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A real-time bus arrival time information system using crowdsourced 

smartphone data: a novel framework and simulation experiments 

This paper proposes a novel framework for developing a real-time bus arrival 

time information system, using crowdsourced bus information contributed by bus 

passengers. On one hand, passengers can derive the real-time information via 

their smartphones. On the other hand, they can provide some bus data in return. 

Particular characteristics of the participatory-based bus data are introduced. Also, 

a number of data processing steps are proposed in the framework to handle the 

data characteristics which pose extra difficulties in real-time bus arrival time 

prediction. The proposed system is evaluated using simulated bus data sets. 

Practicality of the system is investigated in terms of prediction accuracy based on 

different participation percentages of bus passengers. 

Keywords: bus arrival time prediction; real-time system; participatory-based bus 

data; crowdsourced data; smartphone application 

1. Introduction 

Bus transport could be considered as a major public transport mode in several cities. 

With the advancement of sensing and communication technologies, real-time bus 

information systems have been broadly implemented in several cities. The systems are 

capable of providing beneficial bus information on the real-time basis, especially real-

time bus arrival time. Thus, transit agencies can improve their management/service 

level and bus passengers can better plan their journeys. 

Nevertheless, implementation of the real-time systems could be limited by some 

prohibitive reasons such as budget constraints caused by the needs of bus tracking 

device installation, and bus data sharing constraints caused by the competitive nature in 

bus operations. To tackle the limitations, this paper proposes a real-time bus arrival time 

information system based on crowdsourced bus information. Bus data can be 



contributed by bus passengers using their smartphones, instead of installing bus tracking 

devices or relying on the provision of bus data from bus agencies.  

Despite the advantages of participatory-based bus data acquisition, this type of 

bus data poses extra difficulties in real-time bus arrival time prediction. First, the bus 

data lacks of bus identification numbers. Second, conflicts among bus location data can 

be encountered. Third, the frequency of acquiring bus location data is uncertain in both 

spatial and temporal dimensions. The main objectives of this paper are summarized as 

follow: 

• To introduce an alternative solution which can provide real-time bus arrival time 

information for some limited situations, 

• To introduce essential characteristics in participatory-based bus data and 

propose a novel framework which could handle the particular challenges, and 

• To evaluate the practicality of the real-time system in terms of prediction 

accuracy based on different participation levels of bus passengers. 

The remainder of this paper is organized as follows. Section 2 reviews prior 

research on bus arrival time information systems. Section 3 presents the system 

architecture and operational overviews. Basic information of the system is introduced in 

Section 4. The details of data processing steps including bus location filtering, link 

travel time estimation, and bus arrival time prediction are described in Section 5, 6, and 

7, respectively. Practicality of the proposed system is evaluated and discussed in section 

8. Finally, the conclusion and future works are summarized in section 9. 

2. Literature reviews 

In terms of sensing technologies, bus arrival time information systems have been 

developed based on Automatic Vehicle Identification System, Automatic Passenger 



Counter System, and Automatic Vehicle Location System (AVL). Due to the flexibility 

of AVL system in collecting vehicle GPS data, the technology has been broadly 

implemented to develop bus arrival time information systems in several cities 

(Schweiger 2011).  

Apart from bus systems, various sophisticated algorithms have been developed 

to extract vehicular traffic information using GPS data from private vehicles including 

map matching algorithms (White, Bernstein, and Kornhauser 2000; Quddus et al. 2003; 

Lou et al. 2009; Miwa et al. 2012; Hunter, Abbeel, and Bayen 2014; Chen et al. 2014), 

link travel time estimation (Choi and Chung 2002; Hellinga et al. 2008; Zheng and 

Zuyley, 2013), and path travel time prediction (Vanitchakornpong, Indra-Payoong, and 

Sumalee 2013). The algorithms were developed based on the characteristics of AVL 

data. First, vehicle information is derived from in-vehicle tracking devices which can 

provide vehicle locations with the device identification number. Second, availability of 

vehicle information is considerably sufficient which means vehicle information can be 

obtained in regular time intervals. The average data sampling frequency is usually less 

than one minute. 

Recently, researchers have started to consider a smartphone as a potential 

sensing device for acquiring vehicle information. Biagioni et al. (2011) proposed an 

automatic transit tracking system which a smartphone is placed in each vehicle for 

location tracking. The system makes use of the vehicle traces to predict vehicle arrival 

time. The results show that passenger waiting time can be significantly reduced with the 

availability of arrival time information.  

Developing a bus information system requires the cooperation of bus agencies 

which is restrictive in some conditions. In Hong Kong, bus operation is a competitive 

system. The government does not provide any direct subsidy to the bus agencies. 



Hence, they are not willing to share any information since it could affect their revenue. 

Although bus tracking systems are currently implemented by the bus agencies, the real-

time information of all bus routes has not been disseminated within the same system. 

Thus, bus passengers cannot compare the bus arrival times to make the best decision. 

Accordingly, there is an increasing concern about gathering bus information 

from bus passengers instead. The concept of voluntary participation in data collection 

has been studied in the field of citizen science, as some research may require intensive 

data collection over diverse areas for a long time period (Cohn 2008; Silvertown 2009; 

Hochachka et al. 2012).  

In crowdsourcing research, smartphones are used as a tool for solving complex 

problems especially when location-based applications have become popular 

(Chatzimilioudis et al. 2012). Google Maps is an example of using crowdsourced 

mobile devices for estimating traffic conditions. The more participation of the users 

results in the more accurate estimation results.  

For bus systems, a smartphone application can be used to establish two-way data 

provision systems which gather necessary information from bus passengers and 

provides beneficial information in return. The concept has been adopted to provide bus 

arrival time information. Zimmerman et al. (2011) developed a transit information 

system which passengers can co-produce the transit service by sharing bus information. 

Zhou, Zheng, and Li (2012) introduced a bus arrival time prediction system based on 

participatory sensing. Bus locations can be identified using multiple sensors built in 

passengers’ smartphones. Lee and Yim (2014) proposed a system which provides the 

most updated bus location of individual bus routes. Table 1 summarizes the previous 

studies on bus arrival time information systems in different dimensions. 



