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Abstract

Pre-positioning emergency inventory in selected facilities is commonly adopted to prepare

for potential disaster threat. In this paper, we simultaneously optimize the decisions of facility

location, emergency inventory pre-positioning, and relief delivery operations within a single-

commodity disaster relief network. A min-max robust model is proposed to capture the un-

certainties in both the left- and right-hand-side parameters in the constraints. The former

corresponds to the proportions of the pre-positioned inventories usable after a disaster attack,

while the latter represents the demands of the inventories and the road capacities in the disaster-

affected areas. We study how to solve the robust model efficiently and analyze a special case that

minimizes the deprivation cost. The application of the model is illustrated by a case study of

the 2010 earthquake attack at Yushu County in Qinghai Province of PR China. The advantage

of the min-max robust model is demonstrated through comparison with the deterministic model

and the two-stage stochastic model for the same problem. Experiment variants also show that

the robust model outperforms the other two approaches for instances with significantly larger

scales.
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1 Introduction

Disasters can hardly be precisely predicted and have severe effects on human beings. For example,

the 2010 Yushu earthquake in China caused 2,698 people killed, 11,000 injured, and 270 missing.

The direct economic losses of the earthquake reached 22.85 billion yuan.1 The massive-scale social

and economic damages caused by disasters have brought increasing attention to the need for effective

disaster relief management.

According to Altay and Green (2006), disaster operations management consists of four phases,

i.e., mitigation, preparedness, response, and recovery. Mitigation and preparedness belong to

pre-disaster relief actions that typically include facility location and emergency inventory pre-

positioning (see, e.g., Toregas et al., 1971, Jia et al., 2007, Balcik and Beamon, 2008, Lee et al.,

2009, Qi et al., 2010, Shu, 2010, Shen et al., 2011, Yushimito et al., 2012, Aboolian et al., 2013,

Altay, 2013). Response and recovery are post-disaster relief actions, an important component of

which is to deliver the emergency supplies (see, e.g., Haghani and Oh, 1996, Barbarosoǧlu and

Arda, 2004, Özdamar et al., 2004, Sheu, 2007, Tzeng et al., 2007, Campbell et al., 2008, Sheu,

2010, Huang et al., 2013). As pointed out by Tufekci and Wallace (1998), treating these pre- and

post-event responses separately may result in suboptimality. This observation motivated the con-

sideration of integrated location, inventory pre-positioning, and delivery for disaster relief in the

recent literature (see, e.g., Mete and Zabinsky, 2010, Rawls and Turnquist, 2010, Salmerón and

Apte, 2010, Campbell and Jones, 2011, Rawls and Turnquist, 2011, Bozorgi-Amiri et al., 2013,

Davis et al., 2013, Dalal and Üster, 2017). We refer readers to Altay and Green (2006), Simpson

and Hancock (2009), Galindo and Batta (2013), Anaya-Arenas et al. (2014), and Gupta et al.

(2016) for excellent reviews in this area.

Due to the difficulty of predicting the timing and magnitude of a disaster, it is almost impossi-

ble to estimate the resulting damage to human life and infrastructure (cf. Barbarosoǧlu and Arda,

2004). The node-wise disruption affects not only the demands of disaster relief commodities at

the affected areas but also the availability of emergency supplies that are pre-positioned in certain

1Source: http://www.csi.ac.cn/manage/eqDown/dzzh/2010DiZhenZaiHai.html
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facilities. The link-wise disruption may lead to partially functioning or totally unoperational roads.

These disruptions create uncertainties on supply, demand, and road link capacity in disaster relief

operations. Because of this stochastic nature, most integrated disaster relief response problems are

formulated as a standard risk-neutral two-stage stochastic program. The pre- and post-disaster re-

lief operations correspond to the first and second stages, respectively. The objective is to minimize

the deterministic first stage cost plus the expectation of the stochastic second stage cost. Further-

more, the uncertainties are modeled using a finite number of scenarios, each of which happens with

a known probability. Consequently, these models are commonly referred to as the scenario-based

stochastic models. The study in Bozorgi-Amiri et al. (2013) is among the very few integrated

disaster relief models that do not take the risk-neutral stochastic programming approach. Instead,

a risk-averse two-stage stochastic program is proposed to minimize a linear trade-off between the

expected cost of the two stages and the variance of the second stage cost. Nevertheless, this model

also falls into the category of the scenario-based stochastic models as both the expectation and the

variance are calculated based on given scenarios and their probabilities of happening.

These scenario-based models, although applied in various disaster relief management problems,

face a major challenge in practical implementation, i.e., how to select the scenarios and calculate

the probabilities for each scenario. To the best of our knowledge, in the disaster relief management

literature, the only models that circumvent this difficulty by adopting a min-max criterion are

contributed by Ben-Tal et al. (2011) and Najafi et al. (2013). Both of them focus on post-disaster

operations. Furthermore, only the right-hand-side uncertainties are considered. In other words,

the constraints in these models can be written in the form of Ax ≤ b̃, where x represents the

decision variables, A is a deterministic matrix, and b̃ is a vector independent of x and subject to

uncertainty.

In this paper, we complement the existing literature of disaster relief management by proposing a

min-max robust model that integrates, in a disaster relief network, the decisions of facility location,

emergency commodity pre-positioning, and transportation of emergency commodities to disaster-

affected areas. The model captures both the node- and link-wise uncertainties, which are associated

with the demand in each affected area, the proportion of usable inventory in each facility, and the

capacity of each road link in the disaster relief network. As in the literature, we adopt the two-

stage framework because the decisions span the pre- and post-disaster actions. However, instead of
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modeling the uncertainties based on scenarios, we simply choose an “uncertainty set” within which

the uncertain parameters may take values. The objective is then to minimize the sum of the first

stage cost and the worst-case second stage cost among all possible realizations of the uncertain

parameters falling into the uncertainty set. This approach is “robust” as it applies the min-max

criterion to protect against all realizations in the uncertainty set. We note that this notion of

robustness is different from the classical definition in, e.g., Soyster (1973) and Bertsimas and Sim

(2004), where a solution is robust if it is feasible for any realization chosen from the uncertainty

set. Unfortunately, as discussed in the second paragraph of Section 2.3, the classical definition of

robustness cannot be applied to the disaster relief problem because a solution complying with this

definition does not exist.

The main contributions of this paper can be summarized as follows:

• To the best of our knowledge, the proposed model is the first min-max robust model that

considers both pre- and post-disaster operations in disaster relief management. Unlike the

stochastic models, it does not require the joint distribution of the uncertain parameters. In-

stead, only the most likely values together with the upper and lower bounds of these random

inputs are required. In addition, the level of conservatism of the robust model can be con-

trolled through a parameter named the “uncertainty budget” to fit the attitude of the decision

maker towards the worst-case outcome.

• Computationally tractable approaches are proposed to solve the robust model. This is non-

trivial mainly because our model considers both left- and right-hand-side uncertainties. More

specifically, the second stage problem of the proposed model contains equality constraints of

the form Ãx1 + Bx2 = b̃, where x1 and x2 are the vectors for the first and second stage

decision variables, B is a deterministic matrix, and both the matrix Ã and the vector b̃ are

subject to uncertainty. Also note that the literature, e.g., Ben-Tal et al. (2011) and Najafi

et al. (2013), mainly focuses on the right-hand-side uncertainty, i.e., the randomness in b̃.

• We study a special case of the proposed model that only considers the deprivation cost,

which, as introduced by Holgúın-Veras et al. (2013), represents the economic valuation of the

human suffering incurred by the shortage of the emergency commodity in the post-disaster

relief operations. For this simplified model, a closed-form optimal solution can be derived
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under certain conditions. We obtain important insights on how to determine the uncertainty

budget of the robust model through analyzing the closed-form solution.

• The min-max robust model is applied to a real-world earthquake relief case and its variants.

Extensive numerical results reveal that the min-max robust model outperforms both the

deterministic model and the two-stage stochastic model, demonstrating that the min-max

robust model provides a practical decision-making tool for disaster relief operations.

The remainder of this paper is organized as follows. In Section 2, we present a min-max robust

model for the integrated location and emergency inventory pre-positioning problem that captures

uncertainties in demands, proportions of usable inventories, and road link capacities. Section 3

is devoted to discuss how to solve the robust model efficiently and analyze the special case that

minimizes the deprivation cost. We use a case study in Section 4 and its variants in Section 5

to illustrate the application of the model and demonstrate the advantage of the min-max robust

model. Finally, the paper is concluded in Section 6.

2 Model Formulation

We consider a single-commodity network for the distribution of emergency supplies, e.g., human-

itarian relief commodity packages that may contain water, food, medical kits, tents, clothes, etc.,

in case of a disaster event. A total amount of these emergency supplies, denoted by R, is given

by the pre-disaster recovery plan. The corresponding distribution network is characterized by an

undirected graph G(N,A), where N = {1, 2, . . . , n} and A = {(i, j) : i, j ∈ N} denote the set of the

nodes and the set of the links of G(N,A), respectively. Each node in N corresponds to a potential

demand area for disaster relief. It also represents a potential facility site to store the pre-positioned

emergency supplies, which has a given capacity Mi for any i ∈ N . After the occurrence of a disas-

ter, the pre-positioned supplies are sent from the open facilities to the demand areas via the links

in A.

In the pre-disaster operations, we need to decide where to set up the facilities for pre-positioning

emergency supplies and how much inventory to be pre-positioned in each open facility. Following

the nomenclature in the two-stage stochastic program, these pre-disaster decisions are referred to

as the first stage decisions and represented by the decision variables in Table 1. To simplify the
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notation, we denote them by the vectors y and r, respectively. Obviously, the first stage decisions

are feasible as long as ∑
i∈N

ri = R, (1)

0 ≤ ri ≤Miyi, ∀i ∈ N, (2)

yi ∈ {0, 1}, ∀i ∈ N. (3)

Constraint (1) specifies that the total amount of the emergency supplies is R, while the second

inequality in constraint (2) ensures that inventories can only be stored in the open facilities and

are subject to the capacity constraints. These first stage decisions are associated with fixed facility

costs and variable commodity handling costs, which are also shown in Table 1. As a result, the

first stage cost, i.e., the pre-disaster cost, is
∑

i∈N Fiyi +
∑

i∈N hiri.

Table 1: First stage decision variables and cost parameters

First stage decision variables

yi binary variable that equals 1 if facility i opens and 0 otherwise, for each i ∈ N

ri amount of the emergency inventory pre-positioned at node i, for each i ∈ N

First stage cost parameters

Fi fixed cost of locating and operating a facility at node i, for each i ∈ N

hi per unit commodity handling cost at node i, for each i ∈ N , which includes the cost to

purchase, transport, and store one unit of the commodity in the pre-disaster actions

As mentioned in Section 1, due to the node- and link-wise disruptions caused by a disaster,

the amount of the emergency commodities demanded by each node, the proportion of the pre-

positioned inventory that remains usable at each open facility, and the link capacity available to

ship the commodities are all subject to uncertainty. These parameters are listed in Table 2 and

can only be realized after the occurrence of a disaster. For simplicity, the uncertain vectors d̃, ρ̃,

and ũ are adopted to represent d̃i, ρ̃i, and ũij for any i ∈ N and (i, j) ∈ A, respectively.

Based on the first stage decisions (y, r) and the realizations of the random parameters (d̃, ρ̃, ũ),

we can plan the post-disaster operations, which are referred to as the second stage decisions. The

corresponding decision variables and the associated costs are shown in Table 3. Again, for brevity,
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Table 2: Uncertain parameters realized after the occurrence of a disaster

d̃i random demand of the emergency commodities at node i after a disaster, ∀i ∈ N

ρ̃i random proportion of the commodities pre-positioned at node i that are usable in disaster

relief, ∀i ∈ N

ũij random capacity on link (i, j) available for disaster relief, ∀(i, j) ∈ A

we use x, z+, and z− to represent the vectors of the decision variables xij for all (i, j) ∈ A, z+
i for

all i ∈ N , and z−i for all i ∈ N , respectively. Using these notations, the optimized second stage

cost, i.e., the post-disaster cost, can be obtained by

Q(r, d̃, ρ̃, ũ) = min
x,z+,z−

∑
(i,j)∈A

cijxij +
∑
i∈N

(q+
i z

+
i + q−i z

−
i )

s.t. ρ̃iri +
∑

j:(j,i)∈A

xji −
∑

j:(i,j)∈A

xij − z+
i + z−i = d̃i, ∀i ∈ N,

0 ≤ xij ≤ ũij , ∀(i, j) ∈ A,

z+
i , z

−
i ≥ 0, ∀i ∈ N,

(4)

where the first constraint represents flow conservation.

Based on the above description, Sections 2.1, 2.2, and 2.3 formulate the deterministic, stochastic,

and min-max robust models for location and inventory pre-positioning in disaster relief manage-

ment, respectively.

