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Inmultispectral color imaging, there is a demand to select a reduced number of optimal imaging channels
to simultaneously speed up the image acquisition process and keep reflectance reconstruction accuracy.
In this paper, the channel selection problem is cast as the binary optimization problem, and is conse-
quently solved using a novel binary differential evolution (DE) algorithm. In the proposed algorithm,
we define the mutation operation using a differential table of swapping pairs, and deduce the trial sol-
utions using neighboring self-crossover. In this manner, the binary DE algorithm can well adapt to the
channel selection problem. The proposed algorithm is evaluated on the multispectral color imaging sys-
tem on both synthetic and real data sets. It is verified that high color accuracy is achievable by only using
a reduced number of channels using the proposed method. In addition, as binary DE is a global optimi-
zation algorithm in nature, it performs better than the traditional sequential channel selection
algorithm. © 2014 Optical Society of America
OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (330.1730) Colorimetry;

(330.1710) Color, measurement.
http://dx.doi.org/10.1364/AO.53.000634

1. Introduction

In recent years, multispectral color imaging has at-
tracted intensive interest, as it can acquire more
spectral information than traditional RGB cameras.
Equipped with filters, a multispectral camera cap-
tures spectral images under natural illumination
conditions, by splitting the visible spectrum into
more than three bands. A multispectral imaging
system can be set up by using a monochrome camera
and electronically controlled acousto-optic or liquid-
crystal tunable filters [1,2]. Figure 1 illustrates
an alternative multispectral imaging system that
consists of a monochrome camera and a filter
wheel. The filter wheel, which contains a number
of filters, is installed between the camera and

the lens. When the imaging system has been cali-
brated and characterized, the spectral reflectance
data of the imaged sample can be obtained at
pixel-level resolution [2,3]. Because of its advan-
tages, multispectral color imaging has been widely
applied in various areas such as scene simulation
[4], digital archiving [5], and spectral color mea-
surement [2,6].

In multispectral color imaging, the spectral reflec-
tance can be reliably reconstructed from camera re-
sponses using typical techniques, such as Wiener
estimation [5], pseudo-inverse [7], and finite-
dimensional modeling [8]. Considering that the spec-
tral characteristics of filters (or sensors) could affect
the reconstruction accuracy [9], some works have ad-
dressed the optimal design of filters. For example,
Shimano [10] investigated the optimal design of
Gaussian spectral sensitivities of sensors in the pres-
ence of imaging noise, while Lopez-Alvarez et al. [11]
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dealt with a similar problem in the estimation of
spectral skylights.

It is known that using a large number of filters can
increase color accuracy [2], but this will, in turn, slow
down the image acquisition process. From a practical
perspective, there is a demand to select an optimal
subset of imaging channels to balance the imaging
efficiency and color accuracy. However, the works
on this issue are quite limited, and the most relevant
workmay be that of Hu andWu [12]. They proposed a
sensor selection method in the representation of
daylight spectra. They first sequentially selected
15 sensors from 30 ones according to a correlation cri-
terion, and then chose six optimal sensors from the
15 by exhaustive search.

Actually, channel selection is similar to the prob-
lem of color selection in imaging device characteriza-
tion. In this area, Hardeberg [7] introduced a method
for significant color selection using a minimum con-
dition number to estimate the spectral sensitivity of
the camera. Cheung and Westland [13] proposed
several metric formulas to select optimal colors for
colorimetric characterization based on the assump-
tion that the current selected color should be as
different as possible from those already selected.
Shen et al. [14] also introduced a color selection
method by minimizing the reflectance reconstruction
error of a virtual imaging system. Note that these
methods all select colors in a sequential manner

and thus can only produce suboptimal solutions.
Alternatively, Alsam and Finlayson [15] cast the
color selection problem as a quadratic minimization
problem and solved it using integer programming. A
limitation of this work is that, as the objective func-
tion is the cross-product matrix of reflectance, the
obtained solution may still not be optimal for reflec-
tance reconstruction.

