
1

Assuring Spatio-Temporal Integrity on Mobile
Devices with Minimum Location Disclosure

Haibo Hu, Member, IEEE, Qian Chen, Student Member, IEEE, Jianliang Xu, Senior Member, IEEE,
and Byron Choi, Member, IEEE

Abstract—Since the boom of smartphones and location-based services, spatio-temporal data (i.e., user locations with timestamps)
have become increasingly essential in many real-life applications. To ensure these data are faithfully extracted from the underlying
location tracking hardware and not altered by any malicious party or the user himself/herself, integrity assurance schemes such as
digital signatures or message authentication codes (MAC) must be adopted. However, these conventional schemes disclose to the
verifier the complete plaintext location and thus jeopardize users’ privacy. In this paper, we propose an integrity assurance scheme with
minimum location disclosure. That is, the granule of the disclosed location is just small enough to prove the user is/has been to a
certain place, and the verifier cannot learn anything beyond it. To this end, we propose a new MAC scheme called Prefix-verifiable
MAC (PMAC), based on which we design indexes and protocols to authenticate both spatial and spatio-temporal predicates. Security
analysis and experimental results show our scheme is both secure and efficient for practical use.

Index Terms—Integrity assurance, spatio-temporal data, privacy protection

F

1 INTRODUCTION

Location-based services (LBS) have become increasingly
popular in recent years, thanks to the intensive penetra-
tion of GPS-enabled smartphones and tablet computers.
As more businesses and public services go mobile, spatio-
temporal data (i.e., user locations with timestamps) become
an essential input for many real-life applications. However,
while location privacy has been under the spotlight in LBS
research, the growing necessity for location integrity is often
overlooked. In many real-life applications as listed below,
the service provider must be assured of the genuineness
of a mobile user’s input location with respect to some
spatio-temporal predicate. While a spatial predicate returns
true or false about a relation (e.g., “inside”) between the
user location and a spatial geometry (e.g., a rectangular
region), a spatio-temporal predicate augments it with a time
interval, for example whether or not the user “had been in
a rectangular region in this morning”.
• Auditing and compliance. The location of a subject

needs to be checked over time against some regulation.
For example: (1) a taxi should not leave its operating
area designated in its license; (2) a car rental requires
the customer not to drive away from its service area
for insurance coverage; (3) a field engineer is supposed
to visit a service site during working hours; and (4)
during a fishing or mining moratorium, a registered
fishing vessel or a mining machine should not enter
the region of moratorium.

• Access control. Some businesses or services need to
verify the user’s geographic location before authorizing

• Haibo Hu is with the Department of Electronic and Information Engi-
neering, Hong Kong Polytechnic University. Qian Chen, Jianliang Xu
and Byron Choi are with the Department of Computer Science, Hong
Kong Baptist University.
E-mail:haibohu@polyu.edu.hk,{qchen, xujl,bchoi}@comp.hkbu.edu.hk

access or providing services. For example: (1) a mobile
ad network gives away coupons of a shop only to those
users who are visiting a shop of its competitors [4];
(2) an online casino must not accept customers from
states where online gambling is illegal [29]; and (3)
an insurance company needs to assure that an online
policy is physically signed in a jurisdiction where all
clauses in this policy are legal [30].

• Testimony. A subject makes a claim of his/her histor-
ical location, which needs to be verified. For example,
a passenger on a flight from a Zika-active country can
waive further inspection by quarantine officers if there
is a proof that he/she has not been to those outbreak
zones [9].

Location integrity and provenance have been studied as
a byproduct of localization in mobile computing [25], [13].
As such, most existing works assume trusted wireless infras-
tructure or third-party witnesses, such as nearby wireless
access points [24] and co-located Bluetooth or WiFi devices
in ad hoc mode [47], [48], [38]. However, these solutions can-
not work outside of a well-controlled environment, which
accounts for most location integrity use cases. Thanks to
recent advances in CPU security (e.g., ARM’s TrustZoneTM

and Intel’s Trusted Execution TechnologyTM), mobile OS
nowadays can setup and bootload a trust environment for
enterprise-level security tasks, e.g., Samsung KNOXTM. As
such, it is not only practical but also timely and of real
potential to study location integrity schemes that purely rely
on mobile devices themselves.

A naive method of authenticating a user location against
a predicate is to disclose to the verifier the complete plain-
text location, together with a proof (a digital signature
or a message authentication code) generated by a trusted
party (also known as the “authenticator”) who has access
to the genuine data. Unfortunately, this completely exposes

This is the Pre-Published Version.
The following publication H. Hu, Q. Chen, J. Xu and B. Choi, "Assuring Spatio-Temporal Integrity on Mobile Devices with Minimum Location
Disclosure," in IEEE Transactions on Mobile Computing, vol. 16, no. 11, pp. 3000-3013, 1 Nov. 2017 is available at https://doi.org/10.1109/
TMC.2017.2683492.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.

2

the user location and hence jeopardizes his/her privacy,
although all the verifier needs to authenticate is whether
he/she has been to that region.