2.1 Deterministic Model

The deterministic model assumes that there is no uncertainty associated with (d̃, ρ̃, ũ). To distin-

guish from the uncertain parameters, we denote the deterministic counterpart by (d,ρ,u). The

deterministic model can then be formulated as

min
y,r

∑
i∈N

Fiyi +
∑
i∈N

hiri +Q(r,d,ρ,u)

s.t. (1), (2), (3),

(5)

where Q(r,d,ρ,u) is defined in (4).
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Table 3: Second stage decision variables and cost parameters

Second stage decision variables

xij flow quantity across link (i, j), for each (i, j) ∈ A

z+
i quantity of the unused inventory at node i, for each i ∈ N

z−i quantity of the unsatisfied demand at node i, for each i ∈ N

Second stage cost parameters

cij per unit transportation cost across link (i, j), for each (i, j) ∈ A

q+
i penalty cost for each unit of unused commodity at node i, for each i ∈ N , which corre-

sponds to the extra inventory holding or disposal cost

q−i penalty cost for each unit of unsatisfied demand at node i, for each i ∈ N , which represents

the deprivation cost, i.e., the economic measure of human suffering associated with short-

age (cf. further discussions in Section 3.4), and/or the cost of getting additional supply

from the unaffected areas

2.2 Two-Stage Stochastic Model

The two-stage stochastic model minimizes the first stage cost plus the expectation of the second

stage cost. The joint distribution of (d̃, ρ̃, ũ) are required to compute the expectation of the second

stage cost. In most cases, a (finite) set of scenarios denoted by S is considered. Each of them

happens with a probability ps for any s ∈ S. Applying these notations, we obtain the following

two-stage stochastic model:

min
y,r

∑
i∈N

Fiyi +
∑
i∈N

hiri +
∑
s∈S

psQ(r,ds,ρs,us)

s.t. (1), (2), (3),

(6)

where Q(r,ds,ρs,us) for any s ∈ S is defined in (4), i.e., the instance of the optimization problem

Q(r, d̃, ρ̃, ũ) in (4) for the given y and the possible outcome (ds,ρs,us) of (d̃, ρ̃, ũ). Although

model (6) does not explicitly have the second stage decisions for each scenario s ∈ S, the instance

of Q(r,ds,ρs,us) yields an optimal second stage solution that exclusively corresponds to the second

stage decisions for scenario s. In other words, model (6) allows different scenarios having different

second stage decisions. We also note that model (6) can be viewed as a single-commodity version
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of the model proposed in Rawls and Turnquist (2010).

2.3 Min-Max Robust Model

As mentioned before, it is very challenging to determine the scenarios as well as the corresponding

probabilities in model (6). To address this issue, we propose the corresponding min-max robust

model.

Suppose that the uncertain vectors d̃, ρ̃, and ũ in the second stage can take any values in the

uncertainty sets D, P , and U , respectively. The classical robust optimization model, e.g., that in

Soyster (1973) and Bertsimas and Sim (2004), makes all decisions at the same time epoch and so

can be viewed as a single-stage problem. Given the uncertainty set for the uncertain parameters,

a solution is robust if it is feasible for any realization of these uncertain parameters chosen from

the uncertainty set. Casting our problem into this framework, we would like to get a solution

(y, r,x, z+, z−) ∈ R4|N |+|A| that remains feasible, i.e., satisfies constraints (1), (2), (3) as well as all

three constraints in (4), for any d̃, ρ̃, and ũ in the sets D, P , and U , respectively. Due to the single-

stage nature of the classical robust optimization model, the post-disaster decisions (x, z+, z−), even

though will not be implemented until the disaster attack, have to be made before the disaster along

with the pre-disaster decisions (y, r) and so are independent of the realization of (d̃, ρ̃, ũ). Now

consider the first constraint in (4), which is an equality constraint with d̃ in the right hand side.

Obviously, given ρ̃ and ũ, any solution (y, r,x, z+, z−) feasible for some d̃ ∈ D becomes infeasible

for a different d̃ ∈ D. Therefore, the classical robust counterpart of our problem is infeasible as

long as D is not a singleton.

To avoid infeasibility, as in the two-stage stochastic model, we consider the pre- and post-

disaster decisions as the first and second stage decisions, respectively. In this case, the pre-disaster

decisions (y, r) are made before the disaster, whereas the post-disaster decisions (x, z+, z−) can

be postponed to after observing the realization of the uncertain parameters (d̃, ρ̃, ũ). Given the

first stage decisions and the uncertainty sets D, P , and U , we can obtain the optimal post-disaster

decision and the minimum post-disaster cost for any realization in d̃ ∈ D, ρ̃ ∈ P , and ũ ∈ U . In

order to protect against all possible outcomes within the uncertainty sets, we target to minimize

the pre-disaster cost plus the worst-case post-disaster cost among all d̃ ∈ D, ρ̃ ∈ P , and ũ ∈ U ,
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which leads to the following min-max robust formulation:

min
y,r

∑
i∈N

Fiyi +
∑
i∈N

hiri + max
d̃∈D,ρ̃∈P,ũ∈U

Q(r, d̃, ρ̃, ũ)

s.t. (1), (2), (3).

(7)

Similar to the two-stage stochastic model (6), although model (7) does not explicitly define second

stage decision variables for each (d̃, ρ̃, ũ), it obtains an exclusive optimal second stage solution for

each (d̃, ρ̃, ũ) through solving the corresponding instance of the optimization problem Q(r, d̃, ρ̃, ũ).

3 Analysis of the Min-Max Robust Model

The practicability and computational tractability of the robust model (7) are determined by the

definitions of the uncertainty sets D, P , and U . In this section, we discuss how to define the sets

D, P , and U appropriately and present computationally tractable approaches to solve model (7).

Furthermore, we analyze a special case that minimizes the deprivation cost. In this special case, a

closed-form optimal solution can be obtained under certain conditions. This result also sheds light

on how to choose the uncertainty sets.

3.1 Uncertainty Sets

In practice, the most likely value, the upper bound, and the lower bound are among the most easily

available information of an uncertain parameter. Therefore, we utilize these values to construct

the uncertainty sets D, P , and U . This section focuses on the uncertainty set D for the random

demands. The other two sets, i.e., P and U for the proportions of usable inventories and the road

link capacities, respectively, are defined in a similar manner and briefly discussed towards the end

of this section.

Consider the vector d̃ ≥ 0 of the random demands. For each uncertain demand d̃i where i ∈ N ,

suppose that we know the information of the lower bound dLi , the upper bound dUi , and the most

likely value dMi . We can define the uncertainty set D as follows:

D =

d̃ ∈ R|N |

∣∣∣∣∣∣∣∣∣∣
ηi =


(dMi − d̃i)/(dMi − dLi ), if d̃i ≤ dMi

(d̃i − dMi )/(dUi − dMi ), if d̃i > dMi

∀i ∈ N,

d̃i ∈ [dLi , d
U
i ] ∀i ∈ N,

∑
i∈N ηi ≤ γd

 . (8)

10



Here, ηi for all i ∈ N measures the deviation of d̃i from its most likely value dMi . The summation

of ηi is upper bounded by a given parameter γd, which is referred to as the uncertainty budget

for d̃ and can take any value in {0, 1, ..., |N |}.2 Obviously, the value of γd controls the size of the

uncertainty set D. When γd = |N |, D is the hyperrectangle defined by dLi and dUi for all i ∈ N .

It shrinks to the singleton of dMi for all i ∈ N as γd decreases to 0. Note that the robust model

(7) considers the maximum post-disaster cost among all values of d̃ in the set D. Therefore, γd

determines the level of conservatism of the robust model and represents the attitude of the decision

maker towards the worst-case outcome. A decision maker who cares more about the worst-case

outcome should choose a more conservative robust model by setting a higher γd and vice versa.

The following proposition shows that D defined in (8) is a polytope and we can identify a

superset of its vertices.

Proposition 1 The set D in (8) is a polytope and its vertices are contained in the set

Vd =
⋃

T⊆N,|T |=γd

d ∈ R|N |
∣∣∣∣∣∣ di ∈ {d

L
i , d

U
i }, ∀i ∈ T

di = dMi , ∀i ∈ N \ T

 . (9)

The proof of Proposition 1 is presented in Appendix A.1. Note that Vd can be reduced to

the uncertainty set in Bertsimas and Sim (2004) with an integral uncertainty budget γd if we set

dUi − dMi = dMi − dLi for any i ∈ N . As it is straightforward to allow an arbitrary γd ∈ [0, |N |], D

is as general as, if not more general than, the uncertainty set in Bertsimas and Sim (2004). Also

note that Proposition 1 plays an important role in solving the robust model (7). As shown later in

Section 3.2, the uncertainty set D in model (7) can be replaced by a superset of its vertices without

sacrificing the robustness of model (7).

Similarly, for the proportion of usable inventory ρ̃i ≥ 0 and the link capacity ũij ≥ 0, suppose

that we know the most likely values ρMi and uMij , the lower bounds ρLi and uLij , as well as the upper

bounds ρUi and uUij . The uncertainty sets P and U for these two groups of random parameters can

2Our results can be easily generalized to the case where γd ∈ [0, |N |]. Here we restrict γd to be an integer because

the notations are substantially simpler.
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be defined as

P =

ρ̃ ∈ R|N |

∣∣∣∣∣∣∣∣∣∣
ηi =


(ρMi − ρ̃i)/(ρMi − ρLi ), ρ̃i ≤ ρMi ,

(ρ̃i − ρMi )/(ρUi − ρMi ), ρ̃i > ρMi ,

∀i ∈ N,

ρ̃i ∈ [ρLi , ρ
U
i ] ∀i ∈ N,

∑
i∈N ηi ≤ γρ

 (10)

and

U =

ũ ∈ R|A|

∣∣∣∣∣∣∣∣∣∣
ηij =


(uMij − ũij)/(uMij − uLij), ũij ≤ uMij ,

(ũij − uMij )/(uUij − uMij ), ũij > uMij ,

∀(i, j) ∈ A,

ũi ∈ [uLij , u
U
ij ] ∀(i, j) ∈ A,

∑
(i,j)∈A ηij ≤ γu

 , (11)

where γρ ∈ {0, 1, ..., |N |} and γu ∈ {0, 1, ..., |A|} are the uncertainty budgets for ρ̃ and ũ that

adjust the conservatism of the robust model. Following the proof of Proposition 1, both P and U

are polytopes, and their vertices are contained in the sets

Vρ =
⋃

T⊆N,|T |=γρ

ρ ∈ R|N |
∣∣∣∣∣∣ ρi ∈ {ρ

L
i , ρ

U
i }, ∀i ∈ T

ρi = ρMi , ∀i ∈ N \ T

 (12)

and

Vu =
⋃

T⊆A,|T |=γu

u ∈ R|A|
∣∣∣∣∣∣ uij ∈ {u

L
ij , u

U
ij}, ∀(i, j) ∈ T

uij = uMij , ∀(i, j) ∈ A \ T

 , (13)

respectively.

3.2 A General Min-Max Robust Optimization Framework

In this section and the next, we present computationally tractable reformulations of the robust

model (7) under the uncertainty sets D, P , and U defined in (8), (10), and (11). In particular, this

section considers a generalization of model (7) and thus can be applied to any two-stage min-max

robust optimization problem whose second stage constraints contain uncertainties in both the left-

hand-side coefficients of the first stage decision variables and the right-hand-side coefficients. The

next section then focuses on model (7) and obtains reformulations with reduced scales by applying

the model-specific properties.

First, let us introduce the following problem:

min
x1

{
cT1 x1 + max

Ã2∈MA,b̃2∈Mb

Q(x1, Ã2, b̃2) : x1 ∈ X

}
(14)
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where

Q(x1, Ã2, b̃2) = min
x2

{
cT2 x2 : (ΦÃ2 + Ψ)x1 + Bx2 = Ξb̃2 + ξ, x2 ≥ 0

}
. (15)

Here, the first and second stage decision variables are denoted by x1 and x2, respectively. The

uncertain parameters in the second stage are Ã2 and b̃2, which appear in both the left and right

hand sides of the constraints in the second stage problem Q(x1, Ã2, b̃2). The uncertainty sets for

Ã2 and b̃2 are MA and Mb, respectively. Moreover, X is a known set defining the feasible region

of x1 and the remaining parameters, i.e., c1, c2, B, Φ, Ψ, Ξ, and ξ, are deterministic vectors and

matrices with proper sizes. Note that model (14) is well defined only if Q(x1, Ã2, b̃2) is (i) feasible

for all Ã2 ∈ MA and b̃2 ∈ Mb and (ii) bounded for some Ã2 ∈ MA and b̃2 ∈ Mb. Therefore, we

assume that these two conditions hold in the subsequent analysis.

Model (14) is more general than most two-stage min-max robust optimization problems studied

in the literature, where only right-hand-side uncertainty is considered, i.e., the matrix Ã2 in model

(14) is assumed to be deterministic. Furthermore, it is straightforward that model (7) is a special

case of model (14) and satisfies conditions (i) and (ii). The following theorem presents an equivalent

formulation of model (14), which is proved in Appendix A.2.