In this paper we convert the optimal channel selec-
tion problem to a binary optimization problem, and
solve it using a differential evolution (DE) algorithm.
The original DE algorithm, which is introduced by
Price and Storn [16,17], conducts optimization in
continuous search spaces. Recently, Prado et al. [18]
proposed a general discrete DE algorithm for combi-
natorial optimization, and Kashan et al. [19] intro-
duced a binary version of the DE algorithm. We
propose a binary DE algorithm that is suitable to
our channel selection problem, by defining novel
binary mutation and crossover operations. The per-
formance of the proposed algorithm is evaluated on
the multispectral imaging system with both
synthetic and real data.

2. Imaging Model

As illustrated in Fig. 1, the multispectral imaging
system consists of a monochrome camera and a set
of filters. Without loss of generality, we suppose
the visible spectrum, from 400 to 700 nm, is sampled
into N � 31 samples at a 10 nm interval. Let s�λ� be
the spectral sensitivity of the camera, f c�λ� the
spectral transmittance of the filter at channel
c ∈ f1; 2;…; Cg, l�λ� the spectral power distribution
of the illuminant, and r�λ� the spectral reflectance
of the object surface; then the camera responses qc
are formulated as [2]

qc �
XN
λ�1

l�λ�f c�λ�s�λ�r�λ��nc �
XN
λ�1

m�λ�r�λ��nc; (1)

where nc denotes imaging noise. For simplicity,
we use the spectral responsivity term mc�λ� �
l�λ�f c�λ�s�λ� to combine the optical characteristics
of the illuminant, filter, and camera.

In matrix–vector notation, Eq. (1) is written as

qc � mT
c r� nc; (2)

where mc denotes the column vector of spectral re-
sponsivity of channel c, and r denotes the reflectance
vector. By considering all the C channels together,
the response vector q � �q1; qc;…; qc�T is

q � Mr� n; (3)

where n denotes the noise vector. The spectral
responsivity matrix M is denoted as

M � �m1;m2;…;mC�T; (4)

Filter wheel

Camera

Lens

(a)

(b)

Fig. 1. (a) Schematic multispectral imaging system that consists
of a monochrome camera and a filter wheel. The filter wheel con-
tains a number of filters. (b) Multispectral image (displayed in
RGB format) from which the spectral reflectance for any pixel
can be obtained.
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or explicitly expressed as

M �

0
BB@
m1�1� m1�2� � � � m1�N�
m2�1� m2�2� � � � m2�N�
� � � � � � � � � � � �

mC�1� mC�2� � � � mC�N�

1
CCA: (5)

The responsivity matrix M can be mathematically
obtained when the camera responses and reflectance
data of a set of color samples are available. A natural
constraint in the computation is that its values
should be non-negative,

mc�λ� ≥ 0: (6)

In the case of wideband filters, the smoothness
constraint should be further satisfied,

j2mc�λ� −mc�λ − 1� −mc�λ� 1�j < δ; (7)

where δ denotes the constant parameter that
controls the smoothness degree.

With the estimated M, the noise variance of chan-
nel c is computed as

σ2c � Ef‖qc −mT
c r‖2g; (8)

which can be further used in reflectance
reconstruction.

3. Problem Statement

An important issue in multispectral imaging is to
reconstruct spectral reflectance with high color accu-
racy. Mathematically, this is to find a reconstruction
matrix W such that the spectral reflectance can be
estimated from camera response q,

r̂ � Wq: (9)

The reconstruction matrix W can be obtained us-
ing various techniques, such as constrained least
squares. In this paper we employ the well-known
Wiener estimation [2,5],

W � KrMT�MKrMT �Kn�−1; (10)

whereKr is the autocorrelation matrix of reflectance,
and Kn is a diagonal matrix, Kn�diagfσ21;σ22;…;σ2Cg.
As can be seen from Eq. (10), the computation of
reconstruction matrix W is based on the spectral re-
sponsivity and noise variance of the imaging system.

Note that the matrix W in Eq. (10) is computed on
the full channel setΩFULL � f1; 2;…; Cg. When only a
subset of channels, Ω ⊂ ΩFULL, is used, it becomes

WΩ � KrMT
Ω�MΩKrMT

Ω �Kn;Ω�−1: (11)

Here, spectral responsivity submatrix MΩ is con-
structed by the rows of M specified by Ω, and the
noise submatrix Kn;Ω is constructed similarly.

