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Abstract In this work, we establish the maximal �p-regularity for several time step-
ping schemes for a fractional evolution model, which involves a fractional derivative
of order α ∈ (0, 2), α �= 1, in time. These schemes include convolution quadratures
generated by backward Euler method and second-order backward difference formula,
the L1 scheme, explicit Euler method and a fractional variant of the Crank–Nicolson
method. The main tools for the analysis include operator-valued Fourier multiplier
theorem due to Weis (Math Ann 319:735–758, 2001. doi:10.1007/PL00004457) and
its discrete analogue due to Blunck (Stud Math 146:157–176, 2001. doi:10.4064/
sm146-2-3). These results generalize the corresponding results for parabolic prob-
lems.
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1 Introduction

Maximal L p-regularity is an important mathematical tool in studying the existence,
uniqueness and regularity of solutions of nonlinear partial differential equations of
parabolic type. A generator A of an analytic semigroup on a Banach space X is said
to have maximal L p-regularity, if the solution u of the following parabolic differential
equation

u′(t) = Au + f ∀t > 0,

u(0) = 0,
(1.1)

satisfies the following estimate

‖u′‖L p(R+;X) + ‖Au‖L p(R+;X) ≤ cp,X‖ f ‖L p(R+;X) ∀ f ∈ L p(R+; X), (1.2)

with 1 < p < ∞. On a Hilbert space X , every generator of a bounded analytic semi-
group has maximal L p-regularity [45], and Hilbert spaces are only spaces for which
this holds true [24]. Beyond Hilbert spaces, an important and very useful characteriza-
tion of the maximal L p-regularity was given byWeis [48] on UMD spaces in terms of
the R-boundedness of a family of operators using the resolvent R(z; A) := (z− A)−1;
see Theorem 1 in Sect. 2 for details.

An important question from the perspective of numerical analysis is whether such
maximal regularity estimates carry over to time-stepping schemes for discretizing
the parabolic problem (1.1), which have important applications in numerical analysis
of nonlinear parabolic problems [1,2,17,29,33]. This question has been studied in a
number of works from different aspects [4,5,15,16,31,32,34]. Ashyralyev et al. [4]
showed the following discrete maximal regularity: for all f n ∈ X, n = 1, 2, . . . ,

τ−1‖(un − un−1)Nn=1‖�p(X) + ‖(Aun)Nn=1‖�p(X) ≤ cp,X‖( f n)Nn=1‖�p(X)

for the time-discrete solutions un , n = 1, 2, . . . , given by the implicit Euler method,
where τ is the time step size and the constant cp,X is independent of τ . A variant
of the maximal �p-regularity for the Crank–Nicolson method was also shown in [4].
Recently, Kovács et al. [28] proved the discrete maximal regularity for the Crank–
Nicolson, BDF and A-stable Runge–Kutta methods. Kemmochi and Saito [25,26]
proved the maximal �p-regularity for the θ -method. In these works, the main tools are
the maximal L p-regularity characterization due to Weis [48] and its discrete analogue
due to Blunck [10]. Independently, Leykekhman and Vexler [31] proved the maximal
L p-regularity of discontinuous Galerkin methods without using Blunck’s multiplier
technique. The maximal �p-regularity of fully discrete numerical solutions have been
investigated in [25,26,31] and [35] for parabolic equations with time-independent and
time-dependent coefficients, respectively; also see [28, section 6].

The maximal L p-regularity has also been studied for the following fractional evo-
lution equation

∂α
t u(t) = Au(t) + f ∀t > 0, (1.3)
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Discrete maximal regularity of time-stepping schemes for… 103

together with the following initial condition(s)

u(0) = 0, if 0 < α < 1,

u(0) = 0, ∂t u(0) = 0, if 1 < α < 2.

In the model (1.3), the notation ∂α
t u denotes the Caputo fractional derivative of order

α of u with respect to time t , defined by [27, pp. 91]

∂α
t u(t) = 1

Γ (n − α)

∫ t

0
(t − s)n−α−1 dn

dsn
u(s)ds, n − 1 < α < n, n ∈ N,

where the Gamma function Γ (·) is defined by Γ (z) = ∫∞
0 sz−1e−sds, 	z > 0. With

zero initial condition(s), it is identical with the Riemann–Liouville one [27, pp. 70]

R∂α
t u(t) = 1

Γ (n − α)

dn

dtn

∫ t

0
(t − s)n−α−1u(s)ds, n − 1 < α < n, n ∈ N.

Throughout, we use only the notation ∂α
t u to denote either derivative. When α = 1,

the fractional derivative ∂α
t u(t) coincides with the usual first-order derivative u′(t),

and accordingly, the fractional model (1.3) recovers the standard parabolic equation
(1.1). In this paper we focus on the fractional cases 0 < α < 1 and 1 < α < 2, which
are known as the subdiffusion and diffusion-wave equation, respectively. In analogy
with Brownian motion for normal diffusion (1.1), the model (1.3) with 0 < α < 1 is
the macroscopic counterpart of continuous time random walk.

The fractional model (1.3) has received much attention in recent years, since it
can adequately capture the dynamics of anomalous diffusion processes. For example,
the subdiffusion equation, i.e., α ∈ (0, 1), has been employed to describe transport
in column experiments, thermal diffusion in media with fractal geometry, and flow
in highly heterogeneous aquifers. See [40] for an extensive list of applications. The
diffusion-wave equation, i.e., α ∈ (1, 2), can be used to model mechanical wave
propagation in viscoelastic media.

In a series of interestingworks [6–8],Bazhalekov and collaborators have established
the following maximal L p-regularity for the fractional model (1.3): for any 1 < p <

∞, u ∈ L p(R+; D(A)) and

‖∂α
t u‖L p(R+;X) + ‖Au‖L p(R+;X) ≤ cp,X‖ f ‖L p(R+;X) ∀ f ∈ L p(R+; X), (1.4)

under suitable conditions on the operator A (see Theorem 3 in Sect. 2 for details).
Further, they applied the theory to analyze nonautonomous and semilinear problems
[6,8]. See also [44] for closely related maximal regularity results for Volterra integro-
differential equations.

The discrete analogue of (1.4) is important for the numerical analysis of nonau-
tonomous and nonlinear fractional evolution problems. The only existing result we
are aware of is the very recent work of Lizama [37]. Specifically, Lizama studied the
following fractional difference equation with 0 < α < 1:

123



104 B. Jin et al.

Δαun = Tun + f n,

where u0 = 0 andΔα is a certain fractional difference operator. The author established
themaximal �p-regularity for the problem, under the condition that the set {δ(z)(δ(z)−
T )−1 : |z| = 1, z �= 1} is R-bounded, with δ(z) = z1−α(1 − z)α , following the
work of Blunck [10]. It can be interpreted as a time-stepping scheme: upon letting
T = ταA and f n = ταgn , we get τ−αΔαun = Aun + gn . Hence, it amounts to a
convolution quadrature generated by the kernel z1−α(1 − z)α . However, this scheme
lacks themaximal �p-regularity if A = Δ, the Dirichlet Laplacian operator in bounded
domains.

In this work, we address the following question:Under which conditions do the time
discretizations of (1.3) preserve the maximal �p-regularity, uniformly in the time step
size τ?We provide an analysis for several time-stepping schemes, including the convo-
lution quadratures generated by the implicit Euler method and second-order backward
difference formula [11,21], the L1 scheme [36,46], the explicit Euler method [50] and
a fractional variant of the Crank–Nicolson method. Amongst them, the convolution
quadrature is relatively easy to analyze. In contrast, the L1 scheme and explicit Euler
method are easy to implement, but challenging to analyze. The explicit Euler method
requires a bounded numerical range of the operator A and the step size τ to be small
enough. The maximal �p-regularity of the Crank–Nicolson method behaves like the
implicit Euler scheme when 0 < α < 1 and like the explicit Euler scheme when
1 < α < 2. Our proof strategy follows closely the recent works [25,28] and employs
the (discrete) Fourier multiplier technique of Blunck [10].

The rest of the paper is organized as follows. In Sect. 2 we recall basic tools for
showing maximal �p-regularity, including R-boundedness, UMD spaces, and Fourier
multiplier theorems. Then four classes of time-stepping schemes, i.e., convolution
quadrature, L1 scheme, explicit Euler method and a variant of the fractional Crank–
Nicolson method, are discussed in Sects. 3–6, respectively. In Sect. 7, we discuss the
extension to nonzero initial data. Last, in Sect. 8, we illustrate the results with several
concrete examples.

We conclude the introduction with some notation. For a Banach space X , we denote
byB(X) the set of all bounded linear operators from X into itself. For a linear operator
A on X , we denote by σ(A) and ρ(A) its spectrum and resolvent set, respectively.
We denote the unit circle in the complex plane C by D = {z : |z| = 1}, and
D

′ = {z : |z| = 1, z �= ±1}. Given any θ ∈ (0, π), the notation Σθ denotes the
open sector Σθ := {z ∈ C : | arg(z)| < θ, z �= 0}, where arg(z) denotes the argument
of z ∈ C\{0} in the range (−π, π ]. Throughout, the notation c and C , with or with-
out a subscript/superscript, denote a generic constant, which may differ at different
occurrences, but it is always independent of the time step size τ and the number N of
time steps.