Theorem 2 Suppose that MA and Mb are nonempty bounded polyhedra and VA ⊆MA and Vb ⊆Mb

are supersets of their vertices, respectively. Model (14) is equivalent to

min
x1

{
cT1 x1 + max

Ã2∈VA,b̃2∈Vb
Q(x1, Ã2, b̃2) : x1 ∈ X

}
. (16)

Compared with model (14), model (16) considers the worst-case second stage cost among all

realizations in VA and Vb, instead of the original uncertainty sets MA and Mb. In other words,

we can achieve the same level of robustness by considering the supersets of the vertices of the

uncertainty sets. This result is of great importance computationally. In particular, as long as

VA and Vb are finite sets, model (16) yields an equivalent compact reformulation of model (14),

which can be readily solved by commercial optimization packages or Benders decomposition. In the

following Section 3.3, the general result in Theorem 2, jointly with Proposition 1 that characterizes

the vertices of the uncertainty sets, is applied to solve the min-max robust model (7). Some

problem-specific properties are also exploited to improve the computational efficiency.
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3.3 Solving Model

Obviously, our min-max robust model (7) fits into the framework (14). Applying Theorem 2, we

obtain the following equivalent formulation of model (7):

min
y,r

∑
i∈N

Fiyi +
∑
i∈N

hiri + max
d̃∈Vd,ρ̃∈Vρ,ũ∈Vu

Q(r, d̃, ρ̃, ũ)

s.t. (1), (2), (3),

(17)

where Vd ⊆ D, Vρ ⊆ P , and Vu ⊆ U are supersets of the vertices of D, P , and U defined in (9), (12),

and (13), respectively. Model (17) can be written in a compact form if we insert in the definition

of Q(r, d̃, ρ̃, ũ) in (4). The resulting formulation is a standard mixed integer program (MIP) that

contains a copy of the decision variables, objective function, and constraints in Q(r, d̃, ρ̃, ũ) for

each d̃ ∈ Vd, ρ̃ ∈ Vρ, and ũ ∈ Vu. Note that |Vd|, |Vρ|, and |Vu| are all polynomial in |N | and |A|.

Thus, in the MIP formulation of model (17), the numbers of variables and constraints are both

polynomial in |N | and |A|. In the following proposition, we utilize the properties of the second

stage problem Q(r, d̃, ρ̃, ũ) defined in (4) and the sets Vd, Vρ, and Vu to reduce the scale of model

(17). Its proof is presented in Appendix A.3.

Proposition 3 Let

V(d,ρ) =
{

(d,ρ) ∈ Vd × Vρ : (di − dMi )(ρi − ρMi ) ≤ 0, ∀i ∈ N
}

V̄u =
{
u ∈ Vu : uij ≤ uMij ,∀(i, j) ∈ A

}
,

where Vd, Vρ, and Vu are defined in (9), (12), and (13), respectively. Given D, P , and U defined

in (8), (10), and (11), model (7) is equivalent to

min
y,r

∑
i∈N

Fiyi +
∑
i∈N

hiri + max
(d̃,ρ̃)∈V(d,ρ),ũ∈V̄u

Q(r, d̃, ρ̃, ũ)

s.t. (1), (2), (3).

(18)

Comparing models (17) and (18) reveals that we can protect against all scenarios in Vd×Vρ×Vu

by simply considering those in V(d,ρ)×V̄u. Similar to model (17), model (18) can also be reformulated

as a standard MIP. It has significantly smaller numbers of variables and constraints than the MIP

for model (17) because |V(d,ρ)| ≤ |Vd| × |Vρ| and |V̄u| ≤ |Vu|. If |V(d,ρ)| × |V̄u| is moderate, the MIP

for model (18) can be directly solved by commercial MIP solvers, e.g., IBM ILOG CPLEX. When
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|V(d,ρ)| × |V̄u| is large, we can consider the following equivalent formulation of model (7) and solve

it by Benders decomposition.

Proposition 4 For any given r ≥ 0, define γ̄ρ(r) = min
{
γρ, |{i ∈ N : ri > 0}|

}
and

V̄ρ(r) =
⋃

T⊆{i∈N :ri>0},
|T |=γ̄ρ(r)

ρ ∈ R|N |
∣∣∣∣∣∣ ρi ∈ {ρ

L
i , ρ

U
i }, ∀i ∈ T

ρi = ρMi , ∀i ∈ N \ T \ {t}

 .

Given D, P , and U defined in (8), (10), and (11), model (7) is equivalent to

min
y,r

∑
i∈N

Fiyi +
∑
i∈N

hiri + max
(d̃,ρ̃)∈V̄(d,ρ)(r),ũ∈V̄u

Q(r, d̃, ρ̃, ũ)

s.t. (1), (2), (3).

(19)

where V̄u is defined in Proposition 3 and

V̄(d,ρ)(r) =
{

(d,ρ) ∈ Vd × V̄ρ(r) : (di − dMi )(ρi − ρMi ) ≤ 0 ∀i ∈ N
}
.

The proof of Proposition 4 is presented in Appendix A.4. Model (19) further narrows down

the realizations we should consider to those in V̄(d,ρ)(r) × V̄u. Unfortunately, it is rather difficult

to reformulate model (19) as a compact MIP because of the nonlinear dependence of V̄(d,ρ)(r) on

r. Nevertheless, it is straightforward to develop an algorithm for model (19) based on Bender

decomposition. Note that Bender decomposition can also be applied to solve model (18), but it is

more efficient to solve model (19) because |V̄(d,ρ)(r)| ≤ |V(d,ρ)|, especially when the fixed costs to

set up facilities are not negligible.

3.4 Minimizing the Deprivation Cost

The premier objective of all disaster response operations should be to minimize human suffering,

which can be measured by the deprivation cost introduced in Holgúın-Veras et al. (2013). For this

purpose, this section studies a deprivation cost minimization version of model (7).

Holgúın-Veras et al. (2013) consider deprivation cost as “the economic valuation of the human

suffering associated with a lack of access to a good or service”. It obviously depends on the depri-

vation time, i.e., how long the good or service has been unavailable. For a given individual, the
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deprivation cost function, representing how the deprivation cost changes with respect to the depri-

vation time, should be increasing, non-linear, and convex. The deprivation cost should also vary

according to the socioeconomic characteristics of individuals. However, as the detailed data about

the suffering population is often lacked, a generic deprivation cost function, i.e., one independent of

the socioeconomic characteristics, might be the best alternative. Holgúın-Veras et al. (2016) then

propose a process to estimate deprivation cost functions using contingent valuation.

In this paper, we focus on the deprivation cost for the emergence supplies considered in the

single-commodity network. Some individuals in the affected areas could get the supplies from the

pre-positioned inventories. For these individuals, the deprivation time is rather short and so the

deprivation cost is very close to zero (cf. Holgúın-Veras et al., 2013). Therefore, the deprivation

cost for these individuals is set to zero. In other words, for each unit of demand satisfied by the

propositioned inventories, the associated deprivation cost is zero. Note that this assumption can

be easily relaxed.

For the individuals whose demands cannot be satisfied by the pre-positioned inventories, they

have to be served by deliveries from the unaffected areas in the post-disaster operations. Suppose

that it takes T time units for these individuals to get the supply, where T can be determined in

the pre-disaster stage based on the geographic location of the nodes. Then the deprivation time

for this group of individuals is T . Given the generic deprivation cost function denoted by DCF(t),

which can be estimated using the approach designed in Holgúın-Veras et al. (2016), the deprivation

cost for each of these individuals is DCF(T ). Let n denote the number of individuals that can be

served by one unit of the emergency supplies. For each unit of shortage, i.e., each unit of demand

that cannot be satisfied using the pre-positioned inventories, the corresponding deprivation cost is

DCF(T ) · n.

Under this setting, model (7) obviously minimizes the total deprivation cost if we let q−i be

the deprivation cost for each unit of shortage, i.e., q−i = DCF(T ) · n, for all i ∈ N and ignore

other cost components, which are merely economic costs. We can also remove all the restrictions

on the disaster relief network G(N,A) so that the network is strongly connected with no capacity

limits on both nodes and links. Without economic considerations, this can be easily justified as

the capacity of each open facility could be sufficiently large and the pre-positioned inventories, if

usable, can be quickly sent to any place in need via helicopters. Along with other conditions, the
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following theorem, whose proof is presented in Appendix A.5, provides a closed-form solution for

the problem that minimizes the deprivation cost.

Theorem 5 Suppose that (i) G(N,A) is strongly connected and uncapacitated, (ii) Fi = hi = q+
i =

0 for all i ∈ N , and (iii) cij = 0 for all (i, j) ∈ A. Consider model (7) with D and P defined in

(8) and (10), respectively. An optimal solution (y∗, r∗) with y∗i = 1 for all i ∈ N is characterized

for the following cases.

(a) If γρ = 0, r∗i∗ = R for some i∗ ∈ arg max{ρMi : i ∈ N} and r∗i = 0 for all i ∈ N \ {i∗}.

(b) If γρ = |N |, r∗i∗ = R for some i∗ ∈ arg max{ρLi : i ∈ N} and r∗i = 0 for all i ∈ N \ {i∗}.

(c) Suppose that ρMi = ρLi + δ for all i ∈ N and, WLOG, ρM1 ≥ ρM2 ≥ · · · ≥ ρM|N |. If γρ ∈

{1, ..., |N |−1}, then r∗i = R/n∗γρ for all i ∈ {1, ..., n∗γρ} and r∗i = 0 for all i ∈ {n∗γρ+1, ..., |N |},

where

n∗γρ ∈ arg max
i∈{1,...,|N |}

1

i

 i∑
j=1

ρMj −min{i, γρ}δ

 .

(d) Suppose that ρMi = ρM for all i ∈ N and, WLOG, ρL1 ≥ ρL2 ≥ · · · ≥ ρL|N |. If γρ ∈ {1, ..., |N | −

1}, then

r∗i = R · (ρM − ρLi )−1∑n∗γρ
j=1(ρM − ρLi )−1

for all i ∈ {1, ..., n∗γρ} and r∗i = 0 for all i ∈ {n∗γρ + 1, ..., |N |}, where

n∗γρ ∈ arg min
i∈{1,...,|N |}

{
min{i, γρ}∑i

j=1(ρM − ρLj )−1

}
.

(e) Suppose that ρLi = ρL for all i ∈ N and, WLOG, ρM1 ≥ ρM2 ≥ · · · ≥ ρM|N |. If γρ ∈ {1, ..., |N | −

1}, then

r∗i = R · (ρMi − ρL)−1∑n∗γρ
j=1(ρMi − ρL)−1

for all i ∈ {1, ..., n∗γρ} and r∗i = 0 for all i ∈ {n∗γρ + 1, ..., |N |}, where

n∗γρ ∈ arg max
i∈{1,...,|N |}

{
(i− γρ)+∑i

j=1(ρMj − ρL)−1

}
.

17



In Theorem 5 (a), the uncertainty budget γρ for ρ̃, which controls the conservatism of the

robust model, is set to 0. The robust model with γρ = 0 is the least conservative and equivalent

to the deterministic model where the proportions of usable inventories are set to ρMi for all i ∈ N .

Its optimal solution puts all inventories in the location with the highest ρMi . Theorem 5 (b)

then considers the model with γρ = |N |, which is the most conservative and protects against all

realizations in the hyperrectangle defined by ρLi and ρUi for all i. The optimal solution then puts

all inventories in the location with the highest ρLi . These results suggest that we will only use one

location as long as γd ∈ {0, |N |}, which could be risky as all eggs are put in one basket. Therefore,

a more desirable solution should utilize more locations to reduce the risk. Theorem 5 (c), (d), and

(e) then consider γρ ∈ {1, ..., |N |−1}. These three parts correspond to the cases that the differences

between ρMi and ρLi , the most likely values ρMi , and the lower bounds ρLi are the same for all nodes,

respectively. The results indicate that the corresponding solution pre-positions inventories in n∗γρ

locations. The following proposition reveals some insights on when n∗γρ = 1 for different γρ.

Proposition 6 (c,d) Consider n∗γρ defined in Theorem 5 (c) or (d). For any γρ, γ
′
ρ ∈ {1, ..., |N |−1}

such that γρ ≤ γ′ρ, if n∗γρ = 1 is the unique optimal solution to the optimization problem defining

n∗γρ, then n∗γ′ρ = 1 is the unique optimal solution to the optimization problem defining n∗γ′ρ.

(e) Consider n∗γρ defined in Theorem 5 (e). n∗γρ > 1 for any γρ ∈ {1, ..., |N | − 1}.

The proof of Proposition 6 is shown in Appendix A.6. For the cases in Theorem 5 (c) and (d),

Proposition 6 shows that if the robust model with an uncertainty budget in {1, ..., |N |−1} only uses

one location, then any robust model whose uncertainty budget is higher should also use exactly one

location. Furthermore, the robust model with any uncertainty budget γρ in {1, ..., |N | − 1} uses at

least two locations as long as the condition in Theorem 5 (e) is satisfied. As a result, under the

conditions in Theorem 5 (c), (d), and (e), the robust model with γρ = 1 is most likely to use more

than one location. Note that these conditions can easily hold in real circumstances. Typically, it

could be difficult to estimate the variation of ρi, i.e., ρMi −ρLi , for each i ∈ N . A practical approach

is to set ρMi − ρLi = δ for all i ∈ N , which corresponds to the condition in Theorem 5 (c). This

observation suggests that the robust model with γρ = 1 may yield a more desirable solution than

those obtained from models with other values of γρ.

Furthermore, in most cases, a disaster, e.g., an earthquake, has an epicenter. In the disaster

relief network, the node/link closest to the epicenter may suffer the most from the disaster, while
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the others may suffer less. Therefore, for the uncertain parameters, e.g., the demands d̃i for all

i ∈ N , it is highly possible that the realization of d̃i∗ for some i∗ ∈ N is very close to the upper

bound dUi∗ , whereas the others are close to the most likely values dMi for all i ∈ N \ {i∗}. Such a

scenario corresponds to an extreme point of an uncertainty set whose uncertainty budget equals

one. Concurring with Proposition 6, this observation also suggests setting the uncertainty budgets

to ones in the disaster relief robust model (7).