The two-way data provision system seems to be a viable solution for providing 

the real-time bus arrival time information, as bus data can be gathered from substantial 

amount of bus passengers without the needs of device installation. Nevertheless, 

essential characteristics of participatory-based bus data have not been addressed in the 

previous studies. The present study addresses the characteristics of participatory data 

which should be taken into account when developing a real-time bus arrival time 

information system. Also, a novel framework is proposed to handle the particular 

characteristics. Finally, the factors affecting system performance are discussed. 

3. System architecture 

The system architecture and operational overviews is demonstrated in Figure 1, while 

Figure 2 shows more details of data processing steps. The system is comprised of two 

major parts: a smartphone application, and a back-end processing server. 

3.1. Smartphone application 

On the client side, crowdsourced smartphones of bus passengers are considered as a 

data transmission tool. A smartphone application should be developed to fulfill two 

primary requirements. First, to gather bus data, participating passengers will be 

requested to provide some information such as the serving bus route number, and their 

destination bus stop. The user can simply select the information from a list generated by 

the system. Other information including bus location data, instantaneous bus speed, and 

timestamp can be periodically identified by GPS after the user pressed a start button to 

grant the permission for data collection. The GPS operation should be stopped when the 

bus is arriving to the passenger’s destination. The second requirement is to disseminate 

predicted bus arrival times. The users can request for bus arrival time information by 

selecting a bus stop or a bus route number. 



3.2. Back-end processing 

On the server side, the central database is a data storage containing basic information of 

the system including the bus data provided by participating passengers. The information 

will be processed with a number of data processing steps, as can be seen from Figure 2. 

The data processing steps can be considered as core components of the framework. 

Practical algorithms can be applied in each core component. This study adopts several 

algorithms in the literature and adjusts some solution functions to tackle the challenges 

in participatory-based bus data. The results of data processing will also be recorded in 

the database. Finally, the information in the server can be transmitted to the clients upon 

smartphone application requests. 

4. Basic information 

One of the preliminary processes is establishing the data structure of basic information, 

so as to organize and access the information effectively. This section provides the 

notation and definition of the basic information which can be classified as fundamental 

information and historical information.  

In order to formulate such information, a number of surveys are required to be 

carried out before implementing the real-time system. A group of volunteers will be 

asked to record bus data using a smartphone application. For the surveys, the 

smartphone application will continuously record a bus data set in every few seconds (1-

5 seconds). However, recording bus data with the high sampling frequency is 

impractical for a participatory-based data provision system due to smartphone battery 

consumption. Therefore, the optimal frequency should be investigated and applied for 

the real-time system after survey periods. In this paper, the effects of data sampling 



frequencies are examined in Section 8. Also, the factors to be considered for 

determining the frequency are discussed. 

4.1. Fundamental information 

Fundamental information includes three core elements of the system: road networks, 

bus routes, and participatory bus data. The manual procedures to establish the 

information of entire road networks and bus routes are time-consuming. In this paper, 

the methodologies for transit route and stop extraction proposed by Biagoni et al. (2011) 

are adopted to formulate such information using raw GPS traces. 

4.1.1. Road network data 

A road network can be represented using link-node representation which nodes 

identified as intersections or bus stops and edges as the roadways in between. Hence, a 

road network consists of a set of nodes denoted by 1{ ,..., }nND nd nd= , where 
ind  is the 

location vector of node identification number (node ID) i  indicated by a vector of its 

two dimensional coordinates in latitude and longitude ( [ ] )T

i x ynd nd nd= .  

Moreover, to determine the relative position of a GPS data on a link, the 

positions on a link between each pair of consecutive nodes can be referred by a set of 

relative locations, ,a bC . The locations could be approximately measured in an equal 

distance along the link (such as every 10 meters). The set of locations is denoted by 

, , ,1 , ,{ ,..., }a b a b a b nC c c= , where , ,a b ic  is the location vector of the thi  relative location on the 

link between node ID a  and b . 

4.1.2. Bus route data 

Generally, a bus route can be recognized by a unique bus route number. As some bus 



systems can be operated by multiple agencies, the same bus route number may be 

assigned to different routes which are operated by different agencies. The duplication 

can be compromised when the buses of two agencies are serving the same sequence of 

nodes, since passengers only expect arrival time of the first arriving bus. In other cases, 

the bus route number will be lacked of a clear distinction between the serving routes. 

Therefore, the system should be able to distinguish each unique bus route by the route 

number and the operator. This could avoid the ambiguities when passengers need to 

request for bus arrival times, and/or to report bus data.  

To simplify the notation, let bn  represents each bus route number of a particular 

operator. The trajectory of a bus route number bn  operated between an origin (node ID 

x ) and its destination (node y )  is defined by a sequence of traversed nodes along the 

route. The node sequence is represented by a set , , ,1 , , ,, , { ,..., }bn x y bn x y nbn x yRN rn rn= . The vector 

, , ,bn x y irn  is denoted by , , , [ ]T
bn x y irn nd st= , where nd  is node ID of the node’s order thi  on 

the bus route, and st  is a binary variable to indicate whether the node is an operating bus 

stop. 

4.1.3. Participatory-based bus data 

The time-ordered bus information reported by participating passengers is a collection of 

bus data 1 2{ , ,...}P p p= . The vector ip
 
is denoted by [ ]T

i x yp bn rc rc v t d= , where 

bn  is the bus route number, xrc  and yrc  indicate the bus location, v  is instantaneous 

speed (km/hr), t
 
is the timestamp, and d  is node ID of the passenger’s destination bus 

stop.  

4.2. Historical information 

Historical information is necessary for bus arrival time prediction. For preliminary 



stages of the system, historical bus information on the entire road network can be 

extracted from the fine-grained GPS bus traces since bus data sampling frequency is 

sufficient to provide the detailed bus trajectories. A set of historical bus information 

could be recorded separately for each link between node ID a  and b , also for each time 

interval   which is assumed to be 5 minutes in this study. 

(1) Average bus travel time on each link ,a btt


 can be extracted.  

(2) Spatial and temporal link speed profiles can be constructed based on the average 

bus travel time (Vanitchakornpong, Indra-Payoong, and Sumalee 2013) in order 

to facilitate bus arrival time prediction processes.  