In this paper, we study the problem of spatio-temporal
integrity assurance that incurs minimum location disclo-
sure. Specifically, the disclosed granularity of the location is
just precise enough to prove the spatio-temporal predicate
is true, and the verifier learns nothing beyond this. Further,
to support a wide range of (future) applications (e.g., a
sudden Ebola outbreak and emergent quarantine order), the
integrity proof should not assume any predicate a priori.
That is, a single proof, once generated, can authenticate
the integrity against any upcoming predicates with variable
region sizes and positions.

In cryptography, there are two mechanisms of integrity
proof for a message string to a verifier, namely, digital
signatures and message authentication codes (MAC). While
digital signatures are based on asymmetric keys, MACs use
symmetric keys — the authenticator and the verifier share
the same key. As such, MAC is generally more efficient than
digital signature scheme.

In this paper, we adopt MAC as the scheme for integrity
assurance, and the major challenges are twofold: (1) how
to convert the problem of spatio-temporal authentication
to integrity assurance on message strings; and (2) how to
assure string integrity without disclosing the strings. For
the former, we encode locations and regions into strings and
thus a spatio-temporal predicate becomes a prefix-matching
predicate, i.e., location string x has region string q as its
prefix. For the latter, we design a new MAC called Prefix-
verifiable Message Authentication Code (PMAC). It has two
unique properties: (1) it can prove a query string q is a prefix
of a message string x, without disclosing x; (2) a single
PMAC can authenticate against any query string q.

Based on PMAC, we propose an authentication scheme
for spatial predicates and then extend it to spatio-temporal
predicates. To speed up the verification process of the
latter, we design two PMAC indexes, namely, the PS-tree
and PS*-tree, which aggregate individual values for block
verification. Two optimization techniques, one based on
computational simplification and the other on space recod-
ing, are also proposed to further improve the computation
and communication costs. To summarize, our contributions
made in this paper are as follows:

1) To the best of our knowledge, this is the first work
that addresses spatio-temporal integrity assurance in a
privacy-preserving manner without wireless infrastruc-
ture or third-party witnesses. The problem is critical in
database research community, and has wide applica-
tions in mobile computing industry.

2) We design a prefix-verifiable message authentication
code, based on which we develop authentication
schemes for spatial and spatio-temporal predicates.

3) We design two PMAC indexes and two optimization
techniques that reduce the computation and communi-
cation costs.

4) We conduct a rigorous security analysis and extensive
experiments, which show the proposed schemes are
both efficient and robust under various system settings.

The rest of this paper is organized as follows. Section 2
formally defines the problem and security model, followed

by the prefix-verifiable message authentication code in Sec-
tion 3. Section 4 presents the authentication scheme on
static spatial predicates, and Section 5 extends it to spatio-
temporal authentication with two indexing schemes, fol-
lowed by the two optimization techniques in Section 6.
Section 7 shows the experimental results, followed by a
literature review in Section 8 and a conclusion in Section 9.

2 PROBLEM DEFINITION

In this paper, we study how a user authenticates his/her
location to a third-party service against a spatial or spatio-
temporal predicate while exposing the minimum location
information. A user location is a 3-ary (a, b, t), where a, b are
the user’s longitude and latitude, and t is the location times-
tamp. As coordinates and timestamps have finite precision
in practice, we assume they are all integers. The user needs
to authenticate historical or current location to a verifier
against some spatio-temporal predicates. According to [10],
a spatial predicate returns true or false about a relation be-
tween the user location and a spatial geometry. In this paper,
we focus on the containment predicate, i.e., whether the user
“is” inside a rectangular window. A spatio-temporal predicate
is augmented with a time interval, i.e., whether the user “has
been” in this window. The meaning of “minimum location
information” is twofold: 1) the user agrees to disclose to
the verifier whether he/she is in the window or not; and
2) the verifier cannot learn anything about the user location
beyond that. Note that in case of multiple predicates with
different window sizes but the same timestamp, the user’s
location is disclosed as the intersection of these windows.

The system consists of three parties (shown in Fig. 1):
(i) a location authenticator, (ii) a client (i.e., the prover),
and (iii) a service provider (i.e., the verifier). The client,
typically a mobile or web app, authenticates to the verifier,
typically a web server, on behalf of a user. The location
authenticator is a trusted software module in the mobile OS,
which can be implemented in the Core Location framework
of iOS and Google Location Services for Android. It ac-
cesses the location data from the underlying hardware (e.g.,
GPS module) and generates message authentication codes
(MAC) for the client to use during verification. Note that
similar to message authentication, location authentication
has two phases, and the authenticator is only involved in
the (offline) production phase (steps 1 and 2 in Fig. 1). In
this phase, for each timestamp t, it produces a MAC(x, t)
for location x and stores the tuple of (x, t,MAC(x, t)) into
an authentication data structure in (untrusted) persistent
storage, such as the internal memory or an SD card. In
the (online) verification phase, the verifier challenges the
client with a predicate q, and the client uses the MAC(x, t),
timestamp t, and some additional proof to authenticate that
x is inside q. In addition, there is an initialization phase
where the verifier and the authenticator exchange the key
for MAC (step 0 in Fig. 1), which takes place when the
user first signs up that verifier (e.g., his/her company)
for location authentication.1 As for the security model, we
assume the authenticator can be trusted as it is part of the
OS. Thanks to recent advances in CPU security (e.g., ARM’s

1. For those verifiers who only appear after the production phase,
this key exchange can take place anytime before the verification phase.