4 Case Study

In this section, we use the earthquake that happened at Yushu County in Qinghai Province, PR

China in the year of 2010 as the case to evaluate the performances of the deterministic, two-

stage stochastic, and min-max robust models outlined in Section 2. This Ms7.1 earthquake caused

massive-scale social and economic damages. Its affected area is shown in Figure 1.3 We first consider

the models with uncapacitated road links and then move on to the models with capacitated road

links and additional helicopter links. All numerical experiments in this paper are conducted on a

Dell desktop with 3.20GHz Intel i7 CPU and 16G memory running the Windows 7 Professional

64bit operating system. In addition, the robust models are all solved by Benders decomposition.

4.1 Uncapacitated Instances

The network in the affected area consists of 13 nodes and 15 road links (cf. Figure 2). We

temporarily assume all the road links have unlimited transportation capacity. The capacitated

models with a set of helicopter links are studied in Section 4.2. The input parameters are estimated

to closely represent the real situation, but should be served for illustrative purpose only. Please

refer to Appendix B for how the inputs are obtained. Figure 2 gives the per unit transportation

cost for each road link and the other cost parameters, i.e., Fi, hi, q
+
i and q−i for all i ∈ N , are listed

in Table 4.

We use N(µ, σ, a, b) to denote a truncated normal distribution where µ and σ correspond to the

mean and standard deviation of the “parent” normal distribution and (a, b) specifies the truncation

interval. For any i ∈ N , the post-disaster demand d̃i and the usable portion of the pre-positioned

3Source: http://image.dili360.com/www/201004/yutian liedu.jpg
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Figure 1: The affected area

inventory ρ̃i are assumed to follow independent truncated normal distributions N(µdi , σ
d
i , 0,+∞)

and N(µρi , σ
ρ
i , 0, 1), respectively. As in practice, these distributions are unknown to the decision

makers. The only available information is the forecasted most likely values, upper bounds, and

lower bounds of the uncertain parameters, i.e., (dMi , d
L
i , d

U
i ; ρMi , ρ

L
i , ρ

U
i ) for all i ∈ N . We refer to

a set of parameters (dMi , d
L
i , d

U
i ; ρMi , ρ

L
i , ρ

U
i ) for all i ∈ N as an instance. To generate an instance,

we let dMi , dLi , and dUi be the average, minimum, and maximum of 50 independent samples drawn

from N(µdi , σ
d
i , 0,+∞), respectively. Similarly, ρMi , ρLi , and ρUi are set to the average, minimum,

and maximum of 50 independent samples drawn from N(µ̂ρi , σ
ρ
i , 0, 1).

In this experiment, we generate 50 instances with µdi = 100, σdi = 10, µρi and µ̂ρi shown in Table

4, and σρi = 0.1 for all i ∈ N . The capacity Mi of any node i ∈ N is set to 800. The total supply R

could be any value in the set {2300, 2400, ..., 3000}. For each instance and possible R, we compare

the deterministic model (5), the two-stage stochastic model (6), and the min-max robust models

(7) using the following procedure.

Step 1. The deterministic, stochastic, and robust models are constructed as follows.

• The deterministic model is obtained by replacing d and ρ in model (5) with dMi and ρMi
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Figure 2: Disaster relief network

for all i ∈ N .

• For the two-stage stochastic model (6), we consider 100 scenarios, i.e., |S| = 100. Each

scenario s ∈ S consists of independent samples drawn from triangular distributions

T (dLi , d
M
i , d

U
i ) and T (ρLi , ρ

M
i , ρ

U
i ) for all i ∈ N , which corresponds to d̃i and ρ̃i, respec-

tively. Here, T (a, b, c) denotes a triangular distribution with lower limit a, mode b, and

upper limit c.

• In the min-max robust model (7), the uncertainty sets D and P are defined using

(dMi , d
L
i , d

U
i ; ρMi , ρ

L
i , ρ

U
i ) as in (8) and (10). Furthermore, we consider three different

levels of conservatism by simultaneously setting the uncertainty budgets γd and γρ to 1,

2, and |N |, respectively.

We solve all the above models to optimality and obtain the optimal first stage solution, i.e.,

the location and pre-positioning decisions (y, r), for each of these models.

Step 2. We generate 10,000 realizations of d̃i and ρ̃i using independent truncated normal distribu-

tions N(µdi , σ
d
i , 0,+∞) and N(µρi , σ

ρ
i , 0, 1), respectively. For each of the first stage solutions

obtained in Step 1 and each of the realizations, we solve the corresponding second stage
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Table 4: Input parameters for each node

Node 1 2 3 4 5 6 7 8 9 10 11 12 13

Fi 203 193 130 117 292 174 130 157 134 161 234 220 170

hi 3.40 2.33 2.00 2.69 2.63 3.44 3.43 3.53 2.33 2.50 3.37 2.84 3.76

q+
i 2.81 2.58 2.86 2.42 3.28 3.05 2.77 2.68 2.52 3.14 2.93 2.85 2.87

q−i 11.48 14.32 12.14 16.19 12.01 14.90 9.42 11.91 10.68 11.24 13.1 11.09 10.18

µρi 0.05 0.05 0.20 0.18 0.18 0.72 0.76 0.70 0.60 0.70 0.78 0.62 0.68

µ̂ρi 0.46 0.49 0.51 0.45 0.46 0.52 0.55 0.51 0.44 0.51 0.57 0.45 0.49

problem (4) and compute the cost of both the first and second stages for this realization.

Step 3. For each model constructed in Step 1, using the corresponding costs for the 10,000 realiza-

tions obtained in Step 2, we calculate the average and the 95% percentile of these costs, which

are denoted by C̄D and CD95% for the deterministic model, C̄S and CS95% for the stochastic

model, and C̄R(γ) and CR95%(γ) for the robust model with γd = γρ = γ ∈ {1, 2, |N |}, respec-

tively. Note that the average cost and the 95% percentile are estimators of the expectation

and the 5% value-at-risk of the cost associated with implementing the corresponding first

stage solution under the true distribution of the uncertain parameters. The improvements

of the robust model with respect to the deterministic and stochastic models in the average

cost are then computed by 1− C̄R(γ)/C̄D and 1− C̄R(γ)/C̄S for each γ ∈ {1, 2, |N |}, respec-

tively. Similarly, the improvements in the 95% percentile correspond to 1 − CR95%(γ)/C95%

and 1− CR95%(γ)/CS95% for each γ ∈ {1, 2, |N |}, respectively.

For all the 50 instances, the robust models in Step 1 can be solved efficiently. The average

computational times to solve models with uncertainty budgets 1, 2, and |N | are 1, 86, and 89

seconds, respectively. Table 5 presents the average improvements of the 50 instances in both the

average cost (cf. columns titled “Avg.”) and the 95% percentile (cf. columns titled “95%”) for

different values of supply R.

Table 5 demonstrates that the min-max robust model outperforms both the deterministic and

two-stage stochastic models for all uncertain budgets 1, 2, and |N |. For instance, when the uncer-

tainty budgets γd and γρ are set to 1, the average cost and 95% percentile of the robust model are
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13.96% and 15.39% lower than those of the stochastic model, respectively. When comparing with

the deterministic model, the improvements are more significant, reaching 18.58% and 19.47% in

the average cost and 95% percentile, respectively. Note that the improvements of the robust model

with respect to the deterministic model are higher than those with respect to the stochastic model.

This observation suggests that the stochastic model performs better than the deterministic model.

It is expected because the deterministic model completely ignores the uncertainties in the inputs,

whereas the stochastic model takes them into account. We also observe that the robust model has

better improvements in the 95% percentile than the average cost. Recall that the min-max robust

model considers the worst-case cost among all possible realizations falling in the uncertainty set.

Intuitively, compared with the average cost, the 95% percentile should be closer to the worst-case

cost, which explains this observation. Furthermore, Table 5 shows that the least conservative ro-

bust model, i.e., the one with γd = γρ = 1, has the best performance, which agrees with the insight

from Section 3.4. Actually, the improvements in both the average cost and 95% percentile tend to

be smaller with greater uncertainty budgets, implying that the more conservative robust models

may sacrifice too much in the attempt to protect the worst case.

Table 5: Improvements of the robust model vs. the deterministic and stochastic models

R

Robust vs. Deterministic (%) Robust vs. Stochastic (%)

γd, γρ = 1 γd, γρ = 2 γd, γρ = |N | γd, γρ = 1 γd, γρ = 2 γd, γρ = |N |

Avg. 95% Avg. 95% Avg. 95% Avg. 95% Avg. 95% Avg. 95%

2300 16.06 16.16 13.10 14.49 5.33 5.65 14.01 14.41 11.03 12.76 3.35 4.01

2400 17.66 18.04 13.08 14.73 5.06 5.96 14.59 15.12 9.89 11.75 2.54 3.76

2500 15.19 16.37 10.04 12.31 4.23 6.32 13.67 14.91 8.48 10.82 2.60 4.88

2600 15.90 17.97 10.50 13.23 5.21 8.32 14.88 17.00 9.46 12.26 4.00 7.18

2700 18.47 20.83 13.75 16.50 10.79 12.81 14.69 17.48 9.78 13.03 5.74 8.31

2800 24.03 24.80 21.85 24.25 17.26 18.75 12.26 14.61 9.55 13.83 5.93 8.90

2900 22.09 22.32 19.44 22.02 14.90 17.50 14.14 15.36 11.04 14.88 7.11 10.71

3000 19.23 19.28 17.08 19.02 11.78 15.88 13.46 14.21 11.02 13.84 5.49 10.60

To shed light on why the robust model performs better, for any given R, we focus on the

instance where the robust model with γd = γρ = 1 achieves the maximum improvement in the
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average cost with respect to the stochastic model. The corresponding inventory pre-positioning

decisions of the stochastic and robust models are shown in Table 6, where each row corresponds

to such an instance. Table 7 then displays the average costs for each cost component under the

stochastic and robust solutions, which are computed based on the 10,000 realization generated in

Step 2. The columns titled “F”, “h”, “c”, “q+”, and “q−” represent the fixed cost, the commodity

handling cost, the transportation cost, the penalty cost for unused inventory, and the penalty cost

for unsatisfied demand, respectively. The column titled “Improv.” shows the improvement of the

robust model with respect to the stochastic model in the average cost for each instance.

Table 6: Inventory pre-positioning decisions of the stochastic and robust models

Model Stochastic Robust (γd, γρ = 1)

Node 2 3 4 9 10 11 2 3 4 9 10 11 12

R = 2300 799 800 324 377 393 341 489 525 551

R = 2400 800 800 397 403 423 365 501 574 537

R = 2500 586 800 560 266 289 450 664 411 461 514

R = 2600 800 800 626 374 711 481 234 659 515

R = 2700 699 800 583 287 330 606 463 459 663 509

R = 2800 792 800 633 298 277 520 464 621 659 535

R = 2900 786 800 655 411 248 502 509 266 681 583 358

R = 3000 796 800 711 356 336 673 742 548 572 465

Table 6 suggests that the number of facilities set up by the robust model is always greater than

or equal to that by the stochastic model. Furthermore, the pre-propositioned inventories of the

robust model are more evenly distributed among all open facilities. For example, in the instance

that maximizes the improvement when R = 2500, both the stochastic and robust models open 5

facilities. For the stochastic model, the inventories pre-positioned in the open facilities vary from

266 to 800, whereas the amount of inventory the robust model puts in each open facility is within

the range from 411 to 664.

As the robust model sets up more facilities, it incurs higher fixed costs than the stochastic

model, which is demonstrated in Table 7. Moreover, since the supplies are more evenly pre-
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Table 7: Cost comparison of the stochastic and robust models

Model Stochastic Robust (γd, γρ = 1)

Cost F h c q+ q− F h c q+ q− Improv.

R = 2300 718 5542 817 0 5613 852 5909 1259 23 1183 27.30%

R = 2400 718 5814 847 0 4931 852 6128 1302 46 902 25.02%

R = 2500 735 5812 730 0 6399 852 6219 1070 11 1649 28.33%

R = 2600 601 6083 731 0 7258 852 6548 1259 16 1540 30.39%

R = 2700 735 6293 728 0 5867 852 6780 1323 103 622 28.95%

R = 2800 735 6535 708 0 5996 852 7039 1387 292 192 30.14%

R = 2900 735 6771 694 0 5484 969 7156 1182 111 570 27.01%

R = 3000 735 7039 723 0 5097 838 7079 1126 57 1050 25.33%

positioned among all facilities, it is unavoidable to put a considerable amount in a facility with

a relatively high commodity handling cost. Consequently, the commodity handling costs of the

robust model are also higher. Nevertheless, due to more diversified pre-positioning decisions, it

is very likely that a greater portion of the pre-positioned inventories would survive a disaster.

This explains why the robust model has higher transportation costs and penalty costs for unused

inventory, but substantially lower penalty costs for unsatisfied demand. In particular, the penalty

costs for unused inventory of the robust model are positive, implying that for certain realizations,

the amount of usable inventories exceeds the total demand in post-disaster relief operations. In

contrast, the stochastic model has no penalty cost for unused inventory, i.e., shortage occurs in every

realization. Also note that for all the instances shown in Table 7, the penalty costs of unsatisfied

demand for the robust model are at most 25.78% of those for the stochastic model. This saving is

so significant that even though the robust model has higher costs in all other cost components, it

achieves improvements of at least 25.20% in comparison with the stochastic model.

4.2 Capacitated Instances with Helicopter Links

In the disaster relief network shown in Figure 2, all the road links are assumed to have unlimited

capacities. This ignores that the actual road link capacity can be significantly affected by a disaster.