2 Preliminaries

In this section we collect basic results on the maximal L p-regularity and related
concepts, especially R-boundedness, UMD spaces, and Fourier multiplier theorems,
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Discrete maximal regularity of time-stepping schemes for… 105

used in the fundamental work of Weis [48], where he characterized the maximal L p-
regularity of an operator A in terms of its resolvent operator R(z; A) := (z − A)−1.
We refer readers to the review [30] for details.

2.1 R-boundedness

The concept of R-boundedness plays a crucial role in Weis’ operator-valued Fourier
multiplier theorem and its discrete analogue. A collection of operatorsM = {M(λ) :
λ ∈ �} ⊂ B(X) is said to be R-bounded if there is a constant c > 0 such that any
finite subcollection of operators {M(λ j )}lj=1 satisfies

∫ 1

0

∥∥∥∥
l∑

j=1

r j (s)M(λ j )v j

∥∥∥∥
X
ds ≤ c

∫ 1

0

∥∥∥∥
l∑

j=1

r j (s)v j

∥∥∥∥
X
ds ∀v1, v2, . . . , vl ∈ X,

(2.1)
where r j (s) = sign sin(2 jπs), j = 1, 2, . . . , are the Rademacher functions defined
on the interval [0, 1]. The infimum of the constant c satisfying (2.1), denoted by R(M)

below, is called the R-bound of the set M. In particular, if � ⊂ {z ∈ C : |z| ≤ c0}
for some c0 > 0, then the set {λI : λ ∈ �} is R-bounded with an R-bound 2c0. This
fact will be used extensively below.

There are a number of basic properties of R-bounded sets, summarized below. They
follow from definition and the proofs can be found in [30].

Lemma 1 Let T ⊂ B(X) be an R-bounded set. Then the following statements hold.

(i) If S ⊂ T , then S is R-bounded with R(S) ≤ R(T ).
(ii) The closure T in B(X) is also R-bounded, and R(T ) = R(T ).
(iii) IfS ⊂ B(X) is R-bounded, then the unionS∪T and sumS + T are R-bounded,

with R(S ∪ T ) ≤ R(S) + R(T ) and R(S + T ) ≤ R(S) + R(T ).
(iv) If S ⊂ B(X) is R-bounded, then ST is R-bounded with R(ST ) = R(S)R(T ).
(v) The convex hull CH(T ) is R-bounded with R(CH(T )) ≤ R(T ).
(vi) The absolutely convex hull of T , denoted by ACHC(T ), is R-bounded, with

R(ACHC(T )) ≤ 2R(T ).

The following useful result is a slight extension of [10, Corollary 3.5].

Lemma 2 Let A be a closed and densely defined operator in X, and δ ∈ (0, π). If
{zR(z; A) : z ∈ Σδ} is R-bounded, then there exists δ′ ∈ (δ, π) such that {zR(z; A) :
z ∈ Σδ′ } is R-bounded.
Proof In fact, the R-boundedness of {zR(z; A) : z ∈ Σδ} implies the R-boundedness
of {ρeiδR(ρeiδ; A) : ρ > 0}. Via a rotation in the complex plane C, we see that
{ρiR(ρi; ei(π/2−δ)A) : ρ > 0} is R-bounded. Then the proof of [10, Corollary 3.5]
implies the R-boundedness of {wR(w; ei(π/2−δ)A) : π/2 < arg(w) < π/2 + ϑ}
for some small ϑ > 0. By rotating back in the complex plane C, we have the R-
boundedness of {zR(z; A) : δ < arg(z) < δ +ϑ}. The R-boundedness of {zR(z; A) :
−δ − ϑ < arg(z) < −δ} follows similarly. Overall, the set {zR(z; A) : z ∈ Σδ+ϑ } is
R-bounded. �
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106 B. Jin et al.

2.2 Operator-valued multiplier theorems on UMD spaces

Nowwe recall the concept of UMD spaces, which is essential for multiplier theorems.
Let S(R; X) denote the space of rapidly decreasing X -valued functions. A Banach
space X is said to be a UMD space if the Hilbert transform

H f (t) = P.V.

∫
R

1

t − s
f (s)ds,

defined on the space S(R; X), can be extended to a bounded operator on L p(R; X) for
all 1 < p < ∞. Equivalently, this can be characterized by unconditional martingale
differences, hence the abbreviation UMD. Examples of UMD spaces include Hilbert
spaces, finite-dimensional Banach spaces, and Lq(Ω, dμ) ((Ω,μ) is a σ -finite mea-
sure space, 1 < q < ∞), and its closed subspaces (e.g., Sobolev spaces Wm,p(Ω),
1 < p < ∞), and the product space of UMD spaces. Throughout, X always denotes
a UMD space. Next we recall the concept of R-sectoriality operator. The definition
below is equivalent to [30, Section 1.11] by changing A to −A and changing θ to
π − θ .

Definition 1 An operator A : D(A) → X is said to be sectorial of angle θ if the
following three conditions are satisfied:

(i) A : D(A) → X is a closed operator and its domain D(A) is dense in X ;
(ii) The spectrum of A is contained in the sector C\Σθ ;
(iii) The set of operators {zR(z; A) : z ∈ Σθ } is bounded in B(X).

Similarly, A is said to be R-sectorial of angle θ if (i), (ii) and the following condition
hold:

(iii′) The set of operators {zR(z; A) : z ∈ Σθ } is R-bounded in B(X).

The following theorem is a simple consequence of Dore [13, Theorem 2.1] and
Weis [48, Theorem 4.2].

Theorem 1 A densely defined closed operator A on a UMD space X has maximal
parabolic L p-regularity (1.2) if and only if A is R-sectorial of angle π/2.

The “if” direction in Theorem 1 is a consequence of the following operator-valued
Fourier multiplier theorem [48, Theorem 3.4], whereF denotes the Fourier transform
on R, i.e.,

F f (ξ) =
∫
R

e−iξ t f (t)dt ξ ∈ R.

Theorem 2 Let X be a UMD space. Let M : R\{0} → B(X) be differentiable such
that the set

{M(ξ) : ξ ∈ R\{0}} ∪ {ξM ′(ξ) : ξ ∈ R\{0}} is R-bounded,
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Discrete maximal regularity of time-stepping schemes for… 107

with an R-bound cR. ThenM f := F−1(M(·)(F f )(·)) extends to a bounded operator

M : L p(R, X) → L p(R, X) for 1 < p < ∞.

Further, there exists cp,X > 0 independent of M such that the operator norm ofM is
bounded by cRcp,X .

Using Theorem 2, one can similarly show the following maximal regularity result
for the fractional model (1.3) [6–8], which naturally extends the “if” part of Theorem 1
to the fractional case.

Theorem 3 Let A be an R-sectorial operator of angle απ/2 on a UMD space X.
Then the solution of (1.3) satisfies the maximal L p-regularity estimate (1.4) for any
1 < p < ∞.

In this work, we discuss the discrete analogue of Theorem 3 for a number of time-
stepping schemes for solving (1.3), under the same condition on the operator A, using
a discrete version of Theorem 2 due to Blunck [10].We slightly abuseF for the Fourier
transform on Z+ := {n ∈ Z : n ≥ 0}, which maps a sequence ( f n)∞n=0 to its Fourier
series on the interval (0, 2π), i.e.,

F f (θ) =
∞∑
n=0

e−inθ f n, ∀ θ ∈ (0, 2π),

and let F−1
θ denote the inverse Fourier transform with respect to θ , i.e.,

F−1
θ f (θ) =

( 1

2π

∫ 2π

0
f (θ)einθdθ

)∞
n=0

.

The following result is an immediate consequence of [10, Theorem 1.3], and will be
used extensively; see also [25] for a proof with a more explicit constant. The statement
is equivalent to Blunck’s original theorem via the transformation ξ = e−iθ , but avoids
introducing a different notation M̃(θ).

Theorem 4 Let X be a UMD space, and let M : D′ → B(X) be differentiable such
that the set {

M(ξ) : ξ ∈ D
′} ∪ {

(1 − ξ)(1 + ξ)M ′(ξ) : ξ ∈ D
′} (2.2)

is R-bounded, with an R-bound cR. ThenM f := F−1
θ (M(e−iθ )(F f )(θ)) extends to

a bounded operator

M : �p(Z+, X) → �p(Z+, X) for 1 < p < ∞.

Further, there exists a cp,X > 0 independent of M such that the operator norm ofM
is bounded by cRcp,X .
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108 B. Jin et al.

To simplify the notations, for a given sequence {Mn}∞n=0 of operators on a UMD
space X , we define the generating function

M(ξ) :=
∞∑
n=0

Mnξ
n ∀ξ ∈ D

′. (2.3)

Likewise, the generating function f (ξ) of a sequence ( f n)∞n=0 is defined by

f (ξ) :=
∞∑
n=0

f nξn . (2.4)

The operator M is then given by (M f )n = ∑n
j=0 Mn− j f j , n = 0, 1, . . .. The

generating function satisfies the convolution rule

( f ∗ g)(ξ) = f (ξ)g(ξ), (2.5)

where ( f ∗ g)n := ∑n
j=0 f j gn− j , n = 0, 1, . . ..

3 Convolution quadrature

The convolution quadrature of Lubich (see the review [38] and references therein)
presents one versatile framework for developing time-stepping schemes for the model
(1.3). One salient feature is that it inherits excellent stability property (of that for
ODEs). We shall consider convolution quadrature generated by backward Euler (BE)
and second-order backward difference formula (BDF2), whose error analysis has been
carried out in [11,21].