Practically, it is required that high spectral accu-
racy can still be kept when only a reduced number,
CS, of imaging channels is employed. Mathemati-
cally, this is to find the channel subset Ω that mini-
mizes the following expected spectral error:

f �Ω� � Ef‖r −WΩu‖2g
� Ef‖r −KrMT

Ω�MΩKrMT
Ω �Kn;Ω�−1q‖2g; (12)

which is actually the objective cost function of the
channel selection problem.

4. Related Arts

The work dealing with the channel selection problem
is quite limited. In this section, we first introduce the
sequential channel selection algorithm, and then
briefly review the basic DE algorithms for optimiza-
tion purposes. The sequential algorithm will be used
as the baseline method in the experiment.

A. Sequential Channel Selection

The imaging channels are selected one by one in the
sequential method. The first channel is selected by

c1 � arg min
c

f �fcg�; c ∈ ΩFULL; (13)

and consequently Ω← fc1g. Then the following proc-
ess iterates until all the CS channels are selected:

ck � arg min
c

f �Ω∪ fcg�; c ∈ ΩFULLnΩ; (14)

and the channel subset is updated as Ω←Ω∪fckg.
We note that, as the objective function f �Ω� is not

convex, the sequentially determined channels are
only locally optimal. In this regard, a global optimi-
zation algorithm is needed to determine the sub-
set Ω.

B. Basic Differential Evolution

DE [17] is powerful stochastic optimization algo-
rithm over continuous search spaces. Most recently,
it has been successfully applied in the characteriza-
tion of desktop color printers [20].

DE generally consists of three operations, i.e.,
mutation, crossover, and selection. It starts with a
random initialization of a population of individuals,
and then works based on the evolution of individuals
in the population. We outline the basic strategy
for the continuous optimization problem in the
following.

Let NP be the number of individuals in the popu-
lation, and G the maximum generation; then xg;i
denotes the ith individual in the gth generation. In
the mutation operation, a new individual vg;i is gen-
erated by adding the weighted difference between
two randomly chosen individuals to a third one,

vg;i � xg;r1 � F�xg;r2 − xg;r3�; (15)
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where r1; r2; r3 ∈ f1; 2;…; NPg are random mutually
different indices, and F ∈ �0; 1� is the scale factor ap-
plied to the differential vector. For each individual
xg;i a mutual vector vg;i is generated.

In the crossover operation, a trial vector ug;i is
formed by the recombination of xg;i and vg;i with a
probability pc,

ug;i;d �
�
vg;i;d if rand�� < pc

xg;i;d otherwise ; (16)

where the function rand�� generates a random num-
ber in range �0; 1�, and ug;i;d are the dth elements of
ug;i. The terms vg;i;d and xg;i;d are defined in a similar
manner.

In the selection operation, the trial vector ug;i com-
petes with the current solution xg;i using the cost
evaluation. If the trial vector is better than the
current vector in terms of cost value, it passes
through the next generation; otherwise the current
vector survives. This process is mathematically
described as

xg�1;i �
�
ug;i if f �ug;i� < f �xg;i�
xg;i otherwise ; (17)

where f �·� is the cost function, which is of the form of
Eq. (12) in this work.

The DE algorithm described above is only origi-
nally introduced for continuous optimization prob-
lems. As the mutation in Eq. (15) is based on the
vector difference, theDE algorithm cannot be directly
applied in binary optimization problems. To copewith
this situation, Pampara et al. [21] perform optimiza-
tion in binary spaces by using a angle modulization
strategy without affecting the basic fundamentals
of DE. The angle modulization provides amechanism
that maps a continuous search space to a binary
space. Kashan et al. [19] introduce a binary DE algo-
rithm by using the measure of dissimilarity between
binary vectors. Its characteristic is that the algorithm
works in continuous space while the consequence is
used in binary space. A common drawback of these
works is that, by default, they cannot not keep the
number of bit value 1 fixed in the solution vector,
which in turn cannot be applied to our channel selec-
tion problem. In contrast, the proposed binary DE
algorithm works in binary search spaces directly.