25



To capture this uncertainty, the capacity of each road link (i, j) ∈ A is assumed to follow a truncated

normal distribution N(µuij , σ
u
ij , 0,+∞). Similar to the demands, the forecasted most likely value,

lower bound, and upper bound for any (i, j) ∈ A, i.e., uMij , uLij , and uUij , are generated by taking

the average, minimum, and maximum of 50 independent samples drawn from the distribution

N(µuij , σ
u
ij , 0,+∞). This experiment considers µuij = 300 and σuij = 30 for any (i, j) ∈ A.

In this context, we further assume that the emergency inventory can be delivered by helicopters

via helicopter links, each of which has an unlimited capacity. This is incorporated in the network

by creating additional helicopter links connecting the nodes 3 and 10, 4 and 13, and 8 and 9. The

per unit transportation cost for each of the helicopter links is set to 10.

The procedure outlined in Section 4.1 can be straightforwardly generalized to this experiment.

The differences are highlighted below. Due to the incorporation of the capacity parameters, each

instance consists of (dMi , d
L
i , d

U
i ; ρMi , ρ

L
i , ρ

U
i ) for all i ∈ N and (uMij , u

L
ij , u

U
ij) for all (i, j) ∈ A. In Step

1, the deterministic model use uMij for all (i, j) ∈ A to replace u in the objective function of model

(5). When constructing the two-stage stochastic model, each scenario also contains independent

samples drawn from triangle distributions T (uLij , u
M
ij , u

U
ij) representing the uncertain capacities for

all (i, j) ∈ A. In the min-max robust model, we use (uMij , u
L
ij , u

U
ij) for all (i, j) ∈ A to obtain the

uncertainty set U defined in (11). The uncertainty budgets are set to (i) γd = γρ = γu = 1, (ii)

γd = γρ = γu = 2, and (iii) γd = γρ = |N | and γu = |A|, respectively. Furthermore, for each

of the realizations in Step 2, besides the demands and proportions of usable inventories, a sample

of the uncertain capacity for each road link (i, j) ∈ A is generated independently following the

distribution N(µuij , σ
u
ij , 0,+∞).

All the robust models can be solved within reasonable times. The average computational times

are 1, 1009, and 83 seconds for the models with γd = γρ = γu = 1, γd = γρ = γu = 2, and

γd = γρ = |N | and γu = |A|, respectively. The average improvements of the 50 instances are

reported in Table 8. The observations from Table 8 are consistent with those from Table 5. The

stochastic model outperforms the deterministic model, while all three robust models outperform

the stochastic model. The robust models achieve greater improvements in the 95% percentile than

the average cost. Furthermore, the robust model with γd = γρ = γu = 1 performs better than the

other two robust models, which are more conservative.

As in Section 4.1, for any given R, we also identify the instance that maximizes the improvement
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Table 8: Improvements of the robust model vs. the deterministic and stochastic models for capac-

itated instances with helicopter links

R

Robust vs. Deterministic (%) Robust vs. Stochastic (%)

γd, γρ, γu = 1 γd, γρ, γu = 2 γd, γρ = |N |
and γu = |A|

γd, γρ, γu = 1 γd, γρ, γu = 2 γd, γρ = |N |
and γu = |A|

Avg. 95% Avg. 95% Avg. 95% Avg. 95% Avg. 95% Avg. 95%

2300 16.44 17.38 12.57 14.11 9.05 11.13 10.20 11.71 6.39 8.49 3.13 5.82

2400 18.41 19.34 12.50 14.45 6.31 9.30 13.90 15.18 7.86 10.21 1.64 5.15

2500 16.79 18.19 8.84 10.99 4.72 7.34 16.12 17.90 8.14 10.71 4.09 7.11

2600 16.88 18.76 8.98 11.40 4.60 7.73 14.17 16.91 6.00 9.38 1.58 5.69

2700 17.50 20.70 12.09 15.63 6.52 10.24 16.07 19.80 9.97 14.24 4.83 9.10

2800 25.30 26.95 21.94 25.66 16.43 19.10 15.77 18.74 11.55 17.02 5.77 10.04

2900 21.10 22.45 18.94 22.26 13.19 16.75 12.50 15.01 10.01 14.83 3.92 8.93

3000 19.66 20.94 16.71 19.04 9.72 14.25 13.65 15.80 10.33 13.75 2.83 8.55

of the robust model with γd = γρ = γu = 1 in the average cost when comparing with the stochastic

model. Tables 9 and 10 present the corresponding pre-positioning decisions and costs for the

stochastic model and the robust model with γd = γρ = γu = 1. Again, these results confirm what

we observe from the uncapacitated instances. The robust model utilizes more facilities and tends

to distribute the pre-positioned supplies more evenly among all open facilities. As a result, the first

stage costs, i.e., the fixed and commodity handling costs, are higher. In the meantime, such pre-

positioning decisions may lead to more usable inventories in post-disaster operations. Therefore,

the robust model incurs higher transportation costs and penalty costs for unused inventory, but

much lower penalty costs for unsatisfied demand. The reduction in penalty costs for unsatisfied

demand is very substantial, which compensates the increases in other cost components and yields

at least 23.30% improvements with respect to the stochastic model.
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Table 9: Inventory pre-positioning decisions of the stochastic and robust models for

capacitated instances with helicopter links

Model Stochastic Robust (γd, γρ, γu = 1)

Node 2 3 4 9 10 11 2 3 4 9 10 11 12

R = 2300 759 800 329 412 346 419 465 489 580

R = 2400 800 800 429 371 430 380 491 563 535

R = 2500 800 800 592 308 693 366 234 653 554

R = 2600 800 800 643 357 701 370 310 664 554

R = 2700 800 800 687 413 711 375 396 664 554

R = 2800 661 800 660 341 338 527 471 630 637 535

R = 2900 717 800 681 424 277 394 712 224 561 578 431

R = 3000 778 800 670 499 252 502 708 771 588 431

Table 10: Cost comparison of the stochastic and robust models for capacitated in-

stances with helicopter links

Model Stochastic Robust (γd, γρ, γu = 1)

Cost F h c q+ q− F h c q+ q− Improv.

R = 2300 718 5579 814 0 5367 852 5908 1292 21 1224 25.49%

R = 2400 718 5787 832 0 4979 852 6119 1423 40 985 23.52%

R = 2500 601 5826 685 0 7795 852 6392 1825 16 1519 28.87%

R = 2600 601 6086 702 0 7366 852 6625 1850 43 1061 29.30%

R = 2700 601 6345 725 0 6907 852 6857 1791 93 695 29.43%

R = 2800 735 6555 709 0 5386 852 7034 1560 280 214 25.74%

R = 2900 735 6785 691 0 5223 955 6921 1296 58 986 23.95%

R = 3000 735 7010 712 0 4927 838 7076 1722 177 453 23.30%

28



5 Experiment Variants

In this section, we conduct further computational experiments to study the performance of the min-

max robust model on randomly generated networks with larger scales. For each instance considered

in this study, we first generate the required inputs using the procedure described in the next three

paragraphs and then apply the approach presented in Section 4 to compute the improvements

achieved by the robust model.

For an instance with |N | nodes, we first uniformly generate the nodes in a 10× 10 square and

label them from 1 to |N |. A spanning tree can be constructed by connecting i and j for any

i ∈ N \ {1} and some j randomly selected from the set {1, ..., i− 1}. We then generate 0.2|N |+ 1

pairs of nodes and add the corresponding undirected arcs to the network. Note that the resulting

network contains 1.2|N | undirected arcs, i.e., its average degree is 2.4, which is in accordance with

a typical road network, e.g., the one in Figure 1.

The total amount of the emergency supplies R and the capacity Mi for each node i ∈ N are

uniformly generated in the intervals (0.9·200|N |, 1.1·200|N |) and (0.9·60|N |, 1.1·60|N |), respectively.

The cost parameters for each node i ∈ N , i.e., Fi, hi, q
+
i , and q−i , are also uniformly generated in

the intervals (10|N |, 20|N |), (2, 4), (2, 4), and (10, 20), respectively. For any arc (i, j) ∈ A, the per

unit transportation cost cij is proportional to the Euclidean distance between nodes i and j. They

are normalized so that their average is equal to 1.

The uncertain parameters, similar to Section 4, are characterized by µdi , σ
d
i , µρi , µ̂

ρ
i , σ

ρ
i , µuij ,

and σuij for all i ∈ N and (i, j) ∈ A. Here we let µdi = 100, σdi = 10, µ̂ρi uniformly generated in

(0.45, 0.55), σρi = 0.1, µuij uniformly generated in (20|N |, 25|N |), and σuij uniformly generated in

(2|N |, 2.5|N |). Motivated by the case study of the 2010 Yushu earthquake, we randomly pick a

node i∗ ∈ N as the epicenter and determine µρi for all i ∈ N based on µ̂ρi and its distance to i∗.

More specifically, µρi = 0.1µ̂ρi for the 15% of the nodes that are closest to i∗, µρi = 0.4µ̂ρi for the

next 25% of the nodes, and µρi = 1.4µ̂ρi for the remaining nodes.

Following the procedure presented in Section 4, we conduct the computational experiments with

|N | ∈ {40, 60, ..., 100} for both uncapacitated and capacitated models. The uncertainty budgets

for the robust model are set to γd = γρ = γu = 1, which yield the best performance in the

case study in Section 4. The computational results are reported in Table 11. The columns titled
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“Deterministic” and “Stochastic” correspond to the improvements of the robust model with respect

to the deterministic and stochastic models, respectively. For instances with different scales, the

robust model can easily achieve more than 10% improvements in both the average cost and the

95% percentile.

Table 11: Computational results for experiment variants

|N |

Uncapacitated Instances Capacitated Instances

Deterministic (%) Stochastic (%) CPU Deterministic (%) Stochastic (%) CPU

Avg. 95% Avg. 95% (s) Avg. 95% Avg. 95% (s)

40 18.93 20.81 13.88 15.63 77 18.42 20.19 13.59 15.70 802

60 14.25 15.11 13.21 14.08 265 17.20 17.78 12.95 13.56 2324

80 16.91 17.50 14.48 14.79 1598 15.30 15.63 12.14 12.68 7361

100 13.15 14.22 12.52 13.37 3793 16.04 19.65 12.30 16.16 9918

Table 11 also displays the average computational time to solve the robust model with different

values of |N | (cf. columns titled “CPU (s)”). Generally speaking, the models can be solved with

moderate computational effort. One may notice that it can take more than 3 hours to solve the

capacitated model with 100 nodes. Recall that the robust model is proposed to make strategic

decisions of location and inventory pre-positioning. Consequently, a few hours’ computational time

will not compromise the practical value of the robust model. Also note that this experiment solves

the robust model by Benders decomposition and the resulting master problems, which are MIP

problems, by the IBM ILOG CPLEX solver. We believe that these MIP problems can be solved

much more efficiently by a tailor-made algorithm. However, it is beyond the scope of this paper

as our focus on developing the solution approach is to deal with the min-max objective function of

the robust model instead of the integral constraints.

6 Conclusions

A good location and emergency inventory pre-positioning strategy is critical for disaster relief

operations. This paper proposes a min-max robust model that optimizes the location and inventory
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stocking decisions in the pre-disaster operations, while taking into account the delivery decisions in

the post-disaster operations. The proposed model protects against any disturbance of the uncertain

parameters, including demands, usable proportions of pre-positioned inventories, and road link

capacities, within pre-specified uncertainty sets. For the sake of practicality, the uncertainty sets

are defined based on the most likely values, the upper bounds, and the lower bounds of these

random inputs. Parameters named uncertainty budgets are introduced to adjust the uncertainty

sets and hence control the level of conservatism of the corresponding robust model.

As the robust model contains uncertainties in both left and right hand sides of its constraints,

computationally tractable approaches are developed to obtain its optimal solution. We also derive

a closed-form optimal solution for certain special cases that minimize the deprivation cost. The

closed-form solution reveals that, among all possible values for the uncertainty budget, setting it

to 1 is most likely to pre-position the supplies in more than one location, which potentially reduces

the risk through diversification. We illustrate the application of the robust model and evaluate

its performance using a case study of the 2010 Yushu earthquake. The case study demonstrates

that the robust model, especially with uncertainty budget equal to 1, outperforms the deterministic

and stochastic models for the same problem. This observation is further confirmed in an extensive

numerical study on networks with up to 100 nodes.

This paper restricts the uncertainty budgets to integers for notational simplicity. Neverthe-

less, our results can be easily generalized to allow fractional uncertainty budgets. Furthermore,

the solution approach proposed in Section 3 focuses on resolving the min-max objective function.

The resulting reformulation and the master problem obtained from Benders decomposition remain

MIP problems and can be computationally challenging for networks with hundreds of nodes. It

is promising to develop efficient tailor-made algorithms for these MIP problems based on their

structural properties, which we leave for future research. In addition, when modeling the depriva-

tion cost in Section 3.4, we classify the suffering population into two groups. One group receives

emergency supplies from the pre-positioned inventories, whereas the other group has to wait for

deliveries from the unaffected areas. All individuals in the same group are assumed to have the

same deprivation time and cost, which may fail to capture the difference in deprivation times due

to multiple deliveries arriving at different times. We would like to address this issue in a future

extension, which also aims to reveal managerial insights of transportation activities in the disaster
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relief operations.
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Appendix A. Proofs

This section provides the proofs of all the theorems and propositions in this paper.