(3) In the case that buses are deaccelerated and/or stopped at intersection/bus stop, 

the delay time at intersection/bus stop can be estimated from the time when the 

buses started to travel at low speed until it passed the intersection/bus stop. 

Accordingly, average bus delay time on each link ,a bdt


 can be calculated. 

(4) The bus delay zone on a link ,a bqz


 where buses tend to travel at low speeds or 

stop can be identified. The delay zone can be recognized by a relative location 

, ,a b ic  which is the starting point of the zone. 

(5) If node b  representing a bus stop, average time headway of each bus route 

number at the bus stop ,bn bht


 can be obtained. The average values can be 

calculated from the difference of consecutive bus arrival times at a bus stop, in 

the case that survey data is sufficient to track every operating bus. Otherwise, 

public bus schedules can be used instead. 

5. Bus location filtering 

In the previous studies, bus arrival time prediction models were developed based on two 



facts: bus identification numbers are available in bus location data, and bus location 

data is considerably sufficient for bus arrival time prediction. However, participatory-

based bus data poses particular characteristics in the bus data sets.  

First, the quantity and frequency of bus location data are uncertain. Second, 

conflicts among bus data sets can be encountered due to the lack of bus identification 

data as well as GPS measurement errors. The conflicts could be occurred in three cases 

from the data sets reported by passengers on (a) different bus lines which are operating 

on the same road sections, (b) on different buses of the same bus line, and (c) on the 

same bus but indicating different bus locations at the same time. It is unable to simply 

determine that which data set is more reliable.  

In this section, a number of data processing steps are introduced to handle the 

conflicts in participatory-based bus data, filter out the unreliable data, and finally 

identify the most representative bus data. In this study, the first data conflict case (a), 

caused by the data sets from different bus lines, can be compromised by the provision of 

additional bus data including bus route numbers, and passengers’ destination bus stops. 

In the following subsections, the bus sequence assignment process aims to handle the 

data conflict case (b) caused by the data sets from the same bus line. Whereas, the 

location matching process is introduced to compromise data the conflict case (c) caused 

by GPS errors.  

5.1. Bus sequence assignment 

Several buses are usually operated on the same service route in a time period. Suppose 

that each operating bus of a bus number bn  which is operated from node ID x  to y  can 

be recognized by its operating sequence identification number r  of a day. The objective 

of bus sequence assignment is to identify a particular bus operating sequence r  which 



were serving the passenger who reported a bus data set ip . 

A heuristic approach is implemented in this study. Let irc  denotes the GPS 

location of a bus route number, and ruc  denotes the location vector representing the 

most updated location of a bus sequence r  of the same bus route number. A distance 

measure ( )S r  between the two locations can be calculated 

 ( ) ( , )i rS r dist rc uc=  (1) 

where the distance function ( , )dist a b  measures the difference between location a  and b  

in a dimension of bus running distance on the route. 

A bus operating sequence can be identified as the source of bus data ip  when the 

distance value is the minimum distance D  

 ( )min
n

i m

D S i
=

=   (2) 

where m  and n  denote the minimum and maximum bus operating sequences which 

have not passed the GPS location based on the previous time interval. In the case that  

m  and n  is unidentified, it can be assumed that 
ip  is reported from the new bus 

operating sequence which has not been observed by the system. Hence, the new bus 

sequence max( ) 1r +  will be assigned as the source of bus data 
ip .  

For each time interval  , a new data structure of the time-ordered bus data 

reported from a bus operating sequence r  of a route number bn  can be denoted by  

, , , , , , ,1 , , , ,2
{ , ,...}

bn r x y bn r x y bn r x y
P p p =  where 

, , , ,
[ ]

bn r x y i

T

x yp rc rc v t= .  

Although the heuristic algorithm can quickly assign a bus sequence for each bus 

data on the real-time basis, the algorithm is based on an assumption that a bus will not 

be overtaken by the following buses of the same bus line. This could pose drawbacks of 



the system according to some common circumstances in bus operations e.g. bus 

bunching. 

The necessity of bus sequence assignment is addressed as a fundamental process 

of the system. In the future, the methodologies to identify the bus operating sequence 

can be improved with more available information such as user identification number. 

The smartphone application may provide a log-in system to obtain an anonymous 

identity of the users. Therefore, the bus data reported by the same passengers can be 

identified.  

5.2. Location Matching 

The general map matching algorithms have been developed to identify the best 

matching route given a sequence of GPS locations from a probe vehicle. For bus 

systems, searching for the best route may not be a major concern due to the availability 

of bus route information. The objective of location matching could be more particular in 

this study: to identify the most representative bus locations on the road network given a 

set of GPS bus locations reported by various passengers. 

This study has adopted the concept of Spatio-Temporal (ST) Matching 

algorithm proposed by Lou et al. (2009). The algorithm was developed to solve the 

matching problem for a low-sampling-rate GPS trace derived from an in-vehicle 

tracking device. Since the characteristics of participatory-based data are more 

complicated, the algorithm is modified to provide a solution for the data conflict issue. 

In particular, the major modifications involve the formulation of a candidate graph, as 

well as spatial and temporal analysis functions.  

5.2.1. Candidate location determination 

Due to GPS measurement errors, a GPS location may not be located on any road 



segments. The actual bus position could be any locations within the GPS error region. 

Given a GPS location [ ]T
i x yrc rc rc= , a set of candidate bus locations within the region 

is denoted by 1{ ,..., }
i ii

nCL cl cl= . The vector 
i

jcl  is denoted by [ ]
i T
jcl on dn rloc v t er=  

where rloc  is the identification number of a relative location vector , ,on dn rlocc  indicating 

the location on a link between node ID on  and dn , v  is the instantaneous speed derived 

with the GPS data, t  is the GPS timestamp, er  is the GPS errors estimated by the 

Euclidean distance between the GPS location irc  and the candidate location , ,on dn rlocc . 

The number of all candidate locations in the GPS error region could be 

superabundant. To minimize the number of candidates, typical location matching 

problems could consider only one candidate on each link in the error region when the 

candidate provides perpendicular distance measured from the GPS location. For 

example, Figure 3a illustrates the corresponding candidate locations of irc  in the GPS 

error region (represented by a dotted circle). Three candidates are identified including 

1

i
cl , 2

i
cl , and 3

i
cl . 