3

Fig. 1. System Model

TrustZoneTM and Intel’s Trusted Execution TechnologyTM),
modern mobile OS typically setups and bootloads a trust
environment (e.g., Samsung KNOXTM) for enterprise-level
security tasks. We also assume that the MAC key exchange
process, either through a trusted key distribution center
(KDC) or through a secure protocol such as Diffie-Hellman,
is secure. In addition, since a key is specific to a verifier,
the compromise of one key (e.g., by a malicious verifier
who colludes with the user) does not comprise the location
integrity for other verifiers. In the verification protocol, we
assume that both the client and the verifier are semi-honest.
As such, the security threat of this system is twofold:
• Location integrity. The client may attempt to alter the

predicate result by generating a fake location x′ 6= x
and forging a MAC value for x′.

• Location privacy. The verifier may attempt to learn
more information about the client’s location than what
is implied by the result.

In the following sections, we design the integrity proofs
in the production phase and then present the client-verifier
protocols to verify spatio-temporal predicates based on
these proofs. Our key idea is to encode the space by an
alphabet and convert a containment predicate in space to a
prefix matching predicate on strings. In the next section, we
first show how the latter can be verified without disclosing
the complete string to the verifier. Then in Section 4 we
show how the space is encoded and the conversion is made.
There are two remarks regarding prefix matching. First, as
prefixes of a location string are spatially non-overlapping,
the disclosed user location after a series of authentication is
always the one with the longest prefix (we will relax this in
the fourth paragraph of Section 4). Therefore, we can treat
predicates individually. Second, while prefix matching defi-
nitely works for containment predicates of window shapes,
it can also be extended to containment predicates of irreg-
ular shapes and even other predicate types defined in the
Dimensionally Extended nine-Intersection Model (DE-9IM),
as long as these shapes can be encoded into strings and the
predicates can be converted into prefixes (see Section 4 for
more details).

3 PREFIX-VERIFIABLE MESSAGE AUTHENTICA-
TION CODE (PMAC)
In this section, we design a MAC scheme that can verify that
q is a prefix of string x without disclosing x. The challenge

Notation Definition
x encoded string of user location
m the length of the encoded string
c the size of the string alphabet
q spatial window of predicate for authentication
l the lower bound of window q
u the upper bound of window q
t the timestamp of location x
T the time interval in a spatio-temporal predicate
n the length of a trajectory, i.e., number of pairs of location

and timestamp
pre() the prefix of a string
su() the suffix of a string
d the length of the suffix string
π(ch, i) the mapping function from ch, the i’s character of x, to a

prime number
p order of the cyclic group G
g generator of the cyclic group G
(α, k) the symmetric key shared between the authenticator and

the verifier
ψk() a pseudorandom function with key equal to k
r a random nonce in Zp

τ number of additional grids in the overlay
TABLE 1

Notations and Definitions

is that q has an arbitrary length and is unknown to the
authenticator in advance. As such, this MAC scheme must
also be variable-length verifiable so that a single MAC value
can be used to authenticate the integrity of any prefix of
x. In what follows, we first introduce HMAC, a standard
MAC scheme, followed by the properties required for the
proposed PMAC. Finally, we present the PMAC scheme.
Table 1 summarizes the notations used in this paper.

3.1 Preliminary: HMAC

Keyed-hash message authentication code (HMAC) is an
international standard of message authentication code with
a secret cryptographic key. Given a key k and message block
x, the output of HMAC is defined as [18]:

HMAC(k, x) = h((k ⊕ opad)||h((k ⊕ ipad)||x)),

where h is a cryptographic hash function, opad and ipad are
two constants of one block size each.

3.2 Properties of PMAC

The PMAC of string x must satisfy the following properties.
First, while the prefix of x, denoted by pre(x), should be
presented to the verifier as a plaintext, to protect the suffix
of x from the verifier, denoted by su(x), this part must be
presented in an irreversible manner. As such, the PMAC
should be in the following form.

PMAC(x) = PMAC(pre(x), T (su(x))),

where T is a one-way transformation, and the second
PMAC denotes its reconstruction out of pre(x) and
T (su(x)).

Second, to be prefix- and variable-length verifiable, the
PMAC must satisfy the property that for any two prefixes of
x, pre(x) and pre′(x) (which correspond to suffixes su(x)
and su′(x), respectively), the PMAC values are the same.
Formally,

PMAC(pre(x), T (su(x))) = PMAC(pre′(x), T (su′(x))).

Third, to prevent the client from forging the same MAC
of x with a different string, the PMAC scheme must be

4

collision free. That is, it is hard for the client to find a
collision string x′ 6= x such that

PMAC(pre(x), T (su(x))) = PMAC(pre(x′), T (su(x′))).

Unfortunately, HMAC and all existing MAC schemes do
not satisfy the first property, where the suffix of x needs to
be sent to the verifier as plaintext. To satisfy all properties
above, a naive idea is to hash each character of the string
and concatenate them in the same order:

PMAC(x) = h[h(x1)|h(x2)|...|h(xm)],

where xi is the character in the i-th position of string x.
Suppose a prefix has length |pre(x)| = d, so the client
has to send characters x1, x2, ... xd as well as hash val-
ues h(xd+1)|h(xd+2)|...|h(xm) to the verifier. Obviously, the
disadvantage of this scheme is that the total number of hash
values to be received is m− d, and can be as many as m− 1
(when d = 1).