A.1 Proof of Proposition 1

Proof: We first show that D is a polytope. For any i ∈ N , the definition of ηi in (8) yields that

ηi = (dMi − d̃i)/(dMi − dLi ) ≥ 0 ≥ (d̃i − dMi )/(dUi − dMi ) if d̃i ≤ dMi and ηi = (d̃i − dMi )/(dUi − dMi ) >

0 > (dMi − d̃i)/(dMi − dLi ) if d̃i > dMi . Hence, the set D can be written as

D =

d̃ ∈ R|N |

∣∣∣∣∣∣∣∣
ηi = max

{
dMi − d̃i
dMi − dLi

,
d̃i − dMi
dUi − dMi

}
∀i ∈ N,

d̃i ∈ [dLi , d
U
i ] ∀i ∈ N,

∑
i∈N ηi ≤ γd


=

d̃ ∈ R|N |

∣∣∣∣∣∣∣
ηi ≥

dMi − d̃i
dMi − dLi

∀i ∈ N, ηi ≥
d̃i − dMi
dUi − dMi

∀i ∈ N,

d̃i ∈ [dLi , d
U
i ] ∀i ∈ N,

∑
i∈N ηi ≤ γd

 . (20)

It is straightforward that the set of vectors [d̃1, . . . , d̃|N |, η1, . . . , η|N |]
T ∈ R2|N | satisfying all the

constraints in (20) is a polyhedron. Consequently, D is also a polyhedron. Also note that D is

contained in the hyperrectangle {d ∈ R|N | | dLi ≤ di ≤ dUi ∀i ∈ N}. Thus, D is a polytope.

To complete the proof, it suffices to show that for any vector c = [c1, ..., c|N |]
T ∈ R|N |, there

exists some d ∈ Vd such that d ∈ arg min{cTd : d ∈ D}. For any given c ∈ R|N |, let

Z = min
{
cTd : d ∈ D

}
(21)

and

Z ′ = min

{∑
i∈N

c′iηi +
∑
i∈N

cid
M
i : 0 ≤ ηi ≤ 1 ∀i ∈ N,

∑
i∈N

ηi ≤ γd

}
, (22)
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where

c′i =


−ci(dMi − dLi ), if ci ≥ 0

ci(d
U
i − dMi ), if ci < 0

∀i ∈ N.

Suppose η∗ ∈ R|N | is an optimal solution to (22). Construct a vector d ∈ R|N | such that

di =


dMi − η∗i (dMi − dLi ) ∈ [dLi , d

M
i ], if ci ≥ 0

dMi + η∗i (d
U
i − dMi ) ∈ [dMi , d

U
i ], if ci < 0

∀i ∈ N. (23)

It is straightforward to show that d ∈ D, i.e., d is a feasible solution to (21). Note that

cTd =
∑
i∈N

cidi =
∑

i∈N :ci≥0

ci

(
dMi − η∗i (dMi − dLi )

)
+

∑
i∈N :ci<0

ci

(
dMi + η∗i (d

U
i − dMi )

)
= −

∑
i∈N :ci≥0

ci(d
M
i − dLi )η∗i +

∑
i∈N :ci<0

ci(d
U
i − dMi )η∗i +

∑
i∈N

cid
M
i =

∑
i∈N

c′iη
∗
i +

∑
i∈N

cid
M
i = Z ′.

(24)

Therefore, we obtain Z ≤ Z ′.

Conversely, suppose d∗ ∈ R|N | is an optimal solution to (21). Define a vector η ∈ R|N | such

that

ηi = max

{
dMi − d∗i
dMi − dLi

,
d∗i − dMi
dUi − dMi

}
∈ [0, 1] ∀i ∈ N,

which, by the first equality in (20), is feasible to (22). The objective value of (22) corresponding

to η is ∑
i∈N

c′iηi +
∑
i∈N

cid
M
i = −

∑
i∈N :ci≥0

ci(d
M
i − dLi )ηi +

∑
i∈N :ci<0

ci(d
U
i − dMi )ηi +

∑
i∈N

cid
M
i

≤ −
∑

i∈N :ci≥0

ci(d
M
i − dLi ) · d

M
i − d∗i
dMi − dLi

+
∑

i∈N :ci<0

ci(d
U
i − dMi ) · d

∗
i − dMi
dUi − dMi

+
∑
i∈N

cid
M
i

= −
∑

i∈N :ci≥0

ci(d
M
i − d∗i ) +

∑
i∈N :ci<0

ci(d
∗
i − dMi ) +

∑
i∈N

cid
M
i =

∑
i∈N

cid
∗
i = cTd∗ = Z,

which yields Z ′ ≤ Z. Recall that Z ≤ Z ′. It follows that (21) and (22) are equivalent.

By sorting c′i for all i ∈ N , we can obtain {i1, i2, ..., i|N |} such that {i1, i2, ..., i|N |} = N and

c′i1 ≤ c′i2 ≤ · · · ≤ c′i|N| . Let T = {i1, i2, ..., iγd}. Obviously, as c′i ≤ 0 for all i ∈ N , an optimal

solution η∗ to (22) is η∗i = 1 for all i ∈ T and η∗i = 0 for all i ∈ N \ T . Consider the corresponding

d defined by (23). Note that d is feasible to (21). According to the equivalence between (21) and
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(22), (24) implies that d is an optimal solution to (21). (23) yields that

di =


dLi , if ci ≥ 0

dUi , if ci < 0

∀i ∈ T and di = dMi ∀i ∈ N \ T.

T ⊆ N and |T | = γd immediately imply d ∈ Vd, which completes the proof.

A.2 Proof of Theorem 2

Proof: By adopting the dual variable α, the dual of (15) is

max

{(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α : BTα ≤ c2

}
. (25)

Recall that Q(x1, Ã2, b̃2) has an optimal solution for some Ã2 ∈ MA and b̃2 ∈ Mb. Thus, the

dual problem (25) for this pair of Ã2 and b̃2 must be feasible. As the constraint BTα ≤ c2 is

independent of Ã2 and b̃2, the dual (25) is feasible for all Ã2 ∈ MA and b̃2 ∈ Mb. Also note that

the primal (15) is feasible for all Ã2 ∈MA and b̃2 ∈Mb. Consequently, we obtain

Q(x1, Ã2, b̃2) = max

{(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α : BTα ≤ c2

}
, (26)

for all Ã2 ∈MA and b̃2 ∈Mb, which yields

max
Ã2∈MA,b̃2∈Mb

Q(x1, Ã2, b̃2)

= max

{(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α : Ã2 ∈MA, b̃2 ∈Mb,B

Tα ≤ c2

}
= max

{
max

Ã2∈MA,b̃2∈Mb

(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α : BTα ≤ c2

}
.

As MA and Mb are polyhedra, for any given α,

max
Ã2∈MA,b̃2∈Mb

(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α

is a linear program. Note that VA ⊆MA and Vb ⊆Mb are supersets of the vertices of MA and Mb,

respectively. The boundedness of MA and Mb yields

max
Ã2∈MA,b̃2∈Mb

(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α = max

Ã2∈VA,b̃2∈Vb

(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α.
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As a result,

max
Ã2∈MA,b̃2∈Mb

Q(x1, Ã2, b̃2)

= max

{
max

Ã2∈VA,b̃2∈Vb

(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α : BTα ≤ c2

}

= max

{(
Ξb̃2 + ξ − (ΦÃ2 + Ψ)x1

)T
α : Ã2 ∈ VA, b̃2 ∈ Vb,BTα ≤ c2

}
= max

Ã2∈VA,b̃2∈Vb
Q(x1, Ã2, b̃2),

where the last inequality follows from (26). Therefore, (14) and (16) are equivalent.

A.3 Proof of Proposition 3

Proof: Obviously, Proposition 3 holds as long as

max
d̃∈Vd,ρ̃∈Vρ,ũ∈Vu

Q(r, d̃, ρ̃, ũ) = max
(d̃,ρ̃)∈V(d,ρ),ũ∈V̄u

Q(r, d̃, ρ̃, ũ), ∀r ≥ 0,

i.e., for any r ≥ 0, d ∈ Vd, ρ ∈ Vρ, and u ∈ Vu, there exists some (d′,ρ′) ∈ V(d,ρ) and u′ ∈ V̄u such

that Q(r,d,ρ,u) ≤ Q(r,d′,ρ′,u′).

Consider any arbitrary r ≥ 0, d ∈ Vd, ρ ∈ Vρ, and u ∈ Vu. Applying the derivation of (26), we

can show that

Q(r, d̃, ρ̃, ũ) = max

∑
i∈N

(d̃i − ρ̃iri)αi +
∑

(i,j)∈A

ũijβij : (α,β) ∈ F

 , ∀d̃ ∈ Vd, ρ̃ ∈ Vρ, ũ ∈ Vu,

(27)

where

F =

(α,β)

∣∣∣∣∣∣ −q
+
i ≤ αi ≤ q

−
i ∀i ∈ N, βij + αj − αi ≤ cij ∀(i, j) ∈ A,

βij ≤ 0 ∀(i, j) ∈ A, α ∈ R|N |, β ∈ R|A|

 . (28)

Furthermore, (27) has an optimal solution for any d̃ ∈ Vd, ρ̃ ∈ Vρ, and ũ ∈ Vu. Therefore, for the

given r, d, ρ, and u, there exists (α∗,β∗) ∈ F such that

Q(r,d,ρ,u) =
∑
i∈N

(di − ρiri)α∗i +
∑

(i,j)∈A

uijβ
∗
ij .

Let N+ =
{
i ∈ N : di > dMi , ρi > ρMi

}
and N− =

{
i ∈ N : di < dMi , ρi < ρMi

}
. We can define
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d′ and ρ′ such that

(d′i, ρ
′
i) =



(di, ρ
L
i ), ∀i ∈ N+ and α∗i ≥ 0,

(dLi , ρi), ∀i ∈ N+ and α∗i < 0,

(dUi , ρi), ∀i ∈ N− and α∗i ≥ 0,

(di, ρ
U
i ), ∀i ∈ N− and α∗i < 0,

(di, ρi), ∀i ∈ N \N+ \N−.

As ri ≥ 0, it is straightforward that (di − ρiri)α∗i ≤ (d′i − ρ′iri)α∗i for all i ∈ N . Moreover, let

A+ =
{

(i, j) ∈ A : uij > uMij
}

and

u′ij =


uLij ≤ uMij < uij , ∀(i, j) ∈ A+,

uij , ∀(i, j) ∈ A \A+,

which, as β∗ij ≤ 0, immediately yields uijβ
∗
ij ≤ u′ijβ∗ij for all (i, j) ∈ A. Therefore, we obtain

Q(r,d,ρ,u) =
∑
i∈N

(di − ρiri)α∗i +
∑

(i,j)∈A

uijβ
∗
ij ≤

∑
i∈N

(d′i − ρ′iri)α∗i +
∑

(i,j)∈A

u′ijβ
∗
ij ≤ Q(r,d′,ρ′,u′),

where the last inequality follows from that (α∗,β∗) ∈ F is a feasible solution to the optimization

problem Q(r,d′,ρ′,u′) in (27). Applying the definitions of Vd, Vρ, Vu, V(d,ρ), and V̄u, the definitions

of d′, ρ′, and u′ imply that (d′,ρ′) ∈ V(d,ρ) and u′ ∈ V̄u, which completes the proof.

A.4 Proof of Proposition 4

Proof: Consider any given r ≥ 0. Note that

max
(d̃,ρ̃)∈V(d,ρ),ũ∈V̄u

Q(r, d̃, ρ̃, ũ) = max
d̃∈D,ρ̃∈P,ũ∈U

Q(r, d̃, ρ̃, ũ) ≥ max
(d̃,ρ̃)∈V̄(d,ρ)(r),ũ∈V̄u

Q(r, d̃, ρ̃, ũ),

where the equality follows from the proofs of Theorem 2 and Proposition 3 and the inequality is

obtained from V̄(d,ρ)(r)× V̄u ⊆ D × P × U . Therefore, it is sufficient to prove that

max
(d̃,ρ̃)∈V(d,ρ),ũ∈V̄u

Q(r, d̃, ρ̃, ũ) ≤ max
(d̃,ρ̃)∈V̄(d,ρ)(r),ũ∈V̄u

Q(r, d̃, ρ̃, ũ),

i.e., for any (d,ρ) ∈ V(d,ρ) and u ∈ V̄u, there exists some (d′,ρ′) ∈ V̄(d,ρ)(r) such that Q(r,d,ρ,u) ≤

Q(r,d′,ρ′,u).
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For any given d, ρ, and u, as shown in the proof of Proposition 3, there exists (α∗,β∗) ∈ F

such that

Q(r,d,ρ,u) =
∑
i∈N

(di − ρiri)α∗i +
∑

(i,j)∈A

uijβ
∗
ij ,

where F is defined in (28). Let N+ =
{
i ∈ N : ri > 0

}
and N ′+ =

{
i ∈ N : ri > 0, ρi 6= ρMi

}
. Note

that |N ′+| ≤ γ̄ρ(r) ≤ |N+|. Therefore, we can choose S ⊆ N+ \ N ′+ such that |S| = γ̄ρ(r) − |N ′+|.

Define d′ and ρ′ such that

(d′i, ρ
′
i) =



(di, ρi), ∀i ∈ N+ \ S,

(di, ρ
L
i ), ∀i ∈ S, di = dMi , and α∗i ≥ 0,

(di, ρ
U
i ), ∀i ∈ S, di = dMi , and α∗i < 0,

(dUi , ρ
L
i ), ∀i ∈ S, di 6= dMi , and α∗i ≥ 0,

(dLi , ρ
U
i ), ∀i ∈ S, di 6= dMi , and α∗i < 0,

(di, ρ
M
i ) ∀i ∈ N \N+.