In this study, two more rules are applied to select the candidates of a bus 

location. First, the candidates can be selected from the links on a specific bus route 

since the bus route number is included in a reported bus data. Second, a candidate on 

each corresponding link can be selected when the candidate has the minimum distance 

from the GPS location. In this case, the minimum distance may not be perpendicular to 

a link. 

Examples of candidate location determination are demonstrated in Figure 3b. 

Suppose that the bus location jrc  and krc  were reported from two passengers on the 

same bus at the same time. The error regions of both GPS locations cover the links 

between node E F−  and F G−  which are the road segments on the reported bus route. 



Accordingly, jrc  results in candidate locations 1

j
cl  and 2

j
cl . Here, an example of data 

conflict between two reported bus locations is illustrated by the candidate 1

j
cl  and 1

k
cl  

since the candidates are identifying different bus locations at the same time.  

It is noteworthy that the GPS error region should not be too narrow since the 

system is based on passenger participation. Otherwise, candidate locations could be 

excessively filtered out and the remaining candidates may not be sufficient to provide 

the real-time bus arrival time. In this study, the error region is determined based on an 

assumption that the reported bus data should be retained at least 90%. Distribution of 

GPS errors can be used to determine the error region. More details of empirical studies 

on statistical GPS errors are provided in Section 8. 

5.2.2. Candidate location formalization 

Candidate locations are usually sparse over the road segments. Location formalization is 

proposed for two objectives: to relocate the scattered locations into a comparable index, 

and to estimate bus arrival time at the new location. Given a candidate location in the 

middle of a link, the location can be relocated to a node of the link in two ways: the 

forward or the backward directions. 

To select one of the nodes, a set of assumptions on bus travel conditions can be 

made based on two parameters of the candidate: the location on a link .
i

jcl rloc , and 

instantaneous bus speed .
i

jcl v . Suppose that a link can be separated into two sections 

based on the bus delay zone of the link: (a) regular section, and (b) delay section. The 

bus travel time spent on a link may not be distributed equally. Therefore, candidate 

locations can be formalized in four possible cases. 



(1) On the regular section, a bus should travel at non-congested speeds. The 

candidates which are located on a regular section and traveling at non-congested 

instantaneous speeds will be relocated in the backward direction. The time when 

the bus was at the node can be estimated using the instantaneous bus speed. 

(2) On the delay section, a bus can be delayed due to the next intersection/bus stop. 

The candidates with such conditions will be relocated in the forward direction. 

The bus arrival time at the node can be estimated using historical delay time 

since the actual delay time cannot be estimated by a candidate. 

(3) A bus could travel at non-congested speed speeds on a delay section and pass an 

intersection/a bus stop without deceleration. The candidates will be relocated in 

the forward direction and the bus arrival time at the node can be estimated using 

historical bus speed of the link. 

(4) Due to GPS errors, a bus could be located on a regular section with congested 

speeds. The candidates will be relocated in the backward direction, but the bus 

arrival time at the node should be estimated using historical bus speed of the 

link.  

Figure 4 illustrates above formalization conditions, while Table 2 summarizes 

the conditions with the parameters used to estimate the bus arrival time at formalized 

locations. Accordingly, the location of candidates can be represented by a node. There 

may be the chances that several candidates are relocated to the same node location, and 

the estimated times at the node are different.  

To facilitate further data processing steps, a directed graph can be used to 

organize the formalization results where each vertex represents an estimated bus arrival 

time at a node location and each edge represents the transmission between a pair of 



node locations. Figure 5 shows an example of a directed graph. The figure is adjusted 

from the original one proposed by Lou et al. (2009).  

The first step to formulate a graph is grouping the vertices by node locations (i.e. 

, ,...,i j knd nd nd ). The nodes are sorted by their sequence on a bus route , ,bn x yRN  and a new 

sequence index 
1 2, ,..., nsn sn sn  can be used to refer to the sorted nodes. Next, a set of 

estimated bus arrival times at the same node sequence sn  is denoted by 

1{ ,..., }
sn snsn

nNC nc nc=  where n  is the total vertices representing the estimated times. The 

vector 
sn

knc  is described by '[ ]
sn T
knc loc t seq obs=  where loc  is node ID, 't  is the 

estimated bus arrival time at the node, seq  is the identification number i  of the reported 

GPS data irc , and obs  is the GPS error inherited from the error of candidate location 

.
i

jcl err  before performing location formalization. 

In the next steps, each vertex and each edge on the graph will be associated with 

observation probability and transmission probability so as to determine the most 

representative bus arrival time at individual node locations. 

5.2.3. Observation probability 

Observation probability aims to evaluate spatial reliability of each vertex. The 

probability can be calculated based on the level of GPS errors .
sn

knc obs , and the statistical 

distribution of GPS errors represented by a mean   and a standard deviation  . 

 

( )
2

2

.

2
1

( . )
2

sn
knc obs

sn

kN nc obs e







−

=  (3) 

5.2.4. Transmission probability 

The objective of transmission analysis is to evaluate temporal reliability which is the 



bus travel time between consecutive node sequences. Given the thm  vertex of the node 

sequence 1i −  and the thn  vertex of the node sequence i , the travel time between node 

sequences can be calculated. 

 
1' '

1, . .
i i

n mi iptt nc t nc t
−

− = −  (4) 

Transmission probability can be calculated from the likelihood between the 

estimated travel time, and historical travel time. 

 
1, 1,1

1,

( ) 1
i i i ii i

m nt

i i

ptt ptt

F nc nc
ptt





− −−

−

−

→ = −  (5) 

Let 1,i iptt


−  be the average travel time from the node sequence 1i −  to i  during the time 

interval  . The path travel time can be calculated from the summation of historical link 

travel times along the path during the same time interval  . 

5.2.5. Result matching 

The final transmission formulation between a pair of vertices can be denoted. 

 
1 1

( ) ( . ) ( )
i i i i i

m n n m ntF nc nc N nc obs F nc nc
− −
→ =  →  (6) 

As can be seen from Figure 5, the transmission between a pair of vertices (i.e. 