3.1 BE scheme

We first illustrate basic ideas to prove discrete maximal regularity on BE scheme in
time t , with a constant time step size τ > 0. The BE scheme for (1.3) is given by:
given u0 = 0, find un ∈ X

∂̄α
τ u

n = Aun + f n, n = 1, 2, . . . (3.1)

where the BE approximation ∂̄α
τ u

n to ∂α
t u(tn) is given by

∂̄α
τ u

n = τ−α
n∑
j=0

bn− j u
j with

∞∑
j=0

b jξ
j = δ(ξ)α := (1 − ξ)α, (3.2)

where δ(ξ) = 1 − ξ is the characteristic function of the BE method.
Now we can state the discrete maximal regularity of the BE scheme (3.1).
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Discrete maximal regularity of time-stepping schemes for… 109

Theorem 5 Let X be a UMD space, 0 < α < 1 or 1 < α < 2, and let A be an
R-sectorial operator on X of angle απ/2. Then the BE scheme (3.1) has the following
maximal �p-regularity

‖(∂̄α
τ u

n)Nn=1‖�p(X) + ‖(Aun)Nn=1‖�p(X) ≤ cp,XcR‖( f n)Nn=1‖�p(X),

where the constant cp,X is independent of N , τ and A, and cR denotes the R-bound
of the set of operators {zR(z; A) : z ∈ Σαπ/2}.
Proof By multiplying both sides of (3.1) by ξn and summing over n, we have

∞∑
n=1

ξn ∂̄α
τ u

n −
∞∑
n=1

Aunξn =
∞∑
n=1

f nξn .

It suffices to compute the term
∑∞

n=1 ξn ∂̄α
τ u

n . By noting u0 = 0, the definition of the
BE approximation (3.2) and discrete convolution rule (2.5), we deduce

∞∑
n=1

ξn ∂̄α
τ u

n = τ−α
∞∑
n=0

ξn
n∑
j=0

bn− j u
j = τ−α

( ∞∑
n=0

unξn
)( ∞∑

n=0

bnξ
n

)

= τ−αδ(ξ)αu(ξ).

Consequently, upon letting f 0 = 0, we arrive at

(τ−αδτ (ξ)α − A)u(ξ) = f (ξ).

Since τ−1δ(ξ) ∈ Σπ/2 for ξ ∈ D
′, we have τ−αδ(ξ)α ∈ Σαπ/2 for ξ ∈ D

′. The R-
sectoriality of angle απ/2 of the operator A ensures that the operator τ−αδ(ξ)α − A is
invertible. Meanwhile, the generating function of the BE approximation ∂̄α

τ u is given
by

(∂̄α
τ u)(ξ) =

∞∑
n=0

ξn ∂̄α
τ u

n = τ−αδ(ξ)αu(ξ) = M(ξ) f (ξ).

with M(ξ) = τ−αδ(ξ)α(τ−αδ(ξ)α − A)−1. Appealing to the R-sectoriality of A again
gives that zR(z; A) is analytic and R-bounded in the sector Σαπ/2, which imply that
M(ξ) is differentiable and R-bounded for ξ ∈ D

′. Direct computation yields

(1 − ξ)M ′(ξ) = −αM(ξ) + αM(ξ)2,

which together with Lemma 1 (iii)–(iv) implies the R-boundedness of the set (2.2).
Then the desired result follows from Theorem 4. �
Remark 1 The BE scheme (3.2) is identical with the Grünwald–Letnikov formula, a
popular difference analogue of the Riemann–Liouville fractional derivative ∂α

t u [43],
which has been customarily employed for discretizing (1.3).
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110 B. Jin et al.

3.2 Second-order BDF scheme

Next we consider the convolution quadrature generated by the second-order backward
difference formula (BDF2) for discretizing the model (1.3):

∂̄α
τ u

n = Aun + f n, n ≥ 2 (3.3)

where the BDF2 approximation ∂̄α
τ u

n to ∂α
t u(tn), tn = nτ , is given by

∂̄α
τ u

n = τ−α
n∑
j=0

bn− j u
j with

∞∑
j=0

b jξ
j = δ(ξ)α, (3.4)

with the characteristic function δ(ξ)

δ(ξ) = 3
2 − 2ξ + 1

2ξ
2. (3.5)

We approximate the fractional derivative ∂α
t u(tn) by the BDF2 convolution quadrature

(3.4), and consider the scheme (3.3) with zero starting values u0 = u1 = 0. Note that
for the BDF2 scheme (and other higher-order linear multistep methods), the initial
steps have to be corrected properly in order to achieve the desired accuracy [11,21].
The next result gives the discrete maximal regularity of the scheme (3.3).

Theorem 6 Let X be a UMD space, 0 < α < 1 or 1 < α < 2, and let A be an
R-sectorial operator on X of angle απ/2. Then the BDF2 scheme (3.3) satisfies the
following discrete maximal regularity

‖(∂̄α
τ u

n)Nn=2‖�p(X) + ‖(Aun)Nn=2‖�p(X) ≤ cp,XcR‖( fn)Nn=2‖�p(X),

where the constant cp,X is independent of N , τ and A, and cR denotes the R-bound
of the set of operators {zR(z; A) : z ∈ Σαπ/2}.
Proof In a straightforward manner, upon letting f 0 = f 1 = 0, we obtain

(τ−αδ(ξ)α − A)u(ξ) = f (ξ),

where δ(ξ) is defined in (3.5). Since BDF2 is A-stable (for ODEs), i.e., 	δ(ξ) > 0
for ξ ∈ D

′, we have τ−αδ(ξ)α ⊂ Σαπ/2. This and the R-sectoriality (of angle απ/2)
of the operator A implies that τ−αδ(ξ)α − A is invertible for ξ ∈ D

′. Further, direct
computation gives

(∂̄α
τ u)(ξ) = M(ξ) f (ξ) with M(ξ) = τ−αδ(ξ)α(τ−αδ(ξ)α − A)−1.

The R-sectoriality of the operator A implies the R-boundedness of the set {M(ξ) :
ξ ∈ D

′}. Meanwhile,

(1 − ξ)M ′(ξ) = d(ξ)M(ξ) − d(ξ)M(ξ)2, with d(ξ) = α
2(ξ − 2)

3 − ξ
.
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Since d(ξ) is bounded on D
′, Lemma 1 (iii)–(iv) and Theorem 4 give the desired

assertion. �

4 L1 scheme

Now we discuss one time-stepping scheme of finite difference type for simulating
subdiffusion—the L1 scheme [36,46]—which is easy to implement and converges
robustly for nonsmooth data, hence very popular. However, unlike convolution quadra-
ture, finite difference type methods are generally challenging to analyze. For the
subdiffusion case, i.e., α ∈ (0, 1), it approximates the (Caputo) fractional derivative
∂α
t u(tn) with a time step size τ by

∂α
t u(tn) = 1

Γ (1 − α)

n−1∑
j=0

∫ t j+1

t j
u′(s)(tn − s)−α ds

≈ 1

Γ (1 − α)

n−1∑
j=0

u(t j+1) − u(t j )

τ

∫ t j+1

t j
(tn − s)−αds

=
n−1∑
j=0

b j
u(tn− j ) − u(tn− j−1)

τα

= τ−α[b0u(tn) − bn−1u(t0) +
n−1∑
j=1

(b j − b j−1)u(tn− j )] =: ∂̄α
τ u

n . (4.1)

where the weights b j are given by

b j = (( j + 1)1−α − j1−α)/Γ (2 − α), j = 0, 1, . . . , N − 1. (4.2)

For the case α ∈ (1, 2), the L1 scheme reads [46]

∂α
t u(tn− 1

2
) ≈ τ−α

Γ (3 − α)

[
a0δt u

n− 1
2 −

n−1∑
j=1

(an− j−1 − an− j )δt u
j− 1

2 − an−1τ∂t u(0)
]

=: ∂̄α
τ u

n,

where δt u j− 1
2 = u j − u j−1 denotes central difference, and a j = ( j + 1)2−α − j2−α ,

and we have abused the notation ∂̄α
τ u

n for approximating ∂α
t u(tn− 1

2
). Formally, it

can be obtained by applying (4.1) to the first derivative ∂t u, in view of the identity
∂α
t u = ∂α−1

t (∂t u), and then discretizing the ∂t uwith theCrank–Nicolson typemethod.
The scheme requires ∂t u(0), in addition to the initial condition u(0). Accordingly, we
approximate the right hand side of (1.3) by a Crank–Nicolson type scheme. In sum,
the L1 scheme reads
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{
∂̄α
τ u

n = Aun + f n, 0 < α < 1,

∂̄α
τ u

n = A(un + un−1)/2 + ( f n + f n−1)/2, 1 < α < 2.
(4.3)

Remark 2 For α ∈ (0, 1), Lin and Xu [36] proved that the L1 scheme is uniformly
O(τ 2−α) accurate for C2 solutions; and for α ∈ (1, 2), Sun and Wu [46] showed that
it is uniformly O(τ 3−α) accurate for C3 solutions. It is worth noting that even for
smooth initial data and source term, the solution of fractional-order PDEs may not be
C2 in general. In fact, the L1 scheme is generally only first-order [20,23].

For the analysis, we recall the polylogarithmic function Lip(z), p ∈ R and z ∈ C,
defined by

Lip(z) =
∞∑
j=1

z j

j p
.