It is straightforward to verify that (d′,ρ′) ∈ V̄(d,ρ)(r) and (di−ρiri)α∗i ≤ (d′i−ρ′iri)α∗i for all i ∈ N .

As in the proof of Proposition 3, we obtain

Q(r,d,ρ,u) =
∑
i∈N

(di − ρiri)α∗i +
∑

(i,j)∈A

uijβ
∗
ij ≤

∑
i∈N

(d′i − ρ′iri)α∗i +
∑

(i,j)∈A

uijβ
∗
ij ≤ Q(r,d′,ρ′,u)

since (α∗,β∗) ∈ F is feasible to the optimization problem Q(r,d′,ρ′,u) in (27).

A.5 Proof of Theorem 5

Proof: As G(N,A) is uncapacitated, we can drop ũ in Q(r, d̃, ρ̃, ũ) defined in (4). Furthermore,

applying q+
i = 0 for all i ∈ N and cij = 0 for all (i, j) ∈ A, the dual problem of Q(r, d̃, ρ̃) in (27)

can be reduced to

Q(r, d̃, ρ̃) = max

{∑
i∈N

(d̃i − ρ̃iri)αi : αj − αi ≤ 0 ∀(i, j) ∈ A, 0 ≤ αi ≤ q−i ∀i ∈ N

}
.

For any i, j ∈ N , if there exists a directed path in G(N,A) from i to j, the first constraint in

the dual of Q(r,d,ρ) implies that αj ≤ αi. Recall that G(N,A) is strongly connected, i.e., there

37



exists a directed path between any two nodes in N . Therefore, any feasible solution to the dual of

Q(r,d,ρ) should satisfy αi = αj for any i, j ∈ N , i.e.,

Q(r, d̃, ρ̃) = max

{∑
i∈N

(d̃i − ρ̃iri)α : 0 ≤ α ≤ q−i ∀i ∈ N

}
= max

{
0, q−

(∑
i∈N

(d̃i − ρ̃iri)

)}
,

where q− = min{q−i : i ∈ N} ≥ 0.

Applying the conditions that G(N,A) is uncapacitated and Fi = hi = q+
i = 0 for all i ∈ N , it

is straightforward that model (7) can be simplified to

min∑
i∈N ri=R,

ri≥0 ∀i∈N

{
max

d̃∈D,ρ̃∈P

{
max

{
0, q−

(∑
i∈N

(d̃i − ρ̃iri)

)}}}

with yi = 1 for all i ∈ N . Also note that the objective function is increasing in
∑

i∈N (d̃i − ρ̃iri).

An optimal solution to model (7) can be obtained by solving

min∑
i∈N ri=R,

ri≥0 ∀i∈N

{
max

d̃∈D,ρ̃∈P

{∑
i∈N

(d̃i − ρ̃iri)

}}
= min∑

i∈N ri=R,
ri≥0 ∀i∈N

{
max
d̃∈D

{∑
i∈N

d̃i

}
−min

ρ̃∈P

{∑
i∈N

ρ̃iri

}}

= max
d̃∈D

{∑
i∈N

d̃i

}
− max∑

i∈N ri=R,
ri≥0 ∀i∈N

{
min
ρ̃∈P

{∑
i∈N

ρ̃iri

}}
,

i.e., it is sufficient to consider

max∑
i∈N ri=R,

ri≥0 ∀i∈N

{
min
ρ̃∈P

{∑
i∈N

ρ̃iri

}}
. (29)

Note that

min
ρ̃∈P

{∑
i∈N

ρ̃iri

}
=


∑

i∈N ρ
M
i ri, if γρ = 0,

minρLi ≤ρ̃i≤ρUi ∀i∈N
{∑

i∈N ρ̃iri
}

=
∑

i∈N ρ
L
i ri, if γρ = |N |,

which immediately implies the results for γρ ∈ {0, |N |}.

Consider γρ ∈ {1, ..., |N | − 1}. As shown in the proof of Proposition 1, ri ≥ 0 for all i ∈ N

implies

min
ρ̃∈P

{∑
i∈N

ρ̃iri

}
= min

{∑
i∈N

ρMi ri −
∑
i∈N

(ρMi − ρLi )riηi : 0 ≤ ηi ≤ 1 ∀i ∈ N,
∑
i∈N

ηi ≤ γρ

}
.

Suppose that σ : {1, ..., |N |} 7→ N is a permutation of N . Given

(ρMσ(1) − ρ
L
σ(1))rσ(1) ≥ (ρMσ(2) − ρ

L
σ(2))rσ(2) ≥ · · · ≥ (ρMσ(|N |) − ρ

L
σ(|N |))rσ(|N |),
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we obtain

min
ρ̃∈P

{∑
i∈N

ρ̃iri

}
=
∑
i∈N

ρMi ri −
γρ∑
i=1

(ρMσ(i) − ρ
L
σ(i))rσ(i) =

γρ∑
i=1

ρLσ(i)rσ(i) +

|N |∑
i=γρ+1

ρMσ(i)rσ(i).

Let Σ denote the set of permutations of N . Model (29) is equivalent to max{z(σ) : σ ∈ Σ}, where

z(σ) = max
∑γρ

i=1 ρ
L
σ(i)rσ(i) +

∑|N |
i=γρ+1 ρ

M
σ(i)rσ(i)

s.t.
∑|N |

i=1 rσ(i) = R,

(ρMσ(1) − ρ
L
σ(1))rσ(1) ≥ (ρMσ(2) − ρ

L
σ(2))rσ(2) ≥ · · · ≥ (ρMσ(|N |) − ρ

L
σ(|N |))rσ(|N |) ≥ 0.

Applying strong duality, we obtain

z(σ) = min Rβ

s.t. β − (ρMσ(1) − ρ
L
σ(1))α1 = ρLσ(1),

β − (ρMσ(i) − ρ
L
σ(i))αi + (ρMσ(i) − ρ

L
σ(i))αi−1 = ρLσ(i), ∀i ∈ {2, ..., γρ},

β − (ρMσ(i) − ρ
L
σ(i))αi + (ρMσ(i) − ρ

L
σ(i))αi−1 = ρMσ(i), ∀i ∈ {γρ + 1, ..., N},

αi ≥ 0, ∀i ∈ {1, ..., |N |}.

Note that the equality constraints in the above problem are equivalent to

i∑
j=1

1

ρMσ(j) − ρ
L
σ(j)

β − αi =
i∑

j=1

ρLσ(j)

ρMσ(j) − ρ
L
σ(j)

, ∀i ∈ {1, ..., γρ},

i∑
j=1

1

ρMσ(j) − ρ
L
σ(j)

β − αi =

γρ∑
j=1

ρLσ(j)

ρMσ(j) − ρ
L
σ(j)

+
i∑

j=γρ+1

ρMσ(j)

ρMσ(j) − ρ
L
σ(j)

, ∀i ∈ {γρ + 1, ..., |N |}.

To simplify the notation, let πi =
(
ρMi − ρLi

)−1
for all i ∈ N . We have

z(σ) = min

Rβ : β ≥

∑i
j=1

(
1j≤γρρ

L
σ(j) + 1j>γρρ

M
σ(j)

)
πσ(j)∑i

j=1 πσ(j)

∀i ∈ {1, ..., |N |}


= max

i∈{1,...,|N |}

R ·
∑i

j=1

(
1j≤γρρ

L
σ(j) + 1j>γρρ

M
σ(j)

)
πσ(j)∑i

j=1 πσ(j)

 .

It is straightforward that an optimal solution to the primal problem of z(σ) is r(σ) such that

ri(σ) = R ·
πσ(i)∑i
j=1 πσ(j)

∀i ∈ {1, ..., i(σ)} and ri(σ) = 0 ∀i ∈ {i(σ) + 1, ..., |N |}, (30)

where

i(σ) ∈ arg max
i∈{1,...,|N |}


∑i

j=1

(
1j≤γρρ

L
σ(j) + 1j>γρρ

M
σ(j)

)
πσ(j)∑i

j=1 πσ(j)

 .
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Consider the case in part (c). Then we have πi = 1/δ for all i ∈ N . For any σ ∈ Σ and

i ∈ {1, ..., |N |},∑i
j=1

(
1j≤γρρ

L
σ(j) + 1j>γρρ

M
σ(j)

)
πσ(j)∑i

j=1 πσ(j)

=

∑i
j=1

(
ρMσ(j) − 1j≤γρδ

)
δ−1∑i

j=1 δ
−1

=
1

i

 i∑
j=1

ρMσ(j) −min{i, γρ}δ

 .

Thus, model (29) can be written as

max
σ∈Σ
{z(σ)} = max

σ∈Σ
max

i∈{1,...,|N |}

Ri
 i∑
j=1

ρMσ(j) −min{i, γρ}δ


= max

i∈{1,...,|N |}
max
σ∈Σ

Ri
 i∑
j=1

ρMσ(j) −min{i, γρ}δ

 .

Applying ρM1 ≥ ρM2 ≥ · · · ≥ ρM|N |, we have

max
σ∈Σ
{z(σ)} = max

i∈{1,...,|N |}

Ri
 i∑
j=1

ρMj −min{i, γρ}δ

 .

Consequently, part (c) is an immediate result of (30).

Consider the case in part (d), where π1 ≥ π2 ≥ · · · ≥ π|N |. For any σ ∈ Σ and i ∈ {1, ..., |N |},∑i
j=1

(
1j≤γρρ

L
σ(j) + 1j>γρρ

M
σ(j)

)
πσ(j)∑i

j=1 πσ(j)

=

∑i
j=1

(
ρM − 1j≤γρ(ρ

M − ρLσ(j))
)
πσ(j)∑i

j=1 πσ(j)

= ρM− min{i, γρ}∑i
j=1 πσ(j)

.

Similar to the proof of part (c), model (29) can be written as

max
σ∈Σ
{z(σ)} = max

i∈{1,...,|N |}
max
σ∈Σ

{
RρM −R · min{i, γρ}∑i

j=1 πσ(j)

}
= max

i∈{1,...,|N |}

{
RρM −R · min{i, γρ}∑i

j=1 πj

}
.

Also note that

arg max
i∈{1,...,|N |}

{
ρM − min{i, γρ}∑i

j=1 πj

}
= arg min

i∈{1,...,|N |}

{
min{i, γρ}∑i

j=1 πj

}
.

The result in part (d) also follows from (30).

Consider the case in part (e). Then we have π1 ≤ π2 ≤ · · · ≤ π|N |. Furthermore, for any σ ∈ Σ

and i ∈ {1, ..., |N |},∑i
j=1

(
1j≤γρρ

L
σ(j) + 1j>γρρ

M
σ(j)

)
πσ(j)∑i

j=1 πσ(j)

=

∑i
j=1

(
ρL + 1j>γρ(ρ

M
σ(j) − ρ

L)
)
πσ(j)∑i

j=1 πσ(j)

= ρL +
(i− γρ)+∑i
j=1 πσ(j)

.
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As in the proofs of parts (c) and (d), model (29) can be written as

max
σ∈Σ
{z(σ)} = max

i∈{1,...,|N |}
max
σ∈Σ

{
RρL +R · (i− γρ)+∑i

j=1 πσ(j)

}
= max

i∈{1,...,|N |}

{
RρL +R · (i− γρ)+∑i

j=1 πj

}
.

The result in part (e) follows from (30) and

arg max
i∈{1,...,|N |}

{
ρL +

(i− γρ)+∑i
j=1 πj

}
= arg max

i∈{1,...,|N |}

{
(i− γρ)+∑i

j=1 πj

}
,

which completes the proof.

A.6 Proof of Proposition 6

Proof: Consider n∗γρ defined in Theorem 5 (c). For simplicity, let ai = 1
iδ

∑i
j=1 ρ

M
j for i ∈

{1, ..., |N |}. We have

n∗γρ ∈ arg max
i∈{1,...,|N |}

{
ai − i−1 min{i, γρ}

}
.

Consider any γρ, γ
′
ρ ∈ {1, ..., |N | − 1} such that γρ ≤ γ′ρ. If n∗γρ = 1 is uniquely optimal, then

a1 − 1−1 min{1, γ′ρ} = a1 − 1−1 min{1, γρ} > ai − i−1 min{i, γρ} ≥ ai − i−1 min{i, γ′ρ}

for all i ∈ {2, ..., |N |}, where the first inequality is yielded by the unique optimality of n∗γρ = 1 and

the second inequality follows from the property that i−1 min{i, γ} is nondecreasing in γ for any

i > 0. Therefore, n∗γ′ρ = 1 is also uniquely optimal.

Similarly, consider n∗γρ defined in Theorem 5 (d) for some γρ ∈ {1, ...|N |}. For any γρ, γ
′
ρ ∈

{1, ..., |N | − 1} such that γρ ≤ γ′ρ, if n∗γρ = 1 is uniquely optimal, then

min{1, γ′ρ}∑1
j=1(ρM − ρLj )−1

=
min{1, γρ}∑1

j=1(ρM − ρLj )−1
<

min{i, γρ}∑i
j=1(ρM − ρLj )−1

≤
min{i, γ′ρ}∑i

j=1(ρM − ρLj )−1

for all i ∈ {2, ..., |N |}, i.e., n∗γ′ρ = 1 is also uniquely optimal.