1

1nc  and 
2

1nc ) from a node sequence to the next one is represented by an edge linking the 

vertices (
1 2

1 1nc nc→ ). The transmission formulation can be used to evaluate the 

transmission probability 
1 2

1 1( )F nc nc→  of the edge.  

Accordingly, a chain of vertices can be defined by the linkage of vertices from 

the first to the last node sequence denoted by 1 2

1 2
: ... n

n

v v vcCP nc nc nc→ → →  where each 



vertex 
i

i

vnc  on the chain is the vertex number 
iv  of a node sequence i , n  is the total node 

sequences on the graph, and 
1 2

1 2
. . ... .n

n

v v vnc seq nc seq nc seq   . 

Suppose that the transmission formulation is the transmission score of a pair of 

vertices. A chain of vertices cCP  can also be scored by the summation of transmission 

scores along the chain. 

 
1

1

2

( ) ( )i i

n i i

v vc
i

F CP F nc nc−

−

=

= →  (7) 

Hence, the overall score of a chain ( )cF CP  can be used to represent the 

likelihood that the bus was arrived the node sequences at the time indicated by the 

chain’s vertices. Finally, the chain with the highest score is considered as the best 

solution to identify the most representative bus data. 

 argmax ( )
cCP cCP F CP=  (8) 

Given a solution 1 2

1 2
: ... n

n

v v vCP nc nc nc→ → → , path travel time between consecutive 

node sequences can be obtained. Let a pair of node sequences ( 1, )i i−  represents by their 

node ID ( , )a b , the path travel time between node sequence  1i −  and i  during the time 

interval   can be calculated. 

 
1

1' '

, . .i i

i i

v va bptt nc t nc t
−

−
= −  (9) 

Matching all reported bus locations results in a set of path travel times. The set 

of estimated path travel times during a time interval   is denoted by 1{ ,..., }nPTT ptt ptt
  =

, where iptt

 is a vector describing travel time information tt  of a travel path from a 

node ID on  to dn  ( [ ] )T

iptt on dn tt

= . 



Moreover, the last vector 
n

n

vnc  of the solution can be used to update 3 types of 

bus information. Let  , , ,1 , , ,, , { ,..., }bn x y bn x y nbn x yUC uc uc  be a data set recording the most updated 

information of individual bus operating sequence r  of a route number bn  operating 

from the origin node ID x
 
to destination node ID y . The information of a vector 

, , ,bn x y ruc  can be updated including the most updated location cc , estimated bus arrival 

time at the node location 't , and the bus operational status sts   , , ,( bn x y ruc =
'[ ] )Tcc t sts . 

The operational status is initially set to be ‘active’ and will be updated to be 

‘terminated’ when the bus arrived its terminus. 

6. Link travel time estimation 

A bus travel path may cover multiple links on the bus route. The general problem of 

link travel time estimation is to decompose the path travel time into the travel time of 

individual links on the path. 

In this study, the link travel time can be estimated using historical-based travel 

time information. Let m  and n  be the node ID representing .iptt on


 and .iptt dn


 

respectively. The link travel time from a node ID a  to the next node b  on a travel path 

can be estimated by: 

 
,

,

,

.
a b

a b i

m n

tt
ltt ptt tt

ptt





=   (10) 

where ,a btt


 is the historical link travel time between node a  and b  during time interval 

, and 
,m nptt



 is the historical path travel time of the travel path during time interval   

calculated from the summation of historical link travel times along the path. 

The estimated travel times on a link may be varied since bus routes are usually 

overlapped, and several buses could travel on the same road sections during a time 



period. The set of estimated travel times of a link can be denoted by , , ,1 , ,{ ,..., }a b a b a b nLTT ltt ltt  

. The average link travel time can be determined by applying stratified sampling 

technique to the data set. In addition, spatial and temporal link speed profiles can be 

constructed based on the average link travel time. 

7. Bus arrival time prediction 

Bus arrival time at a bus stop can be predicted using (a) time at the current bus location, 

(b) predicted travel time between the bus location and the bus stop, and (c) bus delay 

time at the bus stop. The relationship can be denoted by: 

 
1

1 ' 1
, , , 1,, ,z.bn x y r z zbn z warr uc t ptt dt


 

+
+ +

−= + −  (11) 

where 1

,bn zarr +  is the predicted bus arrival time for the time interval 1 +  of bus route 

number bn  at the bus stop represented by node ID z .  

The most updated bus location and its timestamp can be derived from set , ,bn x yUC

. Next, the path travel time 1

,zwptt +  between the most updated location (node ID w ) and 

the bus stop (node ID z ) during time interval 1 +  needs to be predicted. Finally, bus 

dwell time at the bus stop will be subtracted from the predicted travel time since the 

delay time is already included as a part of travel time on the links. This study assumes 

that dwell time characteristics of all bus lines are not significantly different at the same 

bus stop during the same time interval. Therefore, historical bus delay time at the bus 

stop 
1

1,z zdt
 +

−  can be used to represent the predicted bus dwell time.  

In fact, historical bus delay time for individual bus lines can be constructed 

separately to relax the assumption which could be violated since the variation in bus 

dwell times is usually observed. Furthermore, the possibility to perform the real-time 

bus dwell time prediction from participatory-based bus data could be studied. 



Providing real-time bus arrival time information involves two major issues.  

First, travel time prediction using participatory-based bus data is challenging. Second, 

bus arrival time information of a bus line should be provided for every bus stop with the 

minimum prediction uncertainty. 

7.1. Travel time prediction 

A path travel time can be predicted by calculating the summation of predicted travel 

time of the links along the path. As the system will perform the prediction on the real-

time basis, it is assumed that the summation of link travel times in the next time step 

1 +  can be used to represent the path travel time during the same time step. 

In the literature, link travel time prediction algorithms make use of the link 

travel time in the current time step   and previous time steps n − , in order to predict 

the travel time in the next time steps ahead n + . This means the algorithms require 

travel time information of a road section in every time step. However, the participatory-

based data may not always provide the continuous series of bus travel time. Therefore, 

parametric prediction models may not be practical for the prediction. 