3.3 The Proposed PMAC
In what follows, we present the design of our PMAC
scheme. Recall that a client wants to authenticate its location
to a verifier without disclosing the location. The authenti-
cator is a trusted software module in the client which is
responsible for PMAC generation.
Definition 3.1. Let g ∈ G be a generator of a multiplicative

cyclic group G of order p where the Decisional Diffie-
Hellman (DDH) assumption holds and g, p are public.
Π(x) is a public hash function of string x that satisfies
the following properties: (1) character-wise associative,
i.e., Π(x) =

∏m
i=1 π(xi, i), where π(xi, i) is a function

of xi, the i-th character of x, and
∏

uses an associative
operator; and (2) collision-resistent, that is, it is hard to
find x′ 6= x such that Π(x) = Π(x′).

Key Generation A symmetric key (α, k) is generated
and securely shared between the authenticator and the
verifier, where α ∈ Zp, and k is the key for ψ(), a keyed
pseudorandom function.

PMAC Generation The authenticator generates a ran-
dom nonce r ∈ Zp. The PMAC value of string x at
timestamp t with respect to key (α, k) is defined as:

PMAC(x, t) = gα(Π(x)r+ψk(t)) mod p. (1)

The tuple (r, PMAC(x, t)) together with string x and
timestamp t are then stored on the client for future
verification.

Verification It involves a protocol between the client and
the verifier:
• Given a prefix pre(x), the client obtains the suffix su(x),

computes σ = gΠ(su(x))r mod p, and sends it together
with t and PMAC(x,t) to the verifier.

• The verifier computes

(σΠ(pre(x))gψk(t))α = gα(Π(x)r+ψk(t)) mod p, (2)

and compares it with the received PMAC(x,t) — if they
are the same, pre(x) is the genuine and unmodified
prefix of x.

Obviously, any PMAC defined as above satisfies the
three desired properties. First, T (su(x)) = σ = gΠ(su(x))r

mod p is irreversible, so sending it to the verifier does
not disclose anything about su(x). This is guaranteed by
the hardness of the discrete logarithm problem — given
gΠ(su(x))r , the verifier is unable to learn Π(su(x))r and thus
su(x). The random r further guarantees confidentiality even
when the domain of valid su(x) is very small (i.e., the suffix
contains very few characters). The second and the third
properties are guaranteed by the character-wise associative
and collision-resistant properties of Π(x), respectively.2 A
practical choice of Π(x) is to set the

∏
operator as modular

multiplication, which is obviously associative, and to map
π(xi, i) to a unique prime number so as to satisfy the
collision-resistant property. Since all prime numbers in this
mapping function are different, for a string domain of length
m and an alphabet of c characters, this means that we need
a total of mc prime numbers.

We will formally prove the integrity of PMAC and the
confidentiality of su(x) against the verifier in Section 4.2. In
particular, we prove that σ cannot be forged by the client
because of the irreversibility from gΠ(x) to gΠ(x)/pre(x), in
which the client needs to extract the discrete pre(x) root
of gΠ(x). This problem is hard as the discrete logarithm
problem can be reduced to it [1].

4 AUTHENTICATING SPATIAL PREDICATE

Recall that a window containment spatial predicate q re-
turns true if a user location x (without temporal dimension)
is inside q. Throughout this paper, we only consider the
predicate whose result is “true”, i.e., x is inside q. In this
section, we design a space encoding scheme to map x in
each dimension into a string

⋃m
i=1 xi, and similarly q into

another string
⋃d
i=1 qi, where qi is the i-th character of string

q, and 1 ≤ d ≤ m. As such, authenticating a containment
predicate q on x is equivalent to authenticating that q is a
prefix of x in each dimension, the latter of which can be
verified using PMAC.

To achieve the above equivalency, the encoding scheme
must satisfy the following two properties. First, it must be a
space partition, i.e., any user location or window must have
a unique string encoding. In essence, a user location is a
window of the finest granule. Second, if window A encloses
window B, then the encoded string of A must be a prefix of
that of B in each dimension. This latter property essentially
requires the encoding has a trie hierarchy, where each node
corresponds to a prefix string.

Given these requirements, the most intuitive encoding
scheme is to adopt a hierarchical grid. Given an alphabet of
size c and the longest string length m in each dimension,
a grid system partitions this dimension into c uniform
intervals and do it recursively for m times. An interval
corresponds to a node in the trie which has m levels and
exactly c children for each node. A user location has the
finest granule and corresponds to a leaf node whose interval
length is c−m (assuming the entire length of this dimension
is normalized to 1). Fig. 2 illustrates two possible grids and

2. The third property is also due to the collision-resistant property of
modular exponentiation.

5

0100 101110000101 0110 0111 1001 1010

0100 101110000101 0110 0111 1001 1010
Grid 1

Grid 2

q.l

Trie for Grid 1

q.l

0

0

0

1

0 1

q.u

0

0

1

1

Trie for Grid 2

q.u

0

0

0

1

0 1

0

0

1

1

q.u q.l

...