Consider n∗γρ defined in Theorem 5 (e). As

(i− γρ)+∑i
j=1(ρMj − ρL)−1

= 0 ∀i ∈ {1, ..., γρ} and
(i− γρ)+∑i

j=1(ρMj − ρL)−1
> 0 ∀i ∈ {γρ + 1, ..., |N |},

it is straightforward that n∗γρ ≥ γρ + 1 > 1.
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Appendix B. Inputs for the Case Study of Yushu Earthquake

This section shows how the inputs are obtained for the case study of the 2010 Yushu earthquake.

We first determine some important parameters for a humanitarian relief commodity package and

then estimate the costs, proportions of usable inventories, and capacities used in the case study.

B.1 Humanitarian Relief Commodity Package

The emergency supplies delivered to Yushu within 10 days after the earthquake are listed in Table

12. All items and their amounts, except for drinking water, are obtained from Liu et al (2011). The

amount of drinking water is estimated based on that of grain and its unit weight includes the weight

of packing materials. As the grain sent to Yushu consisted of 20% of rice and 80% of wheat,4 the

price of grain is calculated based on the prices of rice and wheat published by the China National

Grain Trade Center. The shelf lives of tent, coat, quilt, coal-heating furnace, and folding bed are

estimated by experience. All other information is obtained from the e-commerce websites JD.com,

1688.com, and Taobao.com.

Table 12: Emergency supplies delivered to Yushu within 10 days after the earthquake

Item Amount Unit Weight (kg) Unit Price (yuan) Shelf Life (year)

Grain 4,600 1,000 2,481.40 1.5

Drinking Water 4,600 1,072 1,605.56 2

Tent 57,000 3.55 299.00 20

Coat 117,000 1 258.00 20

Quilt 207,000 4.5 116.00 20

Ration Food 10,000 11.52 375.00 3

Coal-Heating Furnace 11,000 40 480.00 20

Folding Bed 20,000 17.58 255.00 20

All the emergency supplies in Table 12 are considered as 1,300 humanitarian relief commodity

packages, each of which corresponds to one unit of the commodities in our case study. Note that

the expected total demand used in the case study is also 1,300. Furthermore, we assume that the

4Source: http://www.bjnews.com.cn/news/2010/04/19/27249.html
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weight-to-volume ratio of the commodities is equal to the average of the sea, land, and air freight

weight-to-volume ratios.5 Based on the aforementioned, we can compute the annual depreciation

cost, weight, and volume for each unit of the commodities, which are 12,795 yuan, 8,992kg, and

17.98m3, respectively.

B.2 Cost Parameters

This section presents how we determine the cost parameters in the case studies, i.e., Fi, hi, q
+
i , q

−
i

for all i ∈ N and cij for all (i, j) ∈ A. Note that each unit of cost in the case study is equivalent to

5,000 yuan. All the distances used in this section is obtained from Google Map.

B.2.1 Commodity Handling Cost hi and Penalty Cost of Unused Commodity q+
i

Assume that the annual inventory holding cost consists of the annual depreciation and operating

costs, where the latter is set to 10% of the annual depreciation cost. It follows that the annual

inventory holding cost for each unit of the commodities equals 14,074 yuan, which is approximately

2.8 units of cost. We consider both the commodity handling cost hi and the penalty cost for unused

commodity q+
i as being at the same level as the annual inventory holding cost. Therefore, the values

of hi and q+
i in Table 4 are drawn uniformly from the interval [1.8, 3.8].

B.2.2 Fixed Cost Fi

To estimate the fixed cost Fi, we first determine the cost to build a facility, which is 12,515,823

yuan, based on the following information and assumptions.

• Note that the capacity of a facility is 800 and the volume for each unit of the commodities,

as shown in Section B.1, is 17.98m3. The average storage height and the storage utilization

ratio are supposed to be 2.4m and 90%, respectively.

• Each facility is assumed to have 70% brick-concrete structure and 30% brick-wood structure,

whose construction costs are listed in Wang (2010). In addition, the cost of land is 139

yuan/m2.6

5Source: http://www.rohlig.com/infocenter/air-freight/weightvolume-ratio.html
6Source: http://crei.com.cn/tudi/ggao.aspx?id=20166891725470
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Given an estimated asset life of 15 years, the annual depreciation cost of a facility is 834,388 yuan.

We assume that the annual fixed cost to operate a facility is of the same order of magnitude as 120%

of the annual depreciation cost, i.e., 1,001,266 yuan, which is roughly 200 units of cost. Therefore,

the fixed cost Fi for all i ∈ N are generated uniformly in [100, 300].

B.2.3 Transportation Cost cij for Road Links

The road links considered in the case study are shown in Figure 2. We estimate the transportation

costs cij for these road links based on the fact that 2,170 tons of supplies were delivered to Yushu

by 119 trucks between 7:49am on April 14, 2010, i.e., the occuring time of the earthquake, to

0:00am on April 17, 2010.7 Three components are considered to determine the total cost incurred

by these deliveries: the labor cost, the fuel cost, and the truck rental cost. As each truck had two

drivers,8 the labor cost can be calculated easily by assuming a wage of 200 yuan per 8 hours per

driver. Suppose that all the 119 trucks are homogeneous trucks made by a multinational automaker.

The fuel cost can also be obtained using the 6.15 yuan/L fuel price 9 and the 16.09 L/hour fuel

consumption rate.10 The truck rental rate per hour is then set to 120% of the sum of the following

three components (converted to a hourly basis).

• The depreciation cost is calculated using the selling price of truck, which is 750,000 yuan,

the vehicle acquisition tax at purchase announced by the government of Qinghai Province of

China, and a 15 years useful life.

• The annual vehicle and vessel tax is determined by the truck self-weight, i.e., 9.72 tons, and

the tax rate announced by the government of Qinghai Province of China.

• The insurance is estimated to be 20,000 yuan annually.

Therefore, the total cost to deliver 2,170 tons of supplies is estimated to be 1,213,327 yuan. As

shown in Section B.1, the unit weight of commodities in our case study is 8,992kg and so the average

7Source: http://www.sdjt.gov.cn:50080/publish/main/14/2011/20110308212837834253190/2011030821283783425

3190 .html
8Source: http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b00001/ content/10 04/16/127137922

8430.html
9Source: http://energy.cngold.org/chaiyou.html

10Source: https://bbs.360che.com/forum.php?mod=viewthread&tid=602726&extra=page%3D1&page=4
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transportation cost per unit is 5,028 yuan, which is approximately 1 unit of cost. Consequently,

the unit transportation cost cij for any road link (i, j) shown in Figure 2 is proportional to the

distance between nodes i and j and the average of cij for all road links (i, j) is equal to 1.

B.2.4 Transportation Cost cij for Helicopter Links

Mi-171 helicopters, with capacity 4,000kg and fuel consumption rate 900 kg/hour,11 were deployed

in the rescue operations after Yushu earthquake.12 Based on the fuel consumption rate and flight

cost of Mi-26 helicopter on Wikipedia,13 the flight cost of Mi-171 helicopter is estimated to be

26,568 yuan/hour, which takes into account that a smaller aircraft might be less cost-efficient.

Assume that each helicopter delivery takes one hour, which includes 50 minutes’ in-flight time and

10 minutes’ waiting time. The cost to deliver one unit of the commodities by helicopter is 49,771

yuan, which is roughly 10 units of cost. Thus, in Section 4.2, the transportation cost for helicopter

links is set to 10.

B.2.5 Penalty Cost of Unsatisfied Demand q−i

In this case study, we consider the penalty cost for unsatisfied demand as the cost of getting

additional supply from the unaffected areas. Note that emergency supplies were sent to Yushu by

air from six airports,14 whose average distance to Yushu is 1,455km. Based on the air freight rate of

4.8 yuan/kg for the 1,780km distance from Beijing to Xining,15 the air freight transportation cost

from the unaffected areas to Yushu is estimated to be 35,282 yuan for each unit of the commodities.

Assume that the supplies are then delivered to the demand nodes via either road or helicopter links

with equal probability. Using the transportation costs for road and helicopter links in Sections

B.2.3 and B.2.4, the average shortage cost for each unit of unsatisfied demand is 62,682 yuan, i.e.,

approximately 12.5 units of cost. Therefore, we generate q−i for each i ∈ N uniformly in the interval

[8, 17].

11Source: http://www.xnslfh.gov.cn/swweb/article display.asp?ArticleID=468
12Source: http://www.scio.gov.cn/ztk/xwfb/06/6/Document/606117/606117.htm
13Source: https://zh.wikipedia.org/wiki/Mi-26%E7%9B%B4%E5%8D%87%E6%9C%BA
14Source: http://news.xinhuanet.com/mil/2010-04/16/content 13364417.htm
15Source: http://www.zsx56.com/recruitment2.asp
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B.3 Proportion of Usable Inventory after Disaster

B.3.1 Predicted Means µ̂ρi

Wang (2010) considers different levels to measure the damage to buildings caused by Yushu earth-

quake and suggests the percentages of brick-concrete and brick-wood structures in each level of

damage severity shown in Table 13. Similar to Xu et al. (2011), we estimate the proportion of

inventory, if stored in a building with a given level of damage, that would remain usable after the

earthquake, which is also displayed in Table 13. Recall that Section B.2.2 assumes each facility

has 70% brick-concrete structure and 30% brick-wood structure. The average proportion of usable

inventory can be estimated to be 0.5. Hence, we generate the predicted mean of the proportion of

usable inventory µ̂ρi for each i ∈ N following a uniform distribution in the interval [0.4, 0.6].

Table 13: Percentages of structures in different levels of damage severity and proportions of usable

inventory corresponding to the levels of damage severity

Level of Damage Severity Devastating Severe Moderate Mild

Brick-Concrete Structure 8.73% 38.19% 20.14% 0.45%

Brick-Wood Structure 12.05% 17.41% 15.89% 15.16%

Proportion of Usable Inventory 0 0.15 0.4 0.7

B.3.2 Actual Means µρi

The 13 nodes considered in the case study can be divided into three categories depending on the

seismic intensity (cf. Figure 1). The first category consists of nodes 1 and 2, where the seismic

intensity is of scale at least VII. Based on the announcement of the State Council Information

Office of China,16 we can estimate the percentages of brick-concrete and brick-wood structures at

nodes 1 and 2 that should have been in each level of damage severity considered in Table 13. The

estimates are shown in Table 14. As in Section B.3.1, the average proportion of usable inventory

at nodes 1 and 2 should be around 0.05. Recall that the average of µ̂ρi for all i ∈ N obtained in

Section B.3.1 is approximately 0.5. Thus, we set µρi = 0.1× µ̂ρi for all i ∈ {1, 2}.
16Source: http://www.scio.gov.cn/34473/34576/34516/Document/1477358/1477358.htm
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Table 14: Percentages of structures at Nodes 1 and 2 in different levels of damage severity

Level of Damage Severity Devastating Severe Moderate Mild

Brick-Concrete Structure 80% 15% 5% 3%

Brick-Wood Structure 80% 20% 0% 0%

The second category corresponds to nodes 3, 4, and 5, whose seismic intensity is between VI and

VII. The remaining nodes, i.e., nodes 6 to 13, belong to the third category and the corresponding

seismic intensity is below VI. Wang (2010) presents the estimated costs for housing reconstruction

at nodes 3 to 8, respectively, implying that housing reconstruction at a second category node costs

approximately 3.45 times of that at a third category node. Therefore, it is assumed that the

average proportion of usable inventory at the third category nodes is 3.45 times of that at the

second category nodes. As the average of µ̂ρi for all i ∈ N is roughly 0.5, we set µρi = 0.4× µ̂ρi for

all i ∈ {3, 4, 5} and µρi = 3.45× 0.4× µ̂ρi for all i ∈ {6, ..., 13} so that the average of µρi for all i ∈ N

is also close to 0.5.

B.4 Road Link Capacity

As shown in Section B.2.3, 2,170 tons of supplies from unaffected areas had been sent to Yushu by

trucks by 0:00am on April 17, 2010. These supplies were shipped via three road links.17 Using the

unit weight of commodities obtained in Section B.1, we can estimate that 302 units of commodities

could be delivered via each road link in 10 days. Therefore, the mean of the road link capacity is

set to 300 in Section 4.2.

To estimate the standard deviation, we consider the fact that the roads could be blocked in

the earthquake aftermath. It is reported that the roads to Yushu were cleared 6 hours after the

earthquake.18 For the road links within the affected area shown in Figure 2, Table 15 assumes how

long deliveries could be interrupted by a shock with a given Ms magnitude. Considering the main

shock and the aftershocks occurred within 10 days of the main shock,19 in the worst case, deliveries

17Source: http://news.163.com/10/0415/10/64A8G5L70001124J.html
18Source: http://www.sdjt.gov.cn:50080/publish/main/14/2011/20110308212837834253190/2011030821283783425

3190 .html
19Source: http://www.csi.ac.cn/manage/html/4028861611c5c2ba0111c5c558b00001/ content/10 07/27/128019280
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could be suspended up to 47 hours, i.e., the delivery capacity would be reduced by 59. Suppose

that this worst-case capacity corresponds to the 2.5% percentile of a normally distributed random

variable with mean 300. The standard deviation of the road link capacity is 30.

Table 15: Time of delivery interruption caused by shocks

Shock Magnitude (Ms) ≥ 7 [6, 7) [5, 6) < 5

Time of Delivery Interruption (hour) 6 5 4 3
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[17] Holgúın-Veras, J., Pérez, N., Jaller, M., Van Wassenhove, L.N., and Aros-Vera, F. (2013). On

the Appropriate Objective Function for Post-disaster Humanitarian Logistics Models. Journal

of Operations Management, 31(5), 262–280.

49
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