This study applies the traffic pattern matching algorithm proposed by 

Vanitchakornpong, Indra-Payoong, and Sumalee (2013) to perform the real-time link 

travel time prediction. The objective function was developed to predict a link travel 

time by searching for historical traffic patterns which are most similar to the current 

one. The traffic patterns of a link are recognized by the spatial and temporal correlations 

of bus speed between the link and its adjacent links. 

Without the availability of link travel time information in the current time step, 

the algorithm could potentially predict the travel time by considering the available 



spatial and temporal correlations of the link. Furthermore, the algorithm had verified 

that the computational time is suitable for massive vehicle information. 

The searching space of a traffic pattern can be specified using 3 parameters: 

spatial correlation level ( 1)level = , temporal correlation level ( 3)t = , and number of days 

( 14)k = . Nonetheless, the spatial and temporal correlations derived from the 

participatory data could be inadequate to predict the travel time of some links. In this 

case, the average link travel time 
1

,a btt
 +

 will be assumed to represent the predicted travel 

time for the next time interval. 

7.2. Prediction uncertainties of bus arrival time 

For each bus line, the common expectation of bus passengers is bus arrival time of the 

next arriving bus. Providing the predicted bus arrival time for all operating buses is 

unnecessary. Therefore, the potential bus operating sequences which could provide the 

bus arrival time with the minimum prediction uncertainties should be identified. 

First, the distance of travel path between the bus location and a bus stop could 

be considered. The longer distance of a travel path results in the greater prediction 

uncertainties. Second, the predicted bus arrival time needs to be sufficient for the 

continuous provision of bus arrival time information during the next time interval. 

Otherwise, several potential buses should be selected to perform the predictions. 

In some cases, the available bus locations may be inadequate to provide bus 

arrival time information at every bus stop especially the first few stops on a bus route. 

Historical time headway at a bus stop ,bn bht


 can be alternatively used to estimate the bus 

arrival time, based on an assumption that the variation of bus arrival times at the first 

few bus stops is not significant (Biagioni et al. 2011). 



8. Experimental studies 

To investigate the performance of the proposed system, participatory-based bus data 

sets are needed. A data set should include the information of multiple buses which are 

operating on different road sections at the same time period. Thus, microscopic 

simulation software called VISSIM was used to simulate the bus data in every second. 

The virtual environments on a road network can be simulated in 3 dimensions: 

private vehicles, bus operations, and passenger demands. Private vehicle movements are 

determined by a car-following model, a lane-changing model, vehicle desired speed, 

and traffic volume. The models were determined by existing functions, for instance, 

Widemann’s model was selected for car-following behaviors. Vehicle desired speed and 

traffic volume can be adjusted to include the variation in traffic conditions over multiple 

time periods. The desired parameters were calibrated using the traffic data from 

Transport Department of Hong Kong. 

Next, bus operations are integrated to the road network including bus stops, bus 

routes, bus frequencies, and dwell time at bus stops. The distribution of bus frequencies 

is based on bus information provided by Kowloon Motor Bus Company, whereas the 

distribution of dwell times is calibrated using the observed data from field surveys. In 

the simulation, a bus is assigned to dwell at every bus stop on the route. 

Finally, passenger demands including origin-destination and passenger arrivals 

are also calibrated using the observed data of passenger boarding/alighting at each bus 

stop. Each boarding passenger will be assigned a destination to alight from the bus. The 

simulation was calibrated and the outputs (e.g. traffic conditions, and passenger demand 

distribution) were compared with field observations. To this end, the simulation is 

assumed to replicate bus operations under various traffic environments and passenger 

demands. 



The simulated road network can be represented by 74 nodes and 89 links. The 

average link distance is 132 meters. Total 20 bus lines were assigned to be operated on 

the road network. Figure 6 shows the simulated road network with examples of two bus 

routes. The bus routes are partially overlapped on 3 links. As the simulation provides 

bus tracking data in every second time unit, additional modifications are required to 

include smartphone GPS errors in bus locations and to simulate participatory-based bus 

data sets. 

8.1. Bus data modification 

The distribution of smartphone GPS errors needs to be analysed, in order to determine 

the magnitude of errors and integrate into bus locations. Measuring the distance error 

from a GPS location to the actual bus position is complicated. A general approach is 

analysing spatial proximity - the perpendicular distance measured from a GPS location 

to the closet road section. 

A survey data collection was carried out by a group of volunteers to record GPS 

bus traces from different bus lines using their smartphones. The data collection was 

conducted in urban areas of Kowloon, during peak and off-peak time periods for 3 

months (November 2013 to January 2013). To avoid the bias in GPS error analysis, 

9,500 GPS samples were selected from the entire data sets by considering the equal 

amount of samples on different road sections, time periods, days of week, and 

smartphone models.  

To this end, it is assumed that the GPS errors can represent complete noise in 

GPS location data. The distribution of errors can be summarized: 83.02% of total GPS 

locations restrain the errors within 0-30 meters, 10.32% within 30-50 meters, and the 

rest of 6.66% contain the errors over 50 meters. Simulated bus locations can be 

modified by integrating the statistical distribution into the original location data. 



It is noteworthy that the error distribution can be used to identify the GPS error 

region for candidate location determination (Section 5.2.1). In this study, the radius of 

GPS regions could be 50 meters based on the assumption that at least 90% of the 

reported bus data should not be filtered out. Also, the mean and variance of GPS errors 

can be calculated and used in the observation probability function (Section 5.2.3). 

The second modification is to generate the bus data reported by participating 

passengers. The simulated boarding/alighting passengers at each bus stop were used to 

determine the number of participating passengers. Accordingly, participatory-based bus 

data sets can be sampled from bus trajectories. 

This study aims to investigate the system performance based on two sampling 

parameters: passenger participation, and bus data sampling frequency. Firstly, four bus 

data sets are generated from 1%, 3%, 5%, and 10% of the total passengers. Next, four 

sampling methods are applied to each data set from the first step. The sampling methods 

consist of both continuous sampling using different frequencies and one-time sampling 

when the passengers boarded a bus. The details of sampling methods are summarized in 

Table 3. To sum up, a simulated bus trajectory is used to generate 16 participatory-

based bus data sets. 