5. Proposed Channel Selection Algorithm

In this section, we cast the channel selection problem
as a binary optimization problem, and then solve it
using a novel binary DE algorithm that well adapts
to our problem. Finally we list the DE algorithm for
channel selection and discuss the related issues such
as parameter setting and convergence property.

A. Problem Definition

As mentioned above, our objective is to select CS
imaging channels from a total number of C channels.
To convert it to a binary optimization problem, we

define a binary solution vector x containing C bits,
which may have the following form:

x �
�0 0 1 1 … 0 1 0 1 �|�������������������������������{z�������������������������������}

C bits
: (18)

In vector x, the indices with bit value 1 indicate the
selected channels, while those with bit value 0 indi-
cate the unselected channels. The optimization prob-
lem is to determine a number (CS) of indices of bit
value 1 under the evaluation of the cost function (12).

B. Binary Differential Evolution

In binary optimization, the differential mutation
cannot be directly applied as this does not produce
a meaningful search direction in the binary space.
For our specific problem, the number of bits 1 should
be kept as CS for the solution vectors in the evolution
procedure. In this regard, we define the difference be-
tween two candidate solutions, xi and xj, as a differ-
ential table of swapping pairs with bit values 0 and 1,

Tij � xi ⊖ xj; (19)

where the binary minus operator ⊖ produces the
indices of swapping pairs in Tij.

In accordance with the continuous DE, we apply a
constant scale F ∈ �0; 1� to Tij, which produces the
scaled differential table

TF
ij � F ⊗ Tij: (20)

We treat F as a probability, and define the binary
multiplication operator ⊗ as the probabilistic selec-
tion of swapping pairs in Tij.

With the above definitions, the mutation vector vk
can be generated as

vk � xk ⊕ F ⊗ �xi ⊖ xj� � xk ⊕F ⊗ Tij � xk⊕TF
ij ;

(21)

where the binary plus operator ⊕ swaps the bit val-
ues of the indices of xk according to the swapping
pairs specified in table TF

ij . As can be seen, the gen-
eration of the mutation vector is similar to that of
continuous DE in Eq. (15).

In this work, a set of trial vectors are generated in
a special manner such that the DE algorithm well
adapts to our channel selection problem. First, the
mutation vector itself is used as one trial vector.
Then, additional trial vectors are generated by swap-
ping the neighboring indices of the mutation vector.
This operation will be referred as self-crossover in
the following. Mathematically, the trial vectors are
generated using a set of self-crossover differential
tables TSC,

uk � vk ⊕ TSC; (22)

where each TSC contains a swapping pair of neigh-
boring indices with different bit values.
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In multispectal color imaging, considering the
smooth characteristics of spectral reflectance, it is
worthwhile to check whether exchanging neighbor-
ing channels can improve color measurement accu-
racy. This is implemented by generating trial
vectors with the differential tables TSC.

C. Numerical Example

We use a numerical example to illustrate the main
operations of the binary DE algorithm. Suppose we
have two candidate vectors with eight elements,

xi � � 0 0 1 1 0 0 1 1 �;
xj � � 1 1 0 0 1 0 0 1 �;

both of which have four indices with bit value 1.
Supposing the vector index starts from 1, the differ-
ential table Tij is computed as

Tij � xi ⊖ xj �
�
1 2 5
3 4 7

�
;

in which �1; 3�, �2; 4�, and �5; 7� are three swap-
ping pairs.

With a probability F ∈ �0; 1�, the scaled differential
table may become

TF
ij � F ⊗ Tij �

�
1 5
3 7

�
;

in which we assume the second swapping pair �2; 4�
in Tij is removed. We note that, as the solution vector
is of binary form, TF

ij keeps the same swapping effect
if we swap the two rows, or exchange the elements
within each row. More explicitly, the following differ-
ential tables are equivalent for the proposed binary
DE algorithm:

�
1 5
3 7

�
∼
�
3 7
5 1

�
∼
�
1 5
7 3

�
∼
�
5 1
3 7

�
:

Suppose that a third candidate solution vector is

xk � � 1 0 0 1 0 0 1 1 �:

By applying the differential table TF
ij , the mutation

vector becomes

vk � xk ⊕TF
ij � �0 0 1 1 1 0 0 1 �:

