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Abstract—The unscented Kalman filter (UKF) has recently
been proposed for filtering noisy chaotic signals. Though com-
putationally advantageous, the UKF has not been thoroughly
analyzed in terms of its convergence property. In this paper,
non-periodic oscillatory behavior of the UKF when used to
filter chaotic signals is reported. We show both theoretically
and experimentally that the gain of the UKF may oscillate
aperiodically. More precisely, when applied to periodic signals
generated from nonlinear systems, the Kalman gain and error
covariance of the UKF converge to zero. However, when the
system being considered is chaotic, the Kalman gain either
converges to a fixed point with a magnitude larger than zero
or oscillates aperiodically.

I. INTRODUCTION

A number of noise reduction methods for cleaning noisy
chaotic time series have been proposed [1], [2]. These methods
are mainly applied to delay-embedded noisy scalar time series
in a reconstruction space based on the embedding theorem
[3], and to observed noisy time series based on some filtering
techniques to obtain an optimal estimation of the original
dynamical systems [4]–[7]. The most commonly used tool
for filtering noisy chaotic signals is the extended Kalman
filter (EKF) algorithm, which makes use of the first-order
Taylor series approximation of the nonlinear function. This
method, however, has two fundamental deficiencies, namely,
high computational complexity due to the need for computing
the Jacobian matrices and low estimation precision [8].
Recently, a new type of filters, known as the unscented

Kalman filter (UKF), has been proposed for noise cleaning
applications [9], [10]. The fundamental difference between
EKF and UKF lies in the way in which Gaussian random
variables (GRV) are represented in the process of propagating
through the system dynamics. Basically, the UKF captures
the posterior mean and covariance of GRV accurately to
the third order (in terms of Taylor series expansion) for
any form of nonlinearity, whereas the EKF only achieves
first-order accuracy. Moreover, since no explicit Jacobian or
Hession calculations are necessary in the UKF algorithm, the
computational complexity of UKF is comparable to EKF. Very
recently, Feng and Xie [11] applied the UKF algorithm to
filter noisy chaotic signals and equalize blind channels for
chaos-based communication systems. The results indicate that
the UKF algorithm outperforms conventional adaptive filter
algorithms including the EKF algorithm.

Up till now, the convergence of the UKF algorithm has not
been analyzed. In this paper, we evaluate the performance of
UKF in filtering chaotic signals generated from 1-dimensional
discrete-time dynamical systems, which basically include most
behaviors and characteristics in many multidimensional sys-
tems, and are widely used in signal processing and communi-
cations with chaos.

II. THEORETICAL ANALYSIS

Consider a nonlinear dynamical system, which is given by

xn = f(xn−1) , (1)

where f : RN → RN is a smooth function, and the
measurement equation is given by

yn = xn + vn , (2)

where vn is a zero-mean white Gaussian noise process,
E(vjvn) = Rδjn > 0 (E(·) denotes expectation), and δjn

is the Kronecker delta function, R is a matrix with a suitable
dimensionality. When the global Lyapunov exponent of (1)
is positive, the system is chaotic. We will employ the UKF
algorithm developed in [9], [10] to filter the noisy chaotic
time series, i.e., to estimate the state xn from yn.
Assume that the statistics of random variable x (dimension

L) has mean x̄ and covariance Px. To calculate the statistics
of y, we form a matrix χ of 2L+1 sigma vector χ i according
to the following:

χ0 = x̄ (3)

χi = x̄ + (
√

(L + λ)Px)i, i = 1, 2, · · · , L (4)

χi = x̄ − (
√

(L + λ)Px)i−L, i = L + 1, L + 2, · · · , 2L (5)

where λ = α2(L+κ)−L is a scaling parameter. The constant
α determines the spread of the sigma points around x̄ and is
usually set to a small positive value (0.0001 < α < 1). The
constant κ is a secondary scaling parameter which is usually
set to κ = 0 (for parameter estimation, κ = 3 − L [9]). Also,
(
√