The functionLip(z) iswell definedon {z : |z| < 1}, and it can be analytically continued
to the split complex plane C\[1,∞) [14]. With z = 1, it recovers the Riemann zeta
function ζ(p) = Lip(1). First we state the solution representation.

Lemma 3 The discrete solution u(ξ) of the L1 scheme (4.3) satisfies

(τ−αδ(ξ) − A)u(ξ) = f (ξ), (4.4)

with the generating functions

δ(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − ξ)2

ξΓ (2 − α)
Liα−1(ξ), α ∈ (0, 1),

2(1 − ξ)3

ξ(1 + ξ)Γ (3 − α)
Liα−2(ξ), α ∈ (1, 2),

f (ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
n=1

f nξn, α ∈ (0, 1),

ξ

1 + ξ

∞∑
n=0

f nξn + 1

1 + ξ

∞∑
n=1

f nξn, α ∈ (1, 2).

Proof We first show the representation for α ∈ (0, 1), and the case α ∈ (1, 2) is
analogous. Multiplying both sides of (4.3) by ξn and summing over n yield

∞∑
n=1

∂̄α
τ u

nξn − Au(ξ) =
∞∑
n=1

f nξn,

upon noting u0 = 0. Now we focus on the term
∑∞

n=1 ∂̄α
τ u

nξn . Since u0 = 0, by the
convolution rule (2.5), we have
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∞∑
n=1

∂̄α
τ u

nξn = τ−α
∞∑
n=1

(
b0u

n +
n−1∑
j=1

(b j − b j−1)u
n− j

)
ξn

= τ−α
∞∑
n=1

( n−1∑
j=0

b ju
n− j

)
ξn − τ−α

∞∑
n=1

( n−1∑
j=1

b j−1u
n− j

)
ξn

= τ−α(1 − ξ)b(ξ)u(ξ).

Using the polylogarithmic function Lip(z), b(ξ) is given by

b(ξ) = 1

Γ (2 − α)

∞∑
j=0

(( j + 1)1−α − j1−α)ξ j

= 1 − ξ

ξΓ (2 − α)

∞∑
j=1

j1−αξ j = (1 − ξ)Liα−1(ξ)

ξΓ (2 − α)
,

from which the desired solution representation follows directly. �
We shall need the following result, which is of independent interest.

Lemma 4 For α ∈ (0, 1) and ξ ∈ D
′, we have ψ(ξ) := (1−ξ)2

ξ
Liα−1(ξ) ∈ Σπα

2
.

Proof It suffice to consider ξ = e−iθ with θ ∈ (0, π ], since the case θ ∈ (π, 2π) can
be proved similarly. Using the identity

(1 − ξ)2

ξ
= 1

ξ
+ ξ − 2 = e−iθ + eiθ − 2 = 2 cos θ − 2,

we have
arg((1 − ξ)2/ξ) = arg(2 cos θ − 2) = −π.

Moreover, we have the expansion [49, equation (13.1)]

Liα−1(ξ)

Γ (2 − α)

= (−2π i)α−2
∞∑
k=0

(
k + 1 − θ

2π

)α−2 + (2π i)α−2
∞∑
k=0

(
k + θ

2π

)α−2

= (2π)α−2 (cos((2 − α)π
2 )(A(θ) + B(θ)) − i sin((2 − α)π

2 )(A(θ) − B(θ))
)
,

(4.5)

where

A(θ) =
∞∑
k=0

(
k + θ

2π

)α−2
and B(θ) =

∞∑
k=0

(
k + 1 − θ

2π

)α−2
.
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Both series converge for α ∈ (0, 1). Since for θ ∈ (0, π ], (k + θ
2π )α−2 > (k + 1 −

θ
2π )α−2 > 0, there holds

A(θ) − B(θ)

A(θ) + B(θ)
∈ (0, 1),

and we deduce

arg(Liα−1(ξ)) ∈ [−π,−π + απ/2) for ξ = e−iθ , θ ∈ (0, π ].

Therefore, we have

arg
( (1 − ξ)2

ξ
Liα−1(ξ)

)
= arg(Liα−1(ξ)) + arg((1 − ξ)2/ξ) ∈ [0, απ/2).

This completes the proof of the lemma. �
Lemma 5 For the function δ(ξ) defined by (4.4), there holds

(1 − ξ)(1 + ξ)δ′(ξ) = d(ξ)δ(ξ)

with

d(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 + ξ)

(
−2 + 1 − ξ

ξ

Liα−2(ξ) − Liα−1(ξ)

Liα−1(ξ)

)
, α ∈ (0, 1),

(1 + ξ)

(
−3 + 1 − ξ

ξ

Liα−3(ξ) − Liα−2(ξ)

Liα−2(ξ)

)
+ (ξ − 1), α ∈ (1, 2).

where d(ξ) is uniformly bounded on D
′.

Proof It suffices to consider the case α ∈ (0, 1), while the other case follows
analogously. Since Liα−1(ξ) is analytic, by termwise differentiation, Li′α−1(ξ) =
ξ−1Liα−2(ξ). Thus, with cα = 1/Γ (2 − α), we have

δ′(ξ) = cα

(
−2(1 − ξ)

ξ
Liα−1(ξ) − (1 − ξ)2

ξ2
Liα−1(ξ) + (1 − ξ)2

ξ2
Liα−2(ξ)

)
,

from which the expression of d(ξ) follows. By using the asymptotic expansion (see
[49, equation (9.3)] or [14, Theorem 1])

Lip(e
−iθ ) = Γ (1 − p)(iθ)p−1 + o(θ p), as θ → 0, (4.6)

we deduce

lim
ξ→1

ξ∈D′
1 − ξ

ξ

Liα−2(ξ) − Liα−1(ξ)

Liα−1(ξ)
= Γ (3 − α)

Γ (2 − α)
= 2 − α.
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Hence, d(ξ) is bounded if ξ = e−iθ is close to 1.Meanwhile, if ξ = e−iθ and θ is away
from the two end-points of the interval (0, 2π), then (4.5) implies that |Liα−1(ξ)| has
a positive lower bound and |Liα−2(ξ)| has an upper bound. Hence d(ξ) is bounded.

�
Now we can give the discrete maximal regularity for the L1 scheme (4.1).

Theorem 7 Let X be a UMD space, 0 < α < 1 or 1 < α < 2, and let A be
an R-sectorial operator on X of angle απ/2. Then the L1 scheme (4.3) satisfies the
following discrete maximal regularity

‖(∂̄α
τ u

n)Nn=1‖�p(X) + ‖(Aun)Nn=1‖�p(X) ≤
{
cp,XcR‖( f n)Nn=1‖�p(X), if 0 < α < 1,

cp,XcR‖( f n)Nn=0‖�p(X), if 1 < α < 2,

where the constant cp,X is independent of N , τ and A, and cR denotes the R-bound
of the set of operators {zR(z; A) : z ∈ Σαπ/2}.
Proof First we consider the case 0 < α < 1. Upon setting f 0 = 0, Lemmas 3 and 4
yield

(∂̄α
τ u)(ξ) = M(ξ) f (ξ) with M(ξ) = τ−αδ(ξ)

(
τ−αδ(ξ) − A

)−1
,

where δ(ξ) is defined by (4.4). By Lemma 4, we have

{M(ξ) : ξ ∈ D
′} ⊂ {zR(z; A) : z ∈ Σαπ/2},

where the latter set is R-bounded by assumption. Meanwhile,

(1 − ξ)(1 + ξ)M ′(ξ) = d(ξ)M(ξ) − d(ξ)M(ξ)2,

where, by Lemma 5, d(ξ) is uniformly bounded on D
′. By Lemma 1, the set {(1 −

ξ)(1+ ξ)M ′(ξ) : ξ ∈ D
′} is R-bounded. Thus we deduce from Theorem 4 the desired

assertion.
Next we consider the case of 1 < α < 2. In this case, we let g0 = 0 and gn = f n ,

n ≥ 1, to obtain
(∂̄α

τ u)(ξ) = 1
2ξM(ξ) f (ξ) + 1

2M(ξ)g(ξ),

with M(ξ) = τ−αδ(ξ)(τ−αδ(ξ) − A)−1. In view of the relation δ(ξ) =
2

Γ (3−α)
1−ξ
1+ξ

ψ(ξ), by Lemma 4 and since the function (1 − ξ)/(1 + ξ) maps D′ into
the imaginary axis, we deduce

{M(ξ) : ξ ∈ D
′} ⊂ {λR(λ; A) : λ ∈ Σαπ/2}.

The rest of the proof follows like before, using Lemma 5. �
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Remark 3 For the model (1.3) with α ∈ (0, 1), the piecewise constant discontinuous
Galerkin (PCDG) method in [39] leads to a time-stepping scheme identical with the
L1 scheme. The PCDG is given by: find un such that

∫ tn

tn−1

∂α
t u(s)ds =

∫ tn

tn−1

Aun(s)ds +
∫ tn

tn−1

f (s)ds, n = 1, 2, . . . , N .

By letting f n = τ−1
∫ tn
tn−1

f (s)ds, we obtain

τ−1
∫ tn

tn−1

∂α
t u(s)ds = Aun + f n, n = 1, . . . , N .