......

...

uq= '0110'

lq = '01'

uq = '0'

lq = '01'

uq = '0'

lq= '0101'

Fig. 2. Overlayed Grid System for Encoding q

their tries that deviate from each other by 1 leaf interval
where c = 2. The encoded strings of a window q are simply
the strings of nodes that correspond to q in each dimension.

The grid scheme imposes limitations on the window q
— in each dimension, the beginning and ending positions
of q, denoted by q.l and q.u, must share the same prefix
and their suffixes are all ‘0’s and ‘1’s, respectively. There are
two consequences. First, for any two windows q′ 6= q, either
q fully contains q′ or vice versa, and thus they are non-
overlapping. Second, the length of any window q must be
in a power of c of a leaf interval, i.e., cm/d, cm/d+1, ..., c1, 1.
To refrain from this limitation, we propose an overlayed grid
system. The key idea is to find two intervals from different
grids whose intersection is exactly q. To achieve this, one
interval should begin with q.l in its grid and the other
should end with q.u in its grid. For example, in Fig. 2,
interval ‘01’ begins with q.l in grid 1 and interval ‘0’ ends
with q.u in grid 2. So q can be encoded by a pair of strings
(lq, uq), where lq is ‘01’ and q′.u is ‘0’. Predicate “x is inside
q” is equivalent to two predicates: (1) lq is a prefix of x in
grid 1, and (2) uq is a prefix of x in grid 2.

In general, given a window q and a set of grids, for each
dimension we first find lq and uq , and then authenticate
location x on them as follows. To find lq , on the trie of each
grid we first locate q.l in the leaf level and then traverse
upward until the label on the edge is no longer ‘0’. The
corresponding subtree denotes the string of lq . In Fig. 2,
there are two ‘0’s to traverse, so the resulted candidate lq
is ‘01’. Similarly, we can find the candidate uq on this trie
by locating q.u in the leaf level and traverse ‘1’s. The result
is ‘0110’. After we enumerate all tries, we choose lq and uq
from those candidates who have the longest interval length.
In Fig. 2, since in grid 2 the candidate lq is ‘0101’ and the
candidate uq is ‘0’, the final lq is ‘01’ in grid 1, and the
final uq is ‘0’ in grid 2. Note that if uq (or lq) has a length
shorter than that of q, it means we cannot find a valid uq
(resp. lq) interval whose intersection with lq (resp. uq) is q.
As such, the verifier has to shift q.u to where a valid uq
(resp. lq) exists, which is considered as a limitation of this
overlayed grid system (but less stringent than without it).
Afterwards, we invoke the PMAC verification protocol on
x and lq , and on x and uq in their corresponding grids.
Algorithm 1 illustrates the complete procedure of spatial
authentication in an overlayed grid system.

Algorithm 1 Privacy-Preserving Spatial Authentication in
Overlayed Grid System

Input: q: the window for authentication
x: the client-side user location
PMAC(i, j): the PMAC value of the i-th dimension
in the j-th trie

Output: true after the authentication succeeds
Procedure:

1: for each dimension i do
2: set lq and uq as null
3: for each trie j do
4: compute candidate lq and uq
5: if the new candidate is longer than the current lq or uq then
6: update lq or uq , and set j as its grid
7: if lq or uq is shorter than q then
8: shift q.l or q.u to the closest location that has a valid lq or uq
9: invoke PMAC verification protocol with x and lq in the grid of lq

10: invoke PMAC verification protocol with x and uq in the grid of
uq

11: if all verifications are passed then
12: return true
13: else
14: return false

4.1 Optimal Grid System Overlay
Obviously, having more grids in the overlayed system
makes it more likely to authenticate q without shifting it.
However, this is at the cost of generating more PMAC
values. As such, the final problem in this section is that
given a cost budget, i.e., τ grids in addition to the first
grid, a.k.a, the “master” grid, how they should be placed to
minimize the average shift of q.l and q.u. In this subsection,
we show that for c = 2, a minimum average shift can be
achieved by placing these grids 2, ..., 2τ leaf intervals from
the master grid.
Theorem 4.1. Given uniform distribution of x, a minimum

average shift of q.l or q.u can be achieved when addi-
tional grids are placed 2, ..., 2τ leaf intervals from the
master grid.

PROOF. We prove this by mathematical induction. Let us
assume this theorem hold for τ = k, and then prove it
also holds for τ = k + 1. We first sort these k + 1 grids
in ascending order of their deviation from the master grid.
Without loss of generality, the first k grids in an optimal
solution for k + 1 grids must be deviated by at most 2k

leaf intervals from the master grid. Since they themselves
form an optimal placement for k grids, according to the
assumption, they must be deviated 2, ..., 2k leaf intervals
from the master grid. So the remaining task is to find the
optimal placement for the k + 1-th grid.

We then prove that if the deviation of this grid is between
2k+1 and 2k+2 − 1 (both inclusive) leaf intervals, it will
reduce the same amount of average shift of q.l or q.u. In
fact, this grid is selected only when q is longer than 2k and
the k + 1-th least significant bit of q.l (resp. q.u) is 1 (resp.
0). By selecting this grid, the k + 1-th bit of q.l (resp. q.u) is
flipped to 0 (resp. 1), reducing the average shift by 2k+1 leaf
intervals. On the other hand, the first k least significant bits
of q.l (resp. q.u) will be randomly flipped by selecting this
grid, and thus contributing 0 to the average shift of q.l or
q.u.