(L + λ)Px)i
def= ei is the vector of the ith column of

the matrix square root. These sigma vectors are propagated
through the nonlinear function

zi = ϕ(χi), i = 0, · · · , 2L. (6)
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The mean and the covariance of z can be approximated
by using the weighted sample mean and covariance of the
posterior sigma points, i.e.,

z̄ =
2L∑
i=0

w
(m)
i zi (7)

Pzz =
2L∑
i=0

w
(c)
i (z − z̄)(z − z̄)T (8)

where weights wi are given by

wm
0 =

λ

L + λ
(9)

wc
0 =

λ

L + λ
+ (1 − α2 + β) (10)

wm
i = wc

i =
1

2(L + λ)
, (i = 1, 2, · · · , 2L) (11)

where β is used to incorporate prior knowledge of the distri-
bution of x (for Gaussion distributions, β = 2 is optimal) [9].
Now the algorithm can be generalized as follows:
Time update:

χn|n−1 = f (χn−1) (12)

x̂n|n−1 =
2L∑
i=0

wm
i χi,n|n−1 (13)

Pn|n−1 =
2L∑
i=0

wc
i (χi,n|n−1 − x̂n|n−1)(χi,n|n−1 − x̂n|n−1)T

(14)

Pxnyn
=

2L∑
i=0

wc
i (χi,n|n−1 − x̂n|n−1)(yi,n|n−1 − ŷn|n−1)

T

(15)
where χn|n−1, x̂n|n−1 and Pn|n−1 is the predicted estimation
for χn−1, xn−1 and Pn−1 respectively. Pxnyn

is the covari-
ance matrix of x and y at instant n.
Measurement update:

Kn = Pxnyn
(Pynyn

)−1 (16)

x̂n = x̂n|n−1 + Kn(yn − ŷn|n−1) (17)

Pn = Pn|n−1 − KnPynyn
KT

n (18)

where Pynyn
is the covariance matrix of y at instant n, ŷn|n−1

is the estimation of the observed signal, andKn is the Kalman
gain vector at time instant t. Using (2), (8), (14) and (15), we
can get

Pn|n−1 = Pxnyn
= Pynyn

− Rn, (19)

which then gives
Pn = KnRn , (20)

where Rn is the covariance matrix of the measurement noise.
Furthermore, Pn|n−1 can be calculated according to the UKF
algorithm as

Pn|n−1 = FT
n−1Pn−1Fn−1 +

1
4
(β − α2) ·[

(Hn−1Pn−1)T (Hn−1Pn−1)
]

(21)

where Fn−1 and Hn−1 are the Jacobian and Hession matri-
ces of (1), respectively. Being of 1-dimension, (21) can be
simplified as

Pn|n−1 = F 2
n−1Pn +

1
4
(β − α2)H2

n−1P
2
n−1. (22)

By using (20), (21) and (22), we can calculate the Kalman
gain as

kn =
(F 2

n−1 + 1
4 (β − α2)H2

n−1P
2
n−1)kn−1

(F 2
n−1 + 1

4 (β − α2)H2
n−1Pn−1)kn−1 + 1

. (23)

Note that both Pn and kn can be used to measure the filter’s
performance. However, since they are linearly dependent, as
shown in (20), it suffices to analyze the behavior of any one
of them. For simplicity, we focus on kn.
In general, four types of behavior can be identified in a

nonlinear dynamical system:
• stable fixed point;
• periodic motion;
• quasiperiodic motion;
• chaotic state.

In a 1-dimensional dissipative system, a quasi-periodic state
corresponds to a zero Lyapunov exponent, and it is a critical
state with zero measure of parameters. It is therefore not of
interest to our present study. Here, we consider two classes
of dynamical behavior, namely, chaotic and periodic, as the
stable fixed point can be regarded as a special periodic state.
Our analysis for the UKF algorithm used to filter a chaotic
system is summarized in the following theorems. In particular,
we consider three types of nonlinear dynamical systems which
determine the behavior of UKF.

• Type 1: F 2
n−1is independent of xn−1.

