieves both time efficiency and estimation
accuracy.

Table 1 Simulation Results of p = 10:

TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 10 0.0456 0.0103 0.8684 0.0680 0.0680 0.0680
500 10 0.0928 0.0355 0.8877 0.0110 0.0110 0.0110
1000 10 0.1845 0.0722 0.9540 0.0055 0.0055 0.0055
2000 10 0.4740 0.1771 1.2126 0.0027 0.0027 0.0027
5000 10 2.2176 0.7675 1.7595 0.0010 0.0010 0.0010
10000 10 6.5670 2.3630 3.8824 0.0005 0.0005 0.0005

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 10 5.19 5.19 5.19 0.83 0.83 0.83
500 10 5.29 5.29 5.29 0.77 0.77 0.77
1000 10 5.31 5.31 5.31 0.74 0.74 0.74
2000 10 5.23 5.23 5.23 0.79 0.79 0.79
5000 10 5.25 5.25 5.25 0.76 0.76 0.76
10000 10 5.18 5.18 5.18 0.83 0.83 0.83

Table 2 Simulation Results of p = 50:

TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 50 0.0990 0.0182 1.0301 0.1044 0.1044 0.1044
1000 50 0.7803 0.1039 1.0755 0.0065 0.0065 0.0065
2000 50 2.0035 0.2363 1.2457 0.0033 0.0033 0.0033
5000 50 6.7602 1.0177 2.3907 0.0014 0.0014 0.0014
10000 50 15.2296 3.2660 4.8684 0.0007 0.0007 0.0007

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

100 50 5.21 5.21 5.21 0.80 0.80 0.80
1000 50 5.23 5.23 5.23 0.80 0.80 0.80
2000 50 5.35 5.35 5.35 0.69 0.69 0.69
5000 50 5.20 5.20 5.20 0.81 0.81 0.81
10000 50 5.25 5.25 5.25 0.81 0.81 0.81
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Table 3 Simulation Results of p = 100:

TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

500 100 1.3169 0.0770 1.2476 0.0161 0.0161 0.0161
1000 100 2.5999 0.1487 1.4152 0.0081 0.0081 0.0081
2000 100 5.2977 0.3179 1.8193 0.0036 0.0036 0.0036
5000 100 12.5036 1.0418 2.8586 0.0015 0.0015 0.0015
10000 100 29.2864 3.1812 6.2155 0.0008 0.0008 0.0008

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

500 100 5.33 5.33 5.33 0.75 0.75 0.75
1000 100 5.17 5.17 5.17 0.85 0.85 0.85
2000 100 5.29 5.29 5.29 0.74 0.74 0.74
5000 100 5.25 5.25 5.25 0.77 0.77 0.77
10000 100 5.39 5.39 5.39 0.67 0.67 0.67

Table 4 Simulation Results of p = 500:

TIME MSE
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

1000 500 17.8460 0.5508 2.6924 0.0089 0.0089 0.0089
2000 500 32.9152 0.8235 3.4965 0.0047 0.0047 0.0047
5000 500 75.6648 1.8116 5.2965 0.0017 0.0017 0.0017
8000 500 118.5086 3.0154 8.4263 0.0011 0.0011 0.0011
10000 500 152.5622 4.3109 11.2252 0.0009 0.0009 0.0009

Degree of Freedom Correctly Fitted Ratio
n p Interior Point Proposed Gurobi Interior Point Proposed Gurobi

1000 500 5.26 5.26 5.26 0.77 0.77 0.77
2000 500 5.22 5.22 5.22 0.82 0.82 0.82
5000 500 5.23 5.23 5.23 0.77 0.77 0.77
8000 500 5.24 5.24 5.24 0.78 0.78 0.78
10000 500 5.31 5.31 5.31 0.72 0.72 0.72

5.2 Real Data Examples

In this section, we have selected 5 different real datasets for numerical experi-
ment. Again, we compare our method with the interior point method and the
Gurobi method. The datasets are as follows:

1. Prostate Cancer Data, which is studied by Stamey et al. [14] dealing with
the correlation of 9 predictors and prostate specific antigen (lpsa).

2. Boston Housing Data, which is derived from Harrison and Rubinfeld [15]
focussing on the 14 predictors that affect medv (median value of owner-
occupied homes in $1000s).
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3. Bardet Data, which is the simplified gene expression data presented by
Scheetz et al. [17], where design matrix X is a 120× 100 matrix expanded
from the expression levels of 20 filtered genes. The objective is to discover
the correlation between 100 predictors and the expression level of gene
TRIM32 that causes Bardet-Biedl syndrome.

4. Diabetes Data, which is studied by Efron [16] containing 442 patients with
10 clinical measures: age, sex, body mass index(bmi), average blood pres-
sure(map), and six blood serum measurements. The aim is to find the
correlation between response y and the above 10 predictors.

5. China Stock Data, which considered by Wang [5] exploring the relationship
of Return on Equity (ROEt+1) and other 9 predictors.

Since all three methods found the same result, we focus on the execution time.
Table 5 shows the running results for the 5 datasets:

Table 5 Time Comparison for real datasets

Name n p Interior Point Proposed Gurobi
Prostate Cancer 97 8 0.0243 0.0067 0.6855
Boston Housing 506 13 0.0878 0.0382 0.7414

Bardet 120 100 0.1304 0.0514 0.6988
Diabetes 442 10 0.5127 0.0113 0.6989

China Stock 1946 9 0.2632 0.1163 1.3954

For the 5 datasets, time comparison of Interior Point method, our proposed
method and Gurobi are summarized in Table 5, again our proposed method
is faster than other methods.

6 Conclusion

In this paper, we have studied the LAD-LASSO problem for variable selection.
For this nonsmooth optimization, we have derived the optimality condition
and have developed a descent algorithm such that the nonsmooth optimization
problem can be optimized directly. Numerical experiments with both simulated
and real data have been employed to demonstrate that our proposed method
is more efficient than the traditional interior point method and the state-of-
the-art LP solver Gurobi.
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