In addition, AVL-based data is also simulated to compare the performance of the 

proposed system with the conventional one. An AVL-based bus data set is generated in 

every 30 seconds. The magnitude of GPS errors is determined according to the previous 

studies on GPS errors in AVL-based bus locations (Lin and Zheng 1999; Jagadeesh, 

Srikanthan, and Zhang 2004; Jeong 2005). 

8.2. Evaluation results 

The system performance is evaluated in terms of two measures: the mean absolute error 

(MAE) and the mean absolute percentage error (MAPE). 
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where 
yActualArr  is the observed bus arrival time at a node/bus stop represented by node 

y , 
ySystemArr is the estimated/predicted bus arrival time at the node/bus stop, 

,x ytraveltime

is the observed travel time between the bus location on x  and the bus stop location on 

y , and N  is the number of the estimated/predicted bus arrival time. 

The numerical results of two major processes are considered: bus location 

matching and bus arrival time prediction. Table 4 provides the numerical results derived 

from 17 simulated bus data sets. 

8.2.1 Bus location matching performance 

Location matching performance can be evaluated based on the value of (a) MAE of the 

estimated bus arrival times at node locations. The average MAE derived from 

participatory-based data is varied from 12 to 18 seconds. It can be observed that the 

greater number of available bus data results in the more accurate location matching. In 

addition, the average number of links between consecutive bus locations (b) tends to be 

decreased when the percentage of participating passengers and the data sampling 

frequency are increased. The relationship between location matching accuracy and the 

distance between consecutive bus locations can be explained according to the 

transmission probability function. The longer distance between bus locations provides 

the less reliable transmission probability since the variation of path travel time can be 

larger. 



Although the data conflicts in participatory-based data can be compromised by 

bus location filtering, the estimated bus arrival time at node locations still contains some 

errors. One of underlying errors could be the GPS measurement errors originally 

associated with the reported bus locations. The numerical results from AVL-based bus 

data can be used to support the assumption. It can be observed that the MAE of bus 

arrival times at node locations is about 10 seconds, even though the average number of 

links between consecutive bus locations is close to 1. 

8.2.2 Bus arrival time prediction performance 

The overall performance is evaluated by MAE (d) and MAPE (e) of bus arrival time 

prediction. In the same way as location matching, the prediction accuracy is improved 

when more bus data sets are available. The trend of prediction accuracy can be 

demonstrated by a graph of MAPE in Figure 7. The MAPE values calculated from 17 

bus data sets are plotted separately by passenger participation percentages and data 

sampling frequencies. 

For the participatory-based data, MAE and MAPE are varied during 26.58-34.21 

seconds and 26.9-34.6% respectively. The performance is not significantly different 

using 1-minute data sampling frequency. However, the prediction accuracy can be 

lower than 70% when some sampling methods are applied to the data sets with 1% and 

3% of passenger participation. It can be assumed that the reported bus data is not 

sufficient to provide satisfactory accuracy. 

The consequences of insufficient bus data can be described in three aspects. 

First, the prediction algorithm will rely on historical data instead of real-time data. 

Simulation results show that the prediction accuracy above 70% can be observed when 

the availability of the estimated real-time link travel time in each time interval (c) is 

greater than 30% of the total links. Second, the number of links between consecutive 



bus locations (b) can affect prediction accuracy. The longer distance between bus 

locations may result in the lower accuracy in link travel time estimation/prediction. 

Third, the reported bus locations may be inadequate to provide the most updated 

location of individual operating buses for each processing time interval. Therefore, bus 

arrival time prediction will be based on historical time headway and result in higher 

prediction errors. 

According to the numerical results, the system should fulfill some initial 

requirements in order to maintain bus arrival time prediction accuracy.  

(1) For each time interval, the reported bus data should be sufficient to estimate the 

real-time link travel time for at least 30% of the links on the road network;  

(2) The number of links between consecutive bus locations should not more than 3 

to prevent significant errors in link travel estimation; and  

(3) The reported bus data should be sufficient to provide the most updated location 

of individual buses on the road network. For instance, at least a data set is 

available for individual buses. 

It is noteworthy that participatory-based bus data may not meet the requirements 

under some circumstances. For example, bus data may not be sufficient when the 

ridership on individual buses is low which could be encountered during off-peak hours, 

or in the case of high bus service frequencies. 

Furthermore, the performance of participatory-based system can be compared 

with AVL-based bus data. The bus data from 10% of passenger participation with 1-

minute sampling frequency is used for the comparison as it provides the maximum 

amount of reported bus data. According to Table 4, bus arrival time prediction using 

AVL-based data outperforms the participatory-based data about 3.3% of MAPE. 



Moreover, the AVL-based data provides more real-time link travel time on 9.3% of the 

total links for each time interval.  

To this end, it can be concluded that participatory-based bus data can be used to 

provide the real-time bus arrival time prediction. The prediction accuracy could be 

limited compared with AVL-based data. A major factor is the quantity of reported bus 

data which could be affected by two parameters: the number of participating passengers, 

and bus data sampling frequency. 

8.2.3 Discussion of actual implementation 

In this study, practicality of the system is investigated using simulation experiments. 

The results are used to identify a number of fundamental requirements for providing bus 

arrival time with acceptable prediction accuracy. Such analytical methods can be used 

as a framework when there is a need to implement the system on a road network. 

First of all, participatory-based bus data sets can be simulated by taking account 

of the road networks, bus operations, and GPS bus data. The availability of actual 

characteristics is important since it could affect the number of reported bus data in each 

time interval. Hence, the more available data can provide the more reliable evaluation 

results. The crucial information consists of average distance of the links on road 

networks, passenger origin-destination demands, and bus frequencies. 

In particular, GPS data could be unreliable in urban canyon environments. The 

magnitude of GPS errors should be investigated from the bus data collected during 

survey periods. The radius of GPS error region in this study is 50 meters based on a 

sample set of smartphone GPS locations in Kowloon, Hong Kong. The error region 

should be determined for the actual environments. Further investigation on prediction 

accuracy may be required for the road sections where the radius of GPS error region is 

larger than 50 meters. 



Practicality of the system then can be evaluated using the simulated bus data. 