Next we derive the explicit expression for the discrete approximation ∂̄α
τ u

n

∂̄α
τ u

n = τ−1
∫ tn

tn−1

∂α
t u(s)ds = τ−α

n∑
j=1

βn− j u
j ,

where β0 = 1 and β j = ( j + 1)1−α − 2 j1−α + ( j − 1)1−α , j = 1, 2, . . .. With the
weights b j in (4.2), we have β j = b j − b j−1, for j = 1, 2, . . ., and β0 = b0. Hence,
the PCDG approximation ∂̄α

τ u
n reads

∂̄α
τ u

n = τ−αb0u
n + τ−α

n−1∑
j=1

(b j − b j−1)u
n− j .

Thus it is identical with the L1 scheme, and Theorem 7 applies.

5 Explicit Euler method

Now we analyze the explicit Euler method for discretizing (1.3) in time:

∂̄α
τ u

n = Aun−1 + f n−1, n ≥ 1, (5.1)

where the approximation ∂̄α
τ u

n denotes the BE approximation (3.2). A variant of the
scheme was analyzed in [50]. By multiplying (5.1) by ξn and summing up the results
for n = 1, 2, . . . , we obtain

(τ−αδ(ξ) − A)u(ξ) = f (ξ) and (∂̄α
τ u)(ξ) = τ−αξδ(ξ)u(ξ),

with
δ(ξ) = (1−ξ)α

ξ
.

Recall that the numerical range S(A) of an operator A is defined by [42, pp. 12]

S(A) = {〈x∗, Ax〉 : x ∈ X, x∗ ∈ X∗, ‖x‖X = ‖x∗‖X∗ = 〈x∗, x〉 = 1}.
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We denote by r(A) = supz∈S(A) |z| the radius of the numerical range S(A), known as
numerical radius. Recall that [42, Theorem 3.9, Chapter 1, pp. 12]

‖R(z; A)‖B(X) ≤ dist(z, S(A))−1, ∀ z ∈ C\S(A), (5.2)

where S(A) denotes of the closure of S(A) in C, and dist(z, S(A)) is the distance of
z from S(A).

The next theorem gives the maximal �p-regularity of the explicit Euler method
(5.1), if ταr(A) is smaller than some given positive constant.

Theorem 8 Let X be a UMD space, 0 < α < 1 or 1 < α < 2, and let A be an R-
sectorial operator of angle απ/2 such that S(A) ⊂ C\Σϕ for some ϕ ∈ (απ/2, π ].
Then, under the condition (for small ε > 0)

ταr(A) ≤ 2α

[
sin

(
ϕ − απ/2

2 − α

)]α

− ε, (5.3)

the scheme (5.1) satisfies the following discrete maximal regularity

‖(∂̄α
τ u

n)Nn=1‖�p(X) + ‖(Aun)N−1
n=1 ‖�p(X) ≤ cp,X (1 + cR)‖( f n)N−1

n=0 ‖�p(X),

where the constant cp,X depends only on ε, ϕ and α (independent of τ and A), and
cR denotes the R-bound of the set {zR(z; A) : z ∈ Σαπ/2}.
Proof For ξ = eiθ , θ ∈ (0, 2π), we have

δ(eiθ )

τα
= 2α[sin(θ/2)]α

τα
ei[−απ/2−(1−α/2)θ],

which is a parametric curve contained in the sector C\Σαπ/2. Let Γ = {τ−αδ(eiθ ) :
θ ∈ (0, 2π)}. It suffices to prove that the family of operators {zR(z; A) : z ∈ Γ }
is R-bounded. Since {zR(z; A) : z ∈ Σαπ/2} is R-bounded, by Lemma 2, we have
{zR(z; A) : z ∈ Γ ∩Σφ} is R-bounded for some φ ∈ (απ/2, ϕ], where φ depends on
cR and α. It remains to prove that {zR(z; A) : z ∈ Γ \Σφ} is also R-bounded. Note
that arg(τ−αδ(eiθ )) ∈ C\Σϕ is equivalent to

ϕ − απ/2

1 − α/2
< θ < 2π − ϕ − απ/2

1 − α/2
. (5.4)

Meanwhile, since for θ ∈ (0, π), |δ(eiθ )| = 2α[sin(θ/2)]α is strictly monotonically
increasing in θ , for such θ satisfying (5.4), there holds

∣∣∣∣δ(e
iθ )

τα

∣∣∣∣ ≥ 2α
[
sin

(ϕ−απ/2
2−α

)]α
τα

.
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If (5.3) is satisfied, then

(1 − εα,ϕ)|δ(eiθ )| ≥ ταr(A) (5.5)

for some εα,ϕ > 0. Now consider the curve Γ0 := {δ(eiθ ) : θ ∈ (0, 2π)} and the
closed region D0 := {sΓ0 : s ∈ [0, 1]}, which are fixed (and independent of τ ). Since
S(A) ⊂ C\Σϕ , it follows from (5.5) that

dist(z, ταS(A)) ≥ dist(Γ0\Σφ, (1 − εα,ϕ)D0\Σϕ) ≥ C−1 for z ∈ Γ0\Σφ.

where the constant C depends on the parameters ε, α, ϕ and φ, but is independent of
τ (since both Γ0\Σφ and (1− εα,ϕ)D0\Σϕ are fixed closed subsets ofC, independent
of τ ). Since Γ = τ−αΓ0, the last inequality yields (via scaling)

dist(z, S(A)) ≥ τ−αC−1 for z ∈ Γ \Σφ.

Hence there exists a finite number of balls B(z j , ρ) of radius ρ = 1
4τ

−αC−1, z j ∈ Γ ,
which can cover Γ \Σφ , and further, the number of balls is bounded by a constant
which depends only the parameters ε, α, ϕ and φ, independent of τ and A. For each
ball B(z j , ρ), {zR(z; A) : z ∈ B(z j , ρ)} is R-bounded and its R-bound is at most (see
Lemma 6 below)

sup
z∈B(z j ,ρ)

2|z|‖R(z; A)‖B(X) ≤ sup
z∈B(z j ,ρ)

2|z| dist(z, S(A))−1 ≤ C,

where we have used the estimate (5.2) in the first inequality. Then Lemma 1 (iii)
implies that {zR(z; A) : z ∈ Γ \Σφ} is also R-bounded. �
Remark 4 The constant in condition (5.3) is sharp. The scaling factor τα is one notable
feature of the model (1.3), and for α ∈ (0, 1), the exponent α agrees with that in the
stability condition in [50]. Hence, the smaller the fractional order α is, the smaller the
step size τ should be taken.

Remark 5 The condition (5.3) covers bounded operators, e.g., finite element approx-
imations of a self-adjoint second-order elliptic operator. For a self-adjoint discrete
approximation, the numerical range S(A) is the closed interval spanned by the largest
and smallest eigenvalues, but in general, the numerical range S(A) has to be approxi-
mated [19, Section 5.6].

Lemma 6 (R-boundedness of operator-valued analytic functions) If the function F :
B(z0, ρ) → B(X) is analytic in a neighborhood of the ball B(z0, ρ), centered at z0
with radius ρ, then the set of operators {F(z) : λ ∈ B(z0, ρ/2)} is R-bounded on X,
and its R-bound is at most

2 sup
z∈B(z0,ρ)

‖F(z)‖B(X).
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Proof The analyticity implies the existence of a power series expansion

F(z) =
∞∑
n=0

Fn
n! (z − z0)

n

where Fn , n = 0, 1, 2, . . . are bounded linear operators on X and the series converges
absolutely in B(z0, ρ). Moreover, by Cauchy’s integral formula,

‖Fn‖B(X) =
∥∥∥∥ 1

2π i

∫
∂B(z0,ρ)

n!F(z)

(z − z0)n+1 dz

∥∥∥∥B(X)

≤ ρ−nn! sup
z∈B(z0,ρ)

‖F(z)‖B(X).

Hence, for z j ∈ B(z0, ρ/2) and u j ∈ X , j = 1, 2, . . . ,m, Minkowski’s inequality
implies

∫ 1

0

∥∥∥∥
m∑
j=1

r j (s)F(z j )u j

∥∥∥∥
X
ds ≤

∞∑
n=0

(ρ/2)n

n!
∫ 1

0

∥∥∥∥
m∑
j=1

r j (s)

(
z j − z0

ρ/2

)n

Fnu j

∥∥∥∥
X
ds

≤ 2
∞∑
n=0

(ρ/2)n

n!
∫ 1

0

∥∥∥∥
m∑
j=1

r j (s)Fnu j

∥∥∥∥
X
ds

≤ 2
∞∑
n=0

(ρ/2)n‖Fn‖B(X)

n!
∫ 1

0

∥∥∥∥
m∑
j=1

r j (s)u j

∥∥∥∥
X
ds

≤ 2
∞∑
n=0

2−n sup
z∈B(z0,ρ)

‖F(z)‖B(X)

∫ 1

0

∥∥∥∥
m∑
j=1

r j (s)u j

∥∥∥∥
X
ds

≤ 4 sup
z∈B(z0,ρ)

‖F(z)‖B(X)

∫ 1

0

∥∥∥∥
m∑
j=1

r j (s)u j

∥∥∥∥
X
ds,

where the second line follows from [30, Proposition 2.5]. This shows that the family
of operators {F(z) : z ∈ B(z0, ρ/2)} is R-bounded. �

6 Fractional Crank–Nicolson method

By the fractional Crank–Nicolson method, we mean the following scheme:

∂̄α
τ u

n = (1 − α
2 )Aun + α

2 Au
n−1 + (1 − α

2 ) f n + α
2 f n−1, (6.1)

where the approximation ∂̄α
τ u

n denotes the BE approximation (3.2). When α = 1,
(6.1) coincides with the standard Crank–Nicolson method. For any 0 < α < 2, one
can verify that it is second-order in time, provided that the solution is sufficiently
smooth [22]. By multiplying (5.1) by ξn and summing up the results for n = 1, 2, . . . ,
we obtain

123



120 B. Jin et al.

(τ−αδ(ξ) − A)u(ξ) = f (ξ)

(∂̄α
τ u)(ξ) = (

1 − α
2 + α

2 ξ
)
τ−αδ(ξ)u(ξ),

with

δ(ξ) = (1 − ξ)α

1 − α
2 + α

2 ξ
.