• Type 2: F 2
n−1 is dependent upon xn−1, but H2

n−1 is
independent of xn−1.

• Type 3: H2
n−1 is dependent upon xn−1.

Theorem 1: For Type 1 systems, the Kalman gain kn given
in (23) converges to zero when the systems are periodic, and
converges to a non-zero fixed point when the systems are
chaotic.
Proof: As F 2

n−1 is independent of xn−1, F 2
n−1 can be

regarded as a constant ξ. Thus, (23) becomes

kn =
ξkn−1

ξkn−1 + 1
def= φ(kn−1, ξ), (24)

which includes two fixed points, i.e.,

k(1) = 0, k(2) =
ξ − 1

ξ
. (25)

The stability of the two fixed points can be determined by
the derivative of φ at the corresponding fixed points. If the
derivative has a magnitude larger than one, the fixed point is
unstable, and the Kalman gain cannot converge. Otherwise,
the fixed point is stable. By evaluating the derivative of (24)
at the two fixed points, we have

φ′(k(1)) = ξ, φ′(k(2)) =
1
ξ
. (26)
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When ξ < 1, kn = 0 is a stable fixed point, and kn = ξ−1
ξ

is an unstable fixed point. Conversely, when ξ > 1, kn = 0 is
an unstable fixed point, and kn = ξ−1

ξ is a stable fixed point.
The global Lyapunov exponent of the 1-dimensional system

can be written as

ζ = lim
N→∞

1
N

N∑
n=1

ln |Fn| =
1
2

ln(ξ). (27)

Thus, when (1) is periodic, ξ < 1, and kn converges to k(1).
Moreover, when (1) is chaotic, kn converges to k(2).

Theorem 2: For Type 2 systems, if H 2
n−1 = q �= 0 (q is a

constant), the Kalman gain kn in (23) converges to zero when
the systems are periodic, and kn oscillates aperiodically when
the systems are chaotic.
Proof: From (23), we obtain

kn =
[F 2

n−1 + 1
4q(β − α2)]kn−1

[F 2
n−1 + 1

4q(β − α2)]kn−1 + 1
. (28)

If (1) is chaotic, and the square of the gradient F 2
n is aperiodic,

then F 2
n−1 + 1

4q(β − α2) is also aperiodic. Hence, the result
follows according to Theorem 2 in [12].
If we define en−1e

T
n−1 = Pn−1, then Hn−1en−1 = Fn −

Fn−1. By using (23), we can obtain

kn =
[F 2

n−1 + 1
4 (β − α2)(Fn − Fn−1)2]kn−1

[F 2
n−1 + 1

4 (β − α2)(Fn − Fn−1)2]kn−1 + 1
. (29)

Lemma 1: Suppose Gn = F 2
n−1 + 1

4 (β−α2)(Fn −Fn−1)2.
Then, Gn is aperiodic.
Proof: Assuming that Gn has a period of N , without loss

of generality, we have

Gn+N − Gn = 0. (30)

Define

m1,n = F 2
N+N−1 − F 2

n−1 (31)

m2,n = F 2
n+N − F 2

n (32)

r1,n = Fn+N − Fn+N−1 (33)

r2,n = Fn − Fn−1 (34)

and consider F 2
n−1 being aperiodic. Then, when r1,nFn+N −

r2,nFn = 0, Gn+N −Gn = m1,n + 1
4 (β−α2)(m1,n +m2,n−

2m2,n) is not always equal to zero. Also, when 2(r1,nFn+N −
r2,nFn) = ln �= 0, Gn+N −Gn = m1,n + 1

4 (β − α2)(m1,n +
m2,n−2m2,n + ln) is not always equal to zero. Therefore, the
above assumption about the periodicity of Gn is not valid. In
other words, Gn is aperiodic.