Finally, we show that if the deviation of this k+1-th grid
is larger than or equal to 2k+2 leaf intervals from the master
grid, it will always reduce a smaller amount of average shift

6

of q.l or q.u. We prove this for deviation between 2k+2 and
2k+3 − 1 (both inclusive), and the proof follows for other
values. This k+ 1-th grid is selected in two cases. In the first
case, q is longer than 2k+1 and the k + 1-th and k + 2-th
least significant bits of q.l (resp. q.u) are both 1 (resp. 0).
By selecting this grid, the k + 2-th bit of q.l (resp. q.u) is
flipped to 0 (resp. 1), reducing the average shift by 2k+2 leaf
intervals. In the second case, q is longer than 2k but shorter
than 2k+1 and the k+ 1-th and k+ 2-th least significant bits
of q.l (resp. q.u) are both 1 (resp. 0). However, in this case,
the average shift is reduced by at most 2k+1 leaf intervals
because q is shorter than 2k+1 (that is, flipping the k + 2-th
bit is not necessary). As such, the reduction of average shift
of q.l or q.u is smaller than

1

4
2k+2P (q ≥ 2k+1) +

1

4
2k+1P (2k < q < 2k+1)

<
1

2
2k+1P (q > 2k),

where P () denotes the probability of q, and obviously
P (q ≥ 2k+1) + 1

2P (2k < q < 2k+1) < P (q > 2k).

4.2 Security Analysis
We analyze the security of spatial predicate authentication.
Specifically, we prove it achieves both aspects of our secu-
rity model: location confidentiality against the verifier, and
location integrity against the client. Further, it suffices to
prove them for the PMAC verification protocol only since it
is the only interaction between the client and verifier during
authentication.

4.2.1 Location Confidentiality against Verifier
Equivalently, we prove the suffix su(x) of an encoded loca-
tion string x is secret to the verifier. Recall that in PMAC,
g ∈ G is a generator of a multiplicative cyclic group G
of order p. First, we show that gr does not disclose any
information about g.
Lemma 4.2. For any random r ← [0, |G|), gr has equal

probability of being any element in G. Formally, for any
ĝ ∈ G

Pr[gr = ĝ] = 1/|G|.

PROOF. Let logg() denote the discrete logarithm of base g
in group G.

Pr[gr = ĝ] = Pr[r = logg(ĝ)].

Since r is random, the probability of r being a fixed element
logg(ĝ) equals to 1/|G|.

As the verifier can only observe gΠ(su(x))r, we prove the
verifier learns nothing about su(x) from it.
Theorem 4.3. The gΠ(su(x)) is indistinguishable under chosen

plaintext attacks.

PROOF. Since gΠ(su(x))r = (gΠ(su(x)))r , and according to
the above lemma, gΠ(su(x)) has equal probability of being
any element in G. As such, the verifier learns nothing about
Π(su(x)) and thus su(x). Further, since r is random for each
x, gΠ(su(x))r is indistinguishable under chosen plaintext
attacks.

4.2.2 Location Integrity against Client
We prove it is impossible for the client to forge a valid
PMAC(x,t). The following proof is in two steps: (1) it is hard
for the client to forge any gΠ(x)r and PMAC(x,t) that satisfy
Eqn. 2; (2) given gΠ(x)r and q as the predicate, it is hard for
the client to forge σ such that σΠ(pre(q)) = gΠ(x)r . Recall that
in the PMAC scheme, p and g are public, and (α, k) is the
symmetric key of the verifier.

Proof of unforgeability of gΠ(x)r and PMAC(x,t) For
ease of presentation, let m = gΠ(x)r, then:

PMAC(x, t) = (m · gψk(t))α mod p.

Let us prove this by contradiction. If there were a proba-
bilistic polynomial time bounded algorithm A for the client
to forge an m and PMAC(x,t), we can design an algorithm
A′ for the RSA problem as follows.3 Recall that the RSA
problem is that, given p and integer e that is co-prime
with φ(p), and an element y ∈ Z∗p, to find x such that
xe = y mod p. A′ can design a random oracle O like this.4

When A queries q messages m1, ...,mq from it, O responds
with PMAC(x, t)e, where PMAC(x,t) is from the PMAC
generator inside A′, except for one random message mi

where it responds with y of the RSA problem, and e = α−1

mod φ(p). Then A requests the PMAC of m ∈ {m1, ...,mq}
from A′. If m 6= mi, A′ responds with PMAC(x, t);
otherwise, A′ aborts. Now A can forge a PMAC x for
some m′ ∈ {m1, ...,mq} − {m}. With a probability of 1/q,
m′ = mi, which solves the RSA problem because xe = y.
This contradicts the assumption that there is no probabilistic
polynomial time bounded algorithm for the RSA problem.