First, we prove the maximal �p-regularity for (6.1) in the case 0 < α < 1.

Theorem 9 Let X be a UMD space, 0 < α < 1, and let A be an R-sectorial operator
on X of angle απ/2. Then the scheme (6.1) satisfies the following discrete maximal
regularity

‖(∂̄α
τ u

n)Nn=1‖�p(X) + ‖(Aun)Nn=1‖�p(X) ≤ cp,XcR‖( f n)Nn=0‖�p(X),

where the constant cp,X depends only on α (independent of τ and A), and cR denotes
the R-bound of the set of operators {zR(z; A) : z ∈ Σαπ/2}.
Proof It suffices to prove that the family of operators

{
τ−αδ(ξ)(τ−αδ(ξ) − A)−1 :

ξ ∈ D
′} is R-bounded. In fact, for ξ = eiθ , θ ∈ (0, 2π), we have

δ(eiθ )

τα
= 2α[sin(θ/2)]α

ταρ(θ)
ei(−

α
2 π+ α

2 θ−ψ(θ)),

where the functions ρ(θ) and ψ(θ) are defined respectively by

ρ(θ) :=
√

(1 − α
2 )2 + α2

4 + α(1 − α
2 ) cos θ, (6.2)

and

ψ(θ) := arg
(
1 − α

2
+ α

2
cos θ + i

α

2
sin θ

)
= arctan

α
2 sin θ

1 − α
2 + α

2 cos θ
. (6.3)

It is straightforward to compute

α

2
− ψ ′(θ) =

α
2 (1 − α)(1 − α

2 )(1 − cos θ)

(1 − α
2 + α

2 cos θ)2 + α2

4 sin2 θ
≥ 0.

Thus α
2 θ − ψ(θ) is an increasing function of θ , taking values from 0 to απ as θ

changes from 0 to 2π . Thus τ−αδ(eiθ ) ∈ Σαπ/2, and by Lemma 1, the set {(1 − α
2 +

α
2 ξ)τ−αδ(ξ)(τ−αδ(ξ) − A)−1 : ξ ∈ D

′} is R-bounded. �
Let the function ψ be defined in (6.3), and θϕ ∈ (0, π) be the unique root of the

equation

ψ(θϕ) − α

2
θϕ = ϕ − απ

2
. (6.4)
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Then we have the following result for the case 1 < α < 2.

Theorem 10 Let X be aUMDspace, 1 < α < 2, and let A be an R-sectorial operator
on X of angle απ/2 such that S(A) ⊂ C\Σϕ for some ϕ ∈ (απ/2, π). Then, under
the condition (for small ε > 0)

ταr(A) ≤ 2α[sin(θϕ/2)]α
ρ(θϕ)

− ε, (6.5)

the scheme (6.1) satisfies the following discrete maximal regularity

‖(∂̄α
τ u

n)Nn=1‖�p(X) + ‖(Aun)Nn=1‖�p(X) ≤ cp,X (1 + cR)‖( f n)Nn=0‖�p(X),

where the constant cp,X depends only on ε, ϕ and α (independent of τ and A), and
cR denotes the R-bound of the set {zR(z; A) : z ∈ Σαπ/2}.
Proof If 1 < α < 2, then

α

2
− ψ ′(θ) =

α
2 (1 − α)(1 − α

2 )(1 − cos θ)

(1 − α
2 + α

2 cos θ)2 + α2

4 sin2 θ
≤ 0.

Hence, α
2 θ − ψ(θ) is a decreasing function of θ , taking values from 0 to απ − 2π

as θ changes from 0 to 2π . Thus τ−αδ(eiθ ) ∈ C\Σαπ/2. With Γ = {τ−αδ(eiθ ) :
θ ∈ (0, 2π)}, it suffices to show that {zR(z; A) : z ∈ Γ } is R-bounded. Since
{zR(z; A) : z ∈ Σαπ/2} is R-bounded, by Lemma 2, {zR(z; A) : z ∈ Γ ∩ Σφ} is R-
bounded for some φ ∈ (απ/2, π), where φ depends on cR and α. It remains to prove
that {zR(z; A) : z ∈ Γ \Σφ} is also R-bounded. However, arg(τ−αδ(eiθ )) ∈ C\Σϕ is
equivalent to

θϕ < θ < 2π − θϕ, (6.6)

where θϕ is the unique root of equation (6.4). Meanwhile, for θ ∈ (0, π), |δ(eiθ )| =
2α[sin(θ/2)]α/ρ(θ) = 2α sin(θ/2)α−1 · sin(θ/2)/ρ(θ) is monotonically increasing.
Hence, for any θ satisfying (6.6), we have

∣∣∣∣δ(e
iθ )

τα

∣∣∣∣ ≥ 2α[sin(θϕ/2)]α
ρ(θϕ)τα

.

If (6.5) is satisfied then for some positive constant εα,ϕ ,

(1 − εα,ϕ)

∣∣∣∣δ(e
iθ )

τα

∣∣∣∣ ≥ r(A).

By repeating the argument in Theorem 8, we deduce dist(z, S(A)) ≥ τ−αC−1 for
z ∈ Γ \Σφ , where C is some constant which may depend on ε, α, ϕ and φ, but
is independent of τ . Hence, there exists a finite number of balls B(z j , ρ) of radius
ρ = 1

4τ
−αC−1, z j ∈ Γ , which can cover Γ \Σφ , and the number of balls is bounded
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by a constant which depends only on ε, α, ϕ and φ, independent of τ and A. By Lemma
6, for each ball B(z j , ρ), {zR(z; A) : z ∈ B(z j , ρ)} is R-bounded and its R-bound is
at most

2 sup
z∈B(z j ,ρ)

|z|‖R(z; A)‖B(X) ≤ 2 sup
z∈B(z j ,ρ)

|z| dist(z, S(A))−1 ≤ C.

Then Lemma 1 (iii) implies that {zR(z; A) : z ∈ Γ \Σφ} is also R-bounded. �

7 Inhomogeneous initial condition

In this section, we consider maximal �p-regularity for the problem

∂α
t u(t) = Au(t), t > 0 (7.1)

with nontrivial initial conditions:

u(0) = v, (for 0 < α < 1),

u(0) = v, ∂t u(0) = w, (for 1 < α < 2).
(7.2)

We focus on the BE scheme since other schemes can be analyzed similarly. For (7.2),
the BE scheme reads [21,22]: with u0 = v, find un such that

∂̄α
τ (u − v)n = Aun, n = 1, 2, . . . (for 0 < α < 1),

∂̄α
τ (u − v − tw)n = Aun, n = 1, 2, . . . (for 1 < α < 2),

(7.3)

where ∂̄α
τ denotes the BE convolution quadrature (3.2).

We shall need the scaled L p-norm and weak L p-norm (cf. [9, section 1.3])

‖(un)Nn=1‖L p(X) :=
(

τ

N∑
n=1

‖un‖p
X

) 1
p

, (7.4)

‖(un)Nn=1‖L p,∞(X) := sup
λ>0

λ|{n ≥ 1 : ‖un‖X > λ}| 1p τ 1
p . (7.5)

The main result of this section is the following theorem.

Theorem 11 Let X be a Banach space, 0 < α < 1, and let A be a sectorial operator
on X of angleαπ/2. Then theBE scheme (7.3) has the followingmaximal �p-regularity

‖(∂̄α
τ u

n)Nn=1‖L p(X) + ‖(Aun)Nn=1‖L p(X) ≤ cp‖v‖(X,D(A))
1− 1

pα ,p
, p ∈ (1/α,∞],

‖(∂̄α
τ u

n)Nn=1‖L p,∞(X) + ‖(Aun)Nn=1‖L p,∞(X) ≤ cp‖v‖X , p = 1/α,

‖(∂̄α
τ u

n)Nn=1‖L p(X) + ‖(Aun)Nn=1‖L p(X) ≤ cp‖v‖X , p ∈ [1, 1/α),
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where the constant cp depends on the bound of the set of operators {zR(z; A) : z ∈
Σαπ/2}, independent of N , τ and A.

Proof By multiplying both sides of (7.3) by ξn and summing over n, we have

∞∑
n=1

ξn ∂̄α
τ (u − v)n −

∞∑
n=1

Aunξn = 0.