Theorem 3: For Type 3 systems, the Kalman gain kn in
(23) converges to zero when the systems are periodic, and kn

oscillates aperiodically when the systems are chaotic.
Proof: Since Gn is aperiodic, Type 3 systems can be

arranged to Type 2 systems, and the result follows from
Lemma 1.
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Fig. 1. Convergence characteristic of the Kalman gain for tent map with
different values of a corresponding to periodic signals (a = 0.3 and a = 0.4)
and chaotic signals (a = 0.8 and a = 0.9). Dotted lines denote the theoretical
steady states.

III. COMPUTER SIMULATIONS

To illustrate the theoretical results developed in the forego-
ing section, we consider three systems, i.e., the tent map and
two logistic maps.

A. Type 1

We consider the following class of tent maps:

xn+1 = a(1 − |2xn − 1|) , (35)

where a ∈ [0, 1] and xn ∈ [0, 1]. The global Lyapunov
exponent and local exponent of the system are identical, and
equal to ln 2a. The map is chaotic for a > 1

2 , and is periodic
otherwise. The UKF algorithm for this map can be realized
by first using (31) to get the Jacobian matrix, i.e.,

Fn =
{

2a, xn < 1
2−2a, xn > 1
2 .

(36)

Then, we have F 2
n = 4a2, which is independent of xn.

According to Theorem 1, the Kalman gain converges to

lim
n→∞ kn =

{
0, a < 1

2
4a2−1
4a2 , a > 1

2

. (37)

Figure 1 shows the typical convergence behavior of the
Kalman gain for this map, in which the dotted lines denote
the steady states given by (37). We can see from Fig. 1 that
the magnitude of the fixed point increases as the Lyapunov
exponent gets larger when the system is chaotic, as given in
Theorem 1.

B. Type 2

We consider the logistic map given by

xn+1 = axn(1 − xn) , (38)

where a ∈ [0, 4] and xn ∈ [0, 1]. The Jacabian matrix of the
map is Fn = a− 2axn, and the Hession matrx is −2a. Thus,
this map is a Type 2 system.
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Fig. 2. Convergence characteristic of the Kalman gain of the logistic map
(Type 2). Dotted, dashed, and solid lines describes the kn’s convergence
behavior for the system with parameter a = 3.4 (periodic), a = 3.84
(periodic), and a = 4.0 (chaotic), respectively.

Figure 2 shows the convergence behavior of kn, in which the
dotted, dashed, and solid lines describe the kn’s convergence
behavior for the system with parameter a = 3.4, a = 3.84
and a = 4.0, respectively. The former two are periodic, while
the latter gives a chaotic time series. When the time series is
periodic, kn converges to the fixed zero state. However, when
the time series is chaotic, kn exhibits an aperiodic behavior,
as described in Theorem 2.

C. Type 3

We consider another form of logistic map, which is defined
as

xn+1 = a sin(πxn) , (39)

where a ∈ [0, 1.45] and xn ∈ [−1.5, 1.5]. The Jacobian matrix
of the map is Fn = aπ cos(πxn), and the Hession matrix is
Hn = −aπ2 sin(πxn), which are dependent on xn. This map
is therefore a Type 3 system.
Figure 3 shows the convergence behavior of kn, in which

the dotted, dashed, and solid lines correspond to the results
of a = 0.8, a = 0.94 and a = 1.0, respectively. The former
two are periodic, while the latter gives a chaotic time series.
When the time series is periodic, kn converges to the fixed zero
state. However, when the time series is chaotic, kn exhibits an
aperiodic behavior, as described in Theorem 3.

IV. CONCLUSION

The problem for filtering a chaotic system from noisy
observation by using the unscented Kalman filter algorithm has
been investigated in this paper. It has been proven that when
a nonlinear system is chaotic, the Kalman gain of the UKF
does not converge to zero, but either converges to a fixed point
with magnitude larger than zero or oscillates aperiodically.
The dynamical behavior of the error covariance matrix can be
readily found since it is linearly related to the Kalman gain.
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Fig. 3. Convergence characteristic of the Kalman gain for the logistic map
(Type 3). Dotted, dashed and solid lines describes kn’s behavior for the
system with parameter a = 0.8 (periodic), a = 0.94 (periodic) and a = 1.0
(chaotic), respectively.
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