Checking the neighboring indices with bit patterns
�0; 1� or �1; 0�, vk produces three self-crossover differ-
ential tables:

TSC �
�
2
3

�
;
�
5
6

�
;
�
7
8

�
:

Consequently, in addition to the mutation vector, the
set of trial vectors also includes

� 0 1 0 1 1 0 0 1 �;
� 0 0 1 1 0 1 0 1 �;

and

� 0 0 1 1 1 0 1 0 �:

D. Optimal Channel Selection

In our multispectral color imaging system, the total
number of channels is C � 16, and the number of
channels to be selected, CS ∈ f3; 4; � � � ; 16g. When
CS � 3, the multispectral imaging system becomes
a traditional three-band camera. The determination
of appropriate CS value depends on the trade-off
between channel reduction and color accuracy, as will
be discussed in Section 6.

As mentioned above, the proposed binary DE algo-
rithm adapts to the channel selection problem due to
two reasons. First, the mutation vector produced by
the differential table keeps the same number (CS) of
bit values 1. Second, the generation strategy of trial
vectors enables the check of neighboring channels.

The pseudo code of the binary DE algorithm for
optimal channel selection is listed in Algorithm 1.

Algorithm 1 Binary Differential Evolution

Parameters:
NP: Number of individuals
F: Scaling constant
G: Maximum generation

Initialization:
• Generate population fxg;1; xg;2;…; xg;NP

g
while stop criterion is not met do
for each i ∈ f1; 2;…;NPg do
• Select r2 ≠ r3 ∈ f1; 2;…;NPgnfig
• Generate mutant vector: vg;i � xg;i ⊕F ⊗ �xg;r2 ⊖ xg;r3 �
• Generate trial vectors ug;i from vg;i
• Find the best trial vector ~ug;i by cost evaluation

• Perform competition between ~ug;i and

xg;i: xg�1;i �
�
~ug;i if f � ~ug;i� < f �xg;i�
xg;i otherwise

end
g← g� 1

end
Output: Optimal solution x � arg min f �xg;i�,
i ∈ f1; 2;…;NPg;

Our investigation indicates that the performance
of the binary DE algorithm is insensitive to the
parameters. Based on the observation that the num-

ber of all possible channel combinations is
�

C
CS

�
, NP

is determined as

NP � max
�
4;
��

C
CS

�
1∕3��

; (23)

where the operator �x� rounds variable x to its nearest
integer. We set the maximum generation G � 30 and
the scaling constant F � 0.8 in all the experiments.
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It is necessary to analyze the convergence property
of Algorithm 1. In the initialization stage, the popu-
lation is very diverse and the differential table con-
tains a large number of swapping pairs. When
evolution proceeds, the individuals will become more
similar to each other, and the sizes of differential
tables will consequently decrease. We compute the
population diverse degree as

D � 2
Np�Np − 1�

XNp

i�1

XNp

j�i�1

ϕ�xi ⊙ xj�; (24)

where ⊙ denotes the bit-wise XOR between two
binary vectors, and the operator ϕ�·� computes the
number of bits with value 1. Figure 2 illustrates
the variation trend of population diverse degree D
with respect to generation g in the case of CS � 8.
It is clear that the individuals become similar to each
other quickly after a number of generations, and re-
main stable afterward. Therefore the stop criterion
in Algorithm 1 can be either g reaching G or D → 0.

6. Experiments

The multispectral imaging system consists of a
QImaging Retiga-EXi monochrome camera, OSRAM
halogen tungsten lamps, a Nikkor lens with 50 mm
fixed focal length, and C � 16 narrowband filters
with 10 nmFWHM. The central wavelengths of these
filters are at 400, 420, 440,…, and 700 nm. To evalu-
ate the proposed channel selection method inten-
sively, we additionally simulate a multispectral
imaging system using synthetic filters with various
FWHM values as shown in Fig. 3(c). We use 144 ran-
domly selected Pantone textile samples in the experi-
ment, whose reflectance curves are illustrated in
Fig. 3(d).

The color accuracy is evaluated using both colori-
metric and spectral errors. The colorimetric error is
computed using the CIEDE2000 color difference for-
mula [22] under CIE standard illuminants D65, A,
and F2. The spectral error is the root-mean-square
(rms) error computed as

Fig. 2. Population diverse degree with respect to generation
when the number of selected channels CS � 8.