Let u(ξ) = ∑∞
n=1 u

nξn . Then by repeating the argument in the proof of Theorem 5,
we have (with δ(ξ) = 1 − ξ )

Au(ξ) = A(τ−αδ(ξ)α − A)−1τ−αδ(ξ)α
ξ

1 − ξ
v,

where the right-hand side is an analytic function in the unit disk. For ρ ∈ (0, 1), the
Cauchy’s integral formula and the change of variable ξ = e−τ z yield

Aun = 1

2π i

∫
|ξ |=ρ

Au(ξ)ξ−n−1dξ = τ

2π i

∫
Γ τ

ρ

Au(e−τ z)etnzdz= τ

2π i

∫
Γ τ

ρ

K (z)vdz,

where the kernel function K (z) is defined by

K (z) = etnz A(τ−αδ(e−τ z)α − A)−1τ−αδ(e−τ z)α
e−τ z

1 − e−τ z
,

and Γ τ
ρ = {a + iy : y ∈ (−π/τ, π/τ)} with a = τ−1 ln 1

ρ
> 0. Since zR(z; A) is

bounded for z ∈ Σαπ/2, zR(z; A) is also bounded for z ∈ Σαπ/2+ε (the angle can
be slightly self-improved (cf. [42, Theorem 5.2 (c)]). Then a standard perturbation
argument shows that there exists θε > 0 (depending on ε) such that δ(e−τ z)α ∈
Σαπ/2+ε when z ∈ Σπ

2 +θε
. Let

Γ τ
θε,κ

=
{
ρeiθε : κ ≤ ρ ≤ π

τ sin θε

}⋃{
κeiϕ : −θε ≤ ϕ ≤ θε

}
,

Γ τ± =
{
x ± iπ/τ : π cos θε

τ sin θε

< x < τ−1 ln
1

ρ

}
,

whereΓ τ
θε,κ

is oriented upwards andΓ τ± is oriented rightwards, and 0 < κ < τ−1 ln 1
ρ
.

Then the function K (z)v is analytic in z in the region enclosed by Γ τ
θε,κ

, Γ τ± and Γ τ
ρ .

Since the integrals on Γ τ+ and Γ τ− cancel each other due to the 2π i-periodicity of the
integrand, the Cauchy’s theorem yields

Aun = τ

2π i

∫
Γ τ

ρ

K (z)vdz = τ

2π i

∫
Γ τ

θε,κ

K (z)vdz.
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Then by choosing κ = t−1
n in the contour Γ τ

θε,κ
, we deduce

‖Aun‖X ≤ c

(∫ π
τ sin θε

κtn
s−1es cos θεds +

∫ θε

−θε

etnκ cosϕdϕ

)
‖Av‖X ≤ c‖Av‖X .

Similarly, one can show

‖un‖X ≤ c‖v‖X and ‖Aun‖X ≤ ct−α
n ‖v‖X .

This last estimate immediately implies the third assertion of Theorem 11. Now for
p ∈ (1/α,∞], we denote by Eτ : X → L∞(R+, X) the operator which maps v to
the piecewise constant function

Eτ v = un ∀ t ∈ (tn−1, tn], n = 1, 2, . . .

The preceding two estimates imply

‖Eτ v‖L∞(R+,D(A)) ≤ c‖v‖D(A), (7.6)

‖Eτ v‖L1/α,∞(R+,D(A)) ≤ c‖v‖X . (7.7)

The estimate (7.6) implies the first assertion of Theorem 11 in the case p = ∞, and
the estimate (7.7) implies the second assertion of Theorem 11. The real interpolation
of the last two estimates yields

‖Eτ v‖(L1/α,∞(R+,D(A)),L∞(R+,D(A)))
1− 1

αp ,p
≤ c‖v‖(X,D(A))

1− 1
αp ,p

, ∀ p ∈ (α−1,∞).

Since (L1/α,∞(R+, D(A)), L∞(R+, D(A)))1− 1
αp ,p = L p(R+, D(A)) [9, Theorem

5.2.1], this implies the first assertion of Theorem 11 in the case p ∈ (1/α,∞). �
Remark 6 The proof shows that in the absence of a source term f , the maximal �p-
regularity of (7.3) only requires the sectorial property of A, rather than the R-sectorial
property. The general case (with nonzero source and nonzero initial data) is a linear
combination of (1.3) and (7.2).

Remark 7 We have focused our discussions on the Caputo fractional derivative, since
it allows specifying the initial condition as usual, and thus is very popular among
practitioners. In the Riemann–Liouville case, generally it requires integral type initial
condition(s) [27], for which the physical interpretation seems unclear.

In the proof of Theorem 11, we first prove two end-point cases, p = 1/α and
p = ∞. Then we use real interpolation method for the case 1/α < p < ∞. The real
interpolation method also holds for 0 < p < 1 ([9, Theorem 5.2.1]). Thus, we have
the following theorem in the case 1 < α < 2. The proof is omitted, since it is almost
identical with the proof of Theorem 11.
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Theorem 12 Let X beaBanach space,1 < α < 2, and let A bea sectorial operator on
X of angle απ/2. Then the BE scheme (7.3) has the following maximal �p-regularity:

‖(∂̄α
τ u

n)Nn=1‖L p(X) + ‖(Aun)Nn=1‖L p(X)

≤

⎧⎪⎨
⎪⎩
cp(‖v‖(X,D(A))

1− 1
pα ,p

+ ‖w‖X ), for p ∈
[
1, 1

α−1

)
,

cp(‖v‖(X,D(A))
1− 1

pα ,p
+ ‖w‖(X,D(A))

1− 1
α − 1

pα ,p
), for p ∈

(
1

α−1 ,∞
]
,

and

‖(∂̄α
τ u

n)Nn=1‖L p,∞(X) + ‖(Aun)Nn=1‖L p,∞(X)

≤ cp(‖v‖(X,D(A))
1− 1

pα ,p
+ ‖w‖X ), for p = 1

α − 1
,

where the constant cp depends on the bound of the set of operators {zR(z; A) : z ∈
Σαπ/2}, independent of N , τ and A.

8 Examples and application to error estimates

In this section, we present a few examples of fractional evolution equations which
possess the maximal L p-regularity, and investigate conditions under which the time-
stepping schemes in Sects. 3–6 satisfy the maximal �p-regularity.

Example 1 (Continuous problem) Consider the following time fractional parabolic
equation in a bounded smooth domain Ω ⊂ R

d (d ≥ 1):

⎧⎪⎪⎨
⎪⎪⎩

∂α
t u(x, t) = Δu(x, t) + f (x, t) for (x, t) ∈ Ω × (0, T ),

u(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = 0 for x ∈ Ω, if 0 < α < 1,
u(x, 0) = ∂t u(x, 0) = 0 for x ∈ Ω, if 1 < α < 2,

(8.1)

where T > 0 is given andΔ denotes the Laplacian operator. In the appendix, we show
that the Lq realization Δq in X = Lq(Ω) of Δ is an R-sectorial operator in X with
angle θ ∈ (0, π), and that Δqv coincides with Δv in the domain D(Δq) of Δq :

Δqv = Δv, ∀ v ∈ D(Δq), ∀ 1 < q < ∞. (8.2)

Thus Theorem 3 implies that the solution uq of

⎧⎪⎨
⎪⎩

∂α
t uq = Δquq + f,

uq(·, 0) = 0 if 0 < α < 1,

uq(·, 0) = ∂t uq(·, 0) = 0 if 1 < α < 2,

(8.3)
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satisfies uq(·, t) ∈ D(Δq) for almost all t ∈ R+ and

‖∂α
t uq‖L p(0,T ;Lq (Ω)) + ‖Δquq‖L p(0,T ;Lq (Ω))

≤ ‖∂α
t uq‖L p(R+;Lq (Ω)) + ‖Δquq‖L p(R+;Lq (Ω))

≤ cp,X‖ f ‖L p(R+;Lq (Ω))

= cp,X‖ f ‖L p(0,T ;Lq (Ω)), ∀ 1 < p, q < ∞.

(8.4)

In view of (8.2), we shall denote (Δq , D(Δq)) by (Δ, Dq(Δ)) below. Then (8.2)–
(8.4) imply that for any given 1 < p, q < ∞ and f ∈ L p(0, T ; Lq(Ω)), problem
(8.1) has a unique solution u ∈ L p(0, T ; Dq(Δ))∩W 1,p(0, T ; Lq(Ω)) satisfying the
maximal regularity

‖∂α
t u‖L p(0,T ;Lq (Ω)) + ‖Δu‖L p(0,T ;Lq (Ω)) ≤ cp,X‖ f ‖L p(0,T ;Lq (Ω)).

Example 2 (Time discretization) Since the Dirichlet Laplacian Δ : Dq(Δ) →
Lq(Ω) defined in Example 8.1 is R-sectorial of angle θ for all θ ∈ (0, π), Theo-
rems 5, 6 and 7 imply that the time (semi-)discrete solutions given by the backward
Euler, BDF2 and L1 scheme satisfy the following maximal �p-regularity:

‖(∂̄α
τ u

n)Nn=1‖�p(Lq (Ω)) + ‖(Δun)Nn=1‖�p(Lq (Ω)) ≤ cp,q‖( f n)Nn=0‖�p(Lq (Ω)). (8.5)

By Theorem 9, the fractional Crank–Nicolson solution also satisfies (8.5) when 0 <

α < 1. Since Δ is self-adjoint and has an unbounded spectrum, it follows that r(Δ) =
∞, so the conditions of Theorems 8 and 10 cannot be satisfied.