Fundamental requirements can be used as the guidelines to determine how many bus 

data sets are needed to provide reliable bus arrival time prediction for the road network 

on the real-time basis. Finally, some control parameters - including data sampling 

frequency and processing time interval - can be optimized so as to maximize the 

prediction accuracy and minimize smartphone battery consumption. The optimization 

can be occasionally performed according to the technology acceptance level after the 

system deployment.  

It could be noted that the effects of processing time interval have not been 

investigated in this study. The parameter could affect the prediction accuracy since 

more bus data sets can be obtained in the longer time interval. This parameter should be 

investigated in the actual implementation based on the necessary computational time of 

adopted algorithms in the system. The time interval should not be too long since bus 

arrival time should be provided on the real-time basis. 

To improve the system performance, another suggestion is the ways to increase 

user acceptance of the system. It is important to develop the smartphone application 

features which can provide more benefits and persuade bus passengers to share bus 

information. 

9. Conclusion and future works 

This paper proposes a novel framework for developing a real-time bus arrival time 

information system. The system is based on the two-way data provision concept when a 

smartphone application is considered as a tool for disseminating the real-time 

information, and gathering bus data from participating passengers. Without the needs of 

in-vehicle tracking devices, the system can provide an alternative solution for transit 

operators or governments.  



The characteristics in participatory-based bus data are addressed. A number of 

data processing steps are proposed as core components of the framework to handle the 

characteristics, and to compromise GPS errors. The practicality to implement the real-

time system is investigated based on the adopted solution algorithms. The results show 

that participatory-based bus data can be used to provide the real-time bus arrival time 

information. However, prediction accuracy can be varied depended on the number of 

reported bus data sets. 

It can be noted that the solution algorithms in this study pose a set of 

assumptions which could be violated in some circumstances in the actual bus operation, 

such as bus bunching. In the future, algorithms can be developed to provide more 

realistic assumptions. For example, bus sequence assignment can be developed using 

probabilistic approaches instead of the heuristic one. Moreover, prediction accuracy can 

be improved by adopting other estimation/prediction models, i.e. ANN models.  

The algorithm development should take account of two issues. First, the 

algorithms should be developed based on the characteristics of participatory-based data. 

Second, in cases of complex algorithms, the computational time should be evaluated 

since bus arrival time information has to be predicted on the real-time basis. 
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Table 1. Summary of existing bus arrival time information systems. 

Sensor technology 
Prediction 

algorithm 
Authors 

Raw data 

accuracy 

Device 

installation 

Vehicle 

ID  
Pattern of bus data 

AVI 

- SVM,  

- ANN,  

- k-NN, 

- Regression 

Chen, Lam, and Tam 2011 
High   Fixed location 

APC Kalman Filtering Chen et al. 2004 Average   Continuous data 

AVL 

Historical-based 
Jeong 2005;  

Cats and Loutos 2015 

Average   Continuous data 

Regression 
Jeong 2005; 

Lin and Zeng 1999 

Kalman Filtering Padmanaban et al. 2010 

k-NN 
Chang et al. 2010;  

Kuhn 2011 

ANN 
Chien, Ding, and Wei 2002; 

Jeong 2005;  

Smartphone GPS 

(in-vehicle) 
Historical-based Biagioni et al. 2011 Low   Continuous data 

Smartphone GPS 

(participatory) 
Historical-based Zimmerman et al. 2011 Low   

Random travel time 

between bus stops 

Smartphone sensors 

(participatory) 
Historical-based Zhou, Zheng, and Li 2012 Low   

Random locations 

in cell tower areas 

Proposed system 
Traffic pattern 

matching 

 
Low   Random locations  

 

Table 2. Conditions of location formalization and travel time estimation parameters. 

Conditions of a candidate location 
Relocation 

direction 

Parameters used to estimate bus 

arrival time at the new location 

(1) Regular section & regular speed Backward Instantaneous bus speed 

(2) Delay section & congested speed Forward Average link delay time 

(3) Delay section & regular speed Forward Average link speed 

(4) Regular section & congested speed Backward Average link speed 

 

Table 3. Bus location sampling methods. 

No. Sampling method Sampling frequency 

1 Continuous sampling Check-in every 1 minutes 

2 Continuous sampling Check-in every 2 minutes 

3 Continuous sampling Check-in every 3 minutes 

4 One-time sampling - 

 

 

 

  



Table 4. Numerical results classified by 17 types of bus data sets. 

Passenger 

participation  

Sampling 

method 

(a) MAE of bus arrival 

time at a node location 

after performing location 

matching (seconds) 

(b) Average no. 

of links between 

consecutive bus 

locations 

(c) Availability 

of link travel 

time per time 

interval (%) 

(d) MAE of 

bus arrival time 

prediction 

(seconds) 

(e) MAPE of 

bus arrival 

time 

prediction (%) 

AVL - 10.34 1.14 67.98 23.14 23.61 

10% 

1 12.35 1.38 58.68 26.58 26.90 

2 13.38 1.64 55.71 26.91 27.13 

3 14.13 2.01 50.89 27.51 27.79 

4 15.99 2.74 41.66 30.69 28.35 

5% 

1 13.62 1.77 53.84 27.38 27.98 

2 14.76 2.50 46.27 28.55 28.44 

3 15.35 2.97 40.07 30.89 28.60 

4 16.03 3.57 29.23 31.25 29.88 

3% 

1 14.84 2.19 48.45 28.63 28.66 

2 15.76 3.49 38.29 31.30 29.49 

3 16.23 4.38 28.76 32.40 32.22 

4 N/A N/A <8 N/A N/A 

1% 

1 15.48 2.44 34.36 31.56 29.31 

2 16.30 3.92 25.23 32.66 31.18 

3 17.34 5.97 17.53 34.21 34.69 

4 N/A N/A <1 N/A N/A 

 

  



Figure 1. System architecture and operational overviews. 

 

 

Figure 2. Details of data processing steps.  

   



Figure 3. Examples of candidate location determination for the GPS location irc  (a), jrc  

and krc  (b).  

 

 

Figure 4. Conditions of location formalization. 

 

 

  



Figure 5. An example of candidate graph (Lou et al. 2009). 

 

 

Figure 6. Simulated road network, bus stops, with examples of two bus routes. 

  



Figure 7. MAPE of the predicted bus arrival time plotted by 17 types of bus data sets. 

 