Fig. 3. Data of synthetic imaging system. (a) Spectral power distribution of the halogen tungsten lamps, (b) spectral sensitivity of the
monochrome camera, (c) spectral transmittances of 16 synthetic filters with various full width at half-maximum (FWHM) values, and
(d) spectral reflectance curves of 144 Pantone patches.
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rms �
�
1
N

�r − r̂�T�r − r̂�
�1

2

; (25)

where N � 31 is the number of sampling points in
the visible wavelength range, and r and r̂ denote
the ground truth and reconstructed reflectances,
respectively.

A. Synthetic Data

Figure 3 illustrates the spectral power distribution of
the halogen tungsten lamps and the spectral sensi-
tivity of the monochrome camera. The spectral trans-
mittances of C � 16 synthetic filters are of Gaussian
shapes and have various FWHM values, as shown in
Fig. 3(c). According to the real imaging system, the
imaging noise variance is set as σ2c � 0.004, where
c ∈ f1; 2;…; Cg, in the range �0; 1�. The camera
response of each imaging channel is then computed
according to Eq. (1).

It is of interest to illustrate the channel selection
procedures of the sequential and proposed algo-
rithms. Figure 4 shows that, when CS � 1, both algo-
rithms identify the optimal channel No. 11. When
CS � 2, the sequential algorithm keeps channel
No. 11 and selects an additional channel No. 5, while
the DE algorithm selects two novel channels, Nos. 6
and 14. When CS � 3, the sequential algorithm re-
serves channels Nos. 11 and 5, and selects the third
channel No. 15. In contrast, the DE algorithm selects
channels Nos. 4, 8, and 14.

We note that the sequential algorithm is indeed a
greedy search algorithm and consequently can be
trapped into local minimums. Thanks to the inherent
mutation operation, the proposed binary DE algo-
rithm is able to produce a global optimal solution.
Figure 5 illustrates the color accuracy with respect
to various channel numbers CS. It is observed that,
in terms of both spectral rms error and color differ-
ence error, the proposed algorithm performs obvi-
ously better than the sequential algorithm when

CS ≤ 8. It is worth noting that, in the case of
CS � 3, the colorimetric error of the sequential algo-
rithm is around 11 ΔE00 units. This means that the
three channels selected by the sequential algorithm
are not acceptable for color imaging.

Table 1 shows the spectral and colorimetric errors
with respect to various numbers of selected channels,
CS. The colorimetric errors are computed under
three typical CIE standard illuminants, namely,
D56, A, and F2. It is observed that, in terms of
spectral rms error, the proposed algorithm always
performs better, at least not worse, than the se-
quential algorithm. In quite a few cases, the pro-
posed algorithm produces slightly higher ΔE00

Fig. 4. Selected imaging channels when CS � 1, 2, and 3. (a) Sequential algorithm. (b) Proposed binary DE algorithm.

Fig. 5. (a) Spectral rms errors and (b) colorimetric ΔE00 errors
under D65 with respect to various channel numbers.
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errors. This is due to the nonlinear and complicated
transform between color difference and spectral
reflectance.

B. Real Data

In the real data circumstance, we assume the spec-
tral power distribution of lamps, the spectral sensi-
tivity of the camera, and the spectral transmittances
of the filters are all unknown. The spectral responsiv-
ity, which is the combination of these three terms, is
mathematically estimated under the constraint of
non-negativity, as discussed in Section 2.

Table 2 lists the spectral and colorimetric errors
of the sequential and proposed algorithms. It is
observed that, in terms of spectral rms error, the
proposed algorithm performs better than the sequen-
tial algorithm in all cases. In terms of colorimetric
error, the proposed algorithm performs better in
most cases.