Example 3 (Space–time fractional PDE) Consider the following space–time nonlo-
cal parabolic equation in Rd (d ≥ 1):

⎧⎨
⎩

∂α
t u(x, t) = −(−Δ)

1
2 u(x, t) + f (x, t) for (x, t) ∈ R

d × R
+,

u(x, 0) = 0 for x ∈ R
d , if 0 < α < 1,

u(x, 0) = ∂t u(x, 0) = 0 for x ∈ R
d , if 1 < α < 2,

(8.6)

where the fractional Laplacian (−Δ)
1
2 v is defined by

(−Δ)
1
2 v := F−1

ξ

(|ξ |(Fv)(ξ)
)
, ∀ v ∈ W 1,q(Rd).

For X := Lq(Rd) and Dq((−Δ)
1
2 ) := W 1,q(Rd), 1 < q < ∞, the fractional

operator −(−Δ)
1
2 : W 1,q(Rd) → Lq(Rd) is also R-sectorial of angle θ for arbitrary

θ ∈ (0, π) [1, proof of Proposition 2.2]. Hence, by Theorems 5, 6 and 7, the backward
Euler, BDF2 and L1 schemes all satisfy the following maximal �p-regularity when
0 < α < 2 and α �= 1

‖(∂̄α
τ u

n)Nn=1‖�p(Lq (Ω)) + ‖((−Δ)
1
2 un)Nn=1‖�p(Lq (Ω)) ≤ cp,q‖( f n)Nn=0‖�p(Lq (Ω)).
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By Theorem 9, the fractional Crank–Nicolson scheme also satisfies this estimate when
0 < α < 1.

Example 4 (Fractional PDEs with complex coefficients) Consider the following
time-fractional PDE with a complex coefficient in a bounded Lipschitz domain Ω ⊂
R
d (d ≥ 1):

⎧⎪⎪⎨
⎪⎪⎩

∂α
t u(x, t) − eiϕΔu(x, t) = f (x, t) for (x, t) ∈ Ω × R

+,

u(x, t) = 0 for (x, t) ∈ ∂Ω × R
+,

u(x, 0) = 0 for x ∈ Ω, if 0 < α < 1,
u(x, 0) = ∂t u(x, 0) = 0 for x ∈ Ω, if 1 < α < 2,

(8.7)

where ϕ ∈ (−π, π) is given. It is worth noting that if ϕ ∈ (π/2, π) ∪ (−π,−π/2),
then (8.7) is a diffusion-wave problem, since the operator −eiϕΔ has eigenvalues
with negative real part. For X := Lq(Ω) and Dq(eiϕΔ) := Dq(Δ), 1 < q < ∞, the
operator eiϕΔ : Dq(Δ) → Lq(Ω) is R-sectorial of angle θ for arbitrary θ ∈ (0, π−ϕ).
Hence, by Theorems 5, 6 and 7, the backward Euler, BDF2 and L1 schemes satisfy
the maximal �p-regularity estimate (8.5) when 0 < α < 2 − 2ϕ/π and α �= 1; the
fractional Crank–Nicolson scheme also satisfies the estimate (8.5) when 0 < α <

min(2 − 2ϕ/π, 1).

As an application of the maximal �p-regularity, we present error estimates for the
numerical solutions by the BE scheme (3.1), with the scaled L p-norm (7.4). Other
time-stepping schemes can be analyzed similarly.

Theorem 13 Let A : D(A) → X be an R-sectorial operator of angle απ/2, with
α ∈ (0, 2) and α �= 1, and the solution u of (1.3) be sufficiently smooth. Then the
solution of the BE scheme (3.1) satisfies for any 1 < p < ∞

‖∂̄α
τ (un − u(tn))

N
n=1‖L p(X) + ‖A(un − u(tn))

N
n=1‖L p(X) ≤ cp τ. (8.8)

Proof We denote by en := un − u(tn) the error of the numerical solution un . Then en

satisfies
∂̄α
τ e

n = Aen − En, n = 1, 2, . . . (8.9)

with e0 = 0, where En := ∂̄α
τ u(tn) − ∂α

t u(tn) denotes the truncation error, satisfying
max

1≤n≤N
‖En‖X ≤ cτ [47]. By applying Theorem 5 to (8.9), we obtain

‖(∂̄α
τ e

n)Nn=1‖L p(X) + ‖(Aen)Nn=1‖L p(X) ≤ cp,XcR‖(En)Nn=1‖L p(X) ≤ cp τ.

�
If Ω is a bounded smooth domain, X = Lq(Ω), 1 < q < ∞, D(A) = W 2,q(Ω)∩

W 1,q
0 (Ω) and A = Δ (the Dirichlet Laplacian), then the conditions of Theorem 13

are satisfied, provided that the solution u is smooth, and (8.8) gives that for any
1 < p, q < ∞

‖(un − u(tn))
N
n=1‖L p(W 2,q (Ω)) ≤ cq‖Δ(un − u(tn))

N
n=1‖L p(Lq (Ω)) ≤ cp,q τ.

123



128 B. Jin et al.

When q > d, error estimates in such strong norms as W 2,q(Ω) ↪→ W 1,∞(Ω) can
be used to control some strong nonlinear terms in the numerical analysis of nonlinear
parabolic problems [1,2,17]. We will explore such an analysis in the future.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: R-sectorial property of Δq

In this appendix, we show that the Lq realization Δq in X = Lq(Ω) of Δ is an R-
sectorial operator in X with angle θ ∈ (0, π) (see also [2, Lemma 8.2] for related
discussions).

Let Δ2 be the restriction of the operator Δ to the domain D(Δ2) = {v ∈ H1
0 (Ω) :

Δv ∈ L2(Ω)}. Then the densely defined self-adjoint operator Δ2 : D(Δ2) → L2(Ω)

generates a bounded analytic semigroup E2(t) : L2(Ω) → L2(Ω) [3, Example 3.7.5],
which extends to a bounded analytic semigroup Eq(t) on Lq(Ω), 1 < q < ∞ [41,
Theorem 3.1], such that

Eq1(t)v = Eq2(t)v, ∀ v ∈ Lq1(Ω) ∩ Lq2(Ω),

Eq(t)v =
∫

Ω

G(t, x, y)v(y)dy, ∀ v ∈ Lq(Ω), (A.1)

where G(t, x, y) is the kernel of the semigroup E2(t), i.e., the parabolic Green’s
function. It satisfies the following Gaussian estimate [12, Corollary 3.2.8]:

0 ≤ G(t, x, y) ≤ ct−
d
2 e− |x−y|2

ct . (A.2)

LetΔq be the generator of the semigroup Eq(t), with its domain [3, Proposition 3.1.9,
g]

D(Δq) =
{
v ∈ Lq(Ω) : lim

t↓0
Eq(t)v − v

t
exists in Lq(Ω)

}
. (A.3)

(A.1) and (A.3) imply that

D(Δq2) ⊂ D(Δq1) for 1 < q1 < q2 < ∞,

Δq1v = Δq2v for v ∈ D(Δq2) ∩ D(Δq1).

In particular, we have

Δqv = Δv, ∀ v ∈ D(Δq) ∩ D(Δ2), ∀ 1 < q < ∞. (A.4)
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The Gaussian estimate (A.2) yields

‖Eq(t/2)v‖L2(Ω) ≤ ct−
d
2 ‖v‖L1(Ω) ≤ ct−

d
2 ‖v‖Lq (Ω), ∀ v ∈ Lq(Ω).

That is, Eq(t/2)v ∈ L2(Ω) for v ∈ Lq(Ω) and t > 0. Hence, (A.1) implies

Eq(t)v = Eq(t/2)Eq(t/2)v = E2(t/2)Eq(t/2)v ∈ D(Δ2), (A.5)

where the last inclusion is due to the analyticity of the semigroup E2(t) [3, Theorem
3.7.19]. Then (A.4) and (A.5) imply

lim
t↓0 ‖ΔEq(t)v − Δqv‖Lq (Ω) = lim

t↓0 ‖Δq Eq(t)v − Δqv‖Lq (Ω) = 0, ∀ v ∈ D(Δq).

Since lim
t↓0 ‖Eq(t)v − v‖Lq (Ω) = 0, the last identity implies

(Δqv, ϕ) = lim
t↓0 (ΔEq(t)v, ϕ) = lim

t↓0 (Eq(t)v,Δϕ) = (v,Δϕ),

∀ v ∈ D(Δq), ∀ϕ ∈ C∞
0 (Ω).

That is, Δqv coincides with the distributional partial derivative Δv in the sense of
distributions, i.e.,

Δqv = Δv, ∀ v ∈ D(Δq), ∀ 1 < q < ∞. (A.6)

Remark 8 If the domain Ω is smooth or convex, then we have the characterization

D(Δq) = {v ∈ W 1,q
0 (Ω) : Δv ∈ Lq(Ω)}.

However, this characterization does not hold in general bounded Lipschitz domains
(e.g., nonconvex polygons). In a general bounded Lipschitz domain, the operator
Δ−1

2 : L2(Ω) → L2(Ω) has an extension Δ−1 : L1(Ω) → L1(Ω), given by [18]

Δ−1v(x) =
∫

Ω

G(x, y)v(y)dy

in terms of the elliptic Green’s function G(x, y), satisfying

Δ−1v = Δ−1
q v, ∀ v ∈ Lq(Ω).

Hence, we have the characterization D(Δq) = {Δ−1v : v ∈ Lq(Ω)}.
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