Proof of unforgeability of σ given pre(q) and gΠ(x)r .
Let us prove this by contradiction. If there were a proba-
bilistic polynomial time bounded algorithm A for the client
to forge a σ given pre(q) and gΠ(x)r, we can design an
algorithm A′ for the RSA problem as follows. For problem
xe = y mod p,A′ simply asksA to forge σ with pre(q) = e
and gΠ(x)r = y. Then x = σ, which solves the RSA problem
This contradicts the assumption that there is no probabilistic
polynomial time bounded algorithm for the RSA problem.
Combining both proofs, we reach the following theorem
regarding the integrity of PMAC scheme.

Theorem 4.4. A PPT client cannot forge a valid PMAC under
chosen-plaintext attack.

5 AUTHENTICATING SPATIO-TEMPORAL PREDI-
CATE

The integrity of spatio-temporal trajectories is essential
as more and more businesses rely on the correctness of
continuous user location, and there are increasing threats
of forging or manipulating it. For example, Uber drivers
reportedly committed fraud by completing phantom trips
without passengers, using modified software [28]. In this
section, we extend the location authentication scheme from
a static spatial point to a spatio-temporal trajectory. Without
loss of generality, we assume a trajectory T consists of a

3. The construction ofA′ is similar to the one in the proof of Theorem
13.11 in [19].

4. This is based on the assumption that m · gψk(t) is a random oracle.

7

series of pairs of user location and associated timestamp in
ascending order of the timestamps. Formally,

T = {(x[1], t[1]), (x[2], t[2]), · · · , (x[n], t[n])}.

A spatio-temporal predicate (q, T) on a trajectory T returns
true only if of all timestamps t[i] in the time interval T , all
corresponding user locations x[i] are contained in window
q. For ease of presentation, in the rest of this section we
focus on a single dimension and our scheme can naturally be
extended to any dimensionality by treating each dimension
independently.

To authenticate a spatio-temporal predicate, a naive ap-
proach is to apply the same spatial authentication scheme
to each location within time interval T in the trajectory.
The correctness of each timestamp t can also be verified
because t contributes ψk(t) to the PMAC and therefore the
client sends plaintext t to the verifier. However, to verify its
completeness, that is, to prevent the client from omitting
an existing location from a trajectory, the PMAC value
at timestamp t must also depend on its two neighboring
timestamps t[i − 1] and t[i + 1]. As such, we redefine the
ψk(t) definition in PMAC(x,t) of Eqn. 1 as follows.

ψ′k(t[i]) = −ψk(t[i− 1]) + 2ψk(t[i])− ψk(t[i+ 1])),

where ψk() is the original keyed pseudorandom function
and ψ′k() is the new function used in Eqn. 1. To avoid over-
notating, in the following we still use ψk() to denote the
new function.

Therefore, given a spatio-temporal predicate (q, T), a
baseline authentication scheme is as follows. The client first
locates timestamps t[s], ..., t[e] in T that fall in time interval
T . For each location x[i] (s ≤ i ≤ e), it sends pre(x[i]),
Π(su(x[i])), t[i] and PMAC(x[i], t[i]) to the verifier to
compute and compare two versions of PMAC(x[i], t[i]). If
they are the same, x[i] is inside window q. At the end of the
day, the client also sends timestamps t[s− 1] and t[e+ 1] to:
(1) compute the PMACs of two boundary locations x[s] and
x[e], and (2) prove that no location in T has been omitted.

However, the major disadvantage of this baseline ap-
proach is that both the computation and bandwidth costs
are proportional to the number of locations being authenti-
cated, and is thus inefficient when T is long. In the rest of
this section, we present two indexing schemes that aim to
authenticate them collectively. To start with, we first present
PMAC in an aggregated form.

5.1 Building Block: Aggregated PMAC
Similar to signature aggregation, MACs of different values
can be aggregated into a single MAC value to save the
bandwidth cost. There is a line of research in the litera-
ture of cryptography on MAC aggregation. As pointed out
by [19], a common approach to enable aggregation on a
MAC scheme is to adopt the “XOR” operations. That is, for
messages x[1], ..., x[n]:

MAC(x[1], ..., x[n]) =
n⊕
i=1

MAC(x[i]).

Unfortunately, this does not work for PMAC scheme,
because besides PMAC(x[i]) and pre(x[i]), the verifier
also needs σ(i) = gΠ(su(x[i]))r[i] mod p for verification,

which cannot be aggregated by XOR in the same way as
PMAC(x[i]). On the other hand, modular exponentiation
satisfies an alternative property:

gα[
∑n

i=1 (Π(x[i])r[i]+ψk(t[i]))] =

(
n∏
i=1

σ(i))αΠ(pre(x)) · gα
∑n

i=1 ψk(t[i]) mod p,

where pre(x) is the common prefix to verify for all x[i]. A
key observation from this equation is that during verifica-
tion the client can aggregate individual σ(i) into a single
one, and correspondingly the verifier only needs to verify
an aggregate PMAC value of all x[i] as below:

PMAC(x, t) = gα
∑n

i=1 Π(x[i])r[i]+ψk(t[i]) mod p (3)

We call PMAC(x, t) the PMAC of a trajectory (x, t). Note
that
n∑
i=1

ψk(t[i]) = −ψk(t[0])+ψk(t[1])+ψk(t[n])−ψk(t[n+1]),

where t[0] and t[n + 1] are the two timestamps adjacent to
this trajectory.