It is also found that from Table 2 that the colori-
metric error of the proposed algorithm decreases rap-
idly in the range CS ∈ f3; 4;…; 9g, and remains
relatively stable when CS ≥ 9. This indicates that

CS � 9 optimally selected imaging channels may
be sufficient for spectral color measurement. Fur-
thermore, for applications in which the accuracy
level ΔE00 ≈ 1.0 is acceptable, only seven selected
channels are necessary in the multispectral imaging

Table 1. Average Spectral rms Errors and Color Difference Errors with Respect to Various Channel Numbers (CS) on Synthetic Data

Sequential Algorithm Proposed Algorithm

CS Spectral rms ΔE00 (D65) ΔE00 (A) ΔE00 (F2) Spectral rms ΔE00 (D65) ΔE00 (A) ΔE00 (F2)

3 0.04801 10.508 8.947 10.016 0.04441 3.982 3.660 3.883
4 0.03037 2.995 2.898 3.290 0.02458 2.525 1.742 2.344
5 0.02350 2.047 2.247 2.409 0.01756 1.255 1.172 1.287
6 0.01692 1.658 1.523 1.905 0.01429 1.146 0.973 1.311
7 0.01227 1.639 1.509 1.891 0.01094 0.793 0.938 0.886
8 0.00946 1.135 1.148 1.418 0.00729 0.803 0.803 0.817
9 0.00650 0.689 0.632 0.723 0.00598 0.703 0.634 0.732
10 0.00580 0.684 0.634 0.699 0.00560 0.679 0.615 0.682
11 0.00542 0.659 0.613 0.640 0.00529 0.590 0.547 0.652
12 0.00516 0.661 0.610 0.643 0.00506 0.591 0.544 0.652
13 0.00492 0.625 0.603 0.640 0.00489 0.585 0.542 0.651
14 0.00472 0.559 0.535 0.593 0.00474 0.559 0.535 0.593
15 0.00456 0.492 0.469 0.530 0.00456 0.492 0.469 0.530
16 0.00446 0.477 0.443 0.507 0.00446 0.477 0.443 0.507

Table 2. Average Spectral rms Erros and Color Difference Errors with Respect to Various Channel Numbers (CS) on Real Data

Sequential Algorithm Proposed Algorithm

CS Spectral rms ΔE00 (D65) ΔE00 (A) ΔE00 (F2) Spectral rms ΔE00 (D65) ΔE00 (A) ΔE00 (F2)

3 0.05004 11.034 9.450 10.579 0.04530 4.248 4.073 4.178
4 0.03129 3.217 3.168 3.611 0.02624 2.653 1.977 2.493
5 0.02322 1.970 2.245 2.387 0.01820 1.682 1.538 1.639
6 0.01658 1.382 1.365 1.713 0.01425 1.123 1.033 1.332
7 0.01282 1.195 1.224 1.515 0.01073 1.045 0.953 1.285
8 0.00899 1.255 1.282 1.606 0.00727 0.725 0.580 0.892
9 0.00604 0.576 0.501 0.559 0.00558 0.411 0.374 0.428
10 0.00526 0.427 0.406 0.493 0.00481 0.409 0.377 0.423
11 0.00468 0.421 0.397 0.471 0.00433 0.391 0.364 0.399
12 0.00430 0.397 0.367 0.418 0.00405 0.409 0.388 0.435
13 0.00401 0.394 0.358 0.409 0.00385 0.394 0.367 0.416
14 0.00376 0.392 0.357 0.405 0.00372 0.381 0.349 0.399
15 0.00365 0.380 0.345 0.399 0.00362 0.342 0.320 0.350
16 0.00355 0.340 0.315 0.350 0.00355 0.340 0.315 0.350

Fig. 6. Reconstruction results of a typical spectral reflectance.
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system. This would greatly improve the imaging
efficiency.

Figure 6 shows the reconstruction of a typical spec-
tral reflectance using the sequential algorithm and
the proposed binary DE algorithm when CS � 8. It
is found that the reflectance reconstructed by the
proposed algorithm is more accurate.

7. Conclusion

The determination of optimal channels is an impor-
tant issue for multispectral color imaging. In this
paper the channel selection problem is converted
to a binary optimization problem, which is solved us-
ing a novel binary DE algorithm. In the algorithm, a
mutation vector is generated by a scaled differential
table, and the trial vectors are produced using a self-
crossover strategy. The experimental results show
that the proposed algorithm performs better than
the traditional sequential algorithm. It is also veri-
fied that a reduced number of imaging channels
can be sufficient for practical applications.
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