Given a predicate (q, T), the verification procedure is as
follows.

• The client finds trajectory (x, t) that corresponds to
(q, T).

• The client computes σ = g
∑n

i=1 (Π(su(x[i])r[i])) mod p
and sends it together with PMAC(x, t), and times-
tamps t[0], t[1], t[n], and t[n+ 1].

• The verifier computes

σαΠ(pre(x))·gα(−ψk(t[0])+ψk(t[1])+ψk(t[n])−ψk(t[n+1])) mod p

and verifies if it matches the received PMAC(x, t).

From the above procedure, it is obvious that using a trajec-
tory PMAC reduces the bandwidth cost from n to 1.

It is noteworthy that the above aggregate PMAC can
be generated by the client itself by multiplying individual
PMAC(x[i], t[i]) as follows.

PMAC(x, t) =
n∏
i=1

PMAC(x[i], t[i]) mod p

This is an essential requirement because trajectory (x, t)
depends on the predicate (q, T), which is unknown to the
authenticator in advance.

5.2 PMAC Indexing

Aggregated PMAC reduces the communication cost when
authenticating a set of locations. However, the computa-
tional cost, in terms of modular exponentiations on both
sides, is still proportional to the size of the set, and hence can
be inefficient when T is long. Based on aggregated PMAC,
we propose two PMAC indexes that precompute and store
aggregate PMACs in advance for future authentication.
Note that both indexes take the form of a general (possibly
unbalanced) search tree, because mobile device storage is
less I/O bounded than desktop computers.

8

x1 x2 x3 x4 x5 x6 x7
Q

x[1-2] x[3-4] x[5-6] x[7-8]

x[1-4] x[5-8]

x[1-8]

x8

Intermediate Node Layout

Leaf Node Layout

x t PMAC(x,t)

pre(x) g
[II(su(x[i]))r[i]] PMAC(x,t)

r

t0,1,n,n+1

t0,1,n,n+1

Fig. 3. PS-Tree: PMAC Search Tree

5.2.1 PS-Tree: PMAC Search Tree

The first index treats time as a special dimension, and orga-
nizes all locations in a k-way search tree. Fig. 3 illustrates a
binary search tree, where each intermediate node stores the
aggregated PMAC of all its descendants. Specifically, each
leaf node represents a location with a timestamp, and is
threaded with adjacent leaf nodes. Each intermediate node
consists of four pieces of information about its descendants:
(1) their longest common prefix pre(x), (2) their accumula-
tive suffix g

∑n
i=1 Π(su(x[i]))r[i] mod p, (3) the timestamps of

t[0], t[1], t[n] and t[n + 1], and (4) their aggregated PMAC.
Since all the information can be computed by the client, this
index can be constructed by the client in a bottom-up man-
ner without the authenticator. We illustrate this construction
with the example in Fig. 3. When (x1, t1) arrives, the PS-
tree is initiated. When (x2, t2) arrives, the first intermediate
node x[1−2] will be constructed. Next, when (x3, t3) arrives,
since (x4, t4) is not available yet, x[3−4] will be left pending.
As such, the PS-tree at this moment contains the subtree
of x[1−2] and the leaf node x3. Upper intermediate nodes
are recursively constructed in the same manner. Since each
intermediate node only needs to be computed once, the total
cost is proportional to the total number of nodes, which is
dkn−1
k−1 e.

Given a predicate (q, T), the verification procedure is as
follows, illustrated in Fig. 3.
• Starting from the root of the index, the client recur-

sively checks whether the timestamps of this node
are fully contained in T . If so, there is no disclosure
of any location information beyond T and therefore
this node can be used for authentication; otherwise, all
child nodes whose timestamps overlap with T will be
checked instead. The procedure terminates when no
more nodes need to be checked and this leads to a
minimum set of mutually exclusive nodes that jointly
cover T . In this example, these nodes are x4, x[5−6],
and x7. The aggregated PMACs of these nodes will be
used to authenticate against q in the next step.

• For each node above, the client authenticates that q is a
prefix of its pre(x) by computing the following σ:

σ =
n∏
i=1

(g
∏

(su(x[i]))r[i])
∏d

j=d′+1
(x[j].j,j)

where d′ and d are the length of q and pre(x), respec-
tively, and π(x[i].j, j) is the mapped prime number of

x

t

(x2,t2)

(x3,t3)
(x1,t1)

(x4,t4) (x5,t5)

(x6,t6)

(x7,t7)

x[1-3]

x[6-8]

x[1-3] x[6-8]

x[1-8]

x[4-5]

(x8,t8)

x[4-5]

Q1

Q1 Q1

Q2

x1 x2 x3 x4 x5 x6 x7 x8

Q2

x[1-8]

Fig. 4. PS*-Tree: PMAC Clustered Search Tree

j-th character of location string x[i]. The client sends
σ together with the PMAC value, and timestamps t[0],
t[1], t[n], and t[n+ 1] of this node.

• For each received σ, the verifier computes

σαΠ(q) ·gα(−ψk(t[0])+ψk(t[1])+ψk(t[n])−ψk(t[n+1])) mod p
(4)

and verifies if it matches the received PMAC value.
• By verifying t[n + 1] of the i-th node is equivalent to
t[0] of the i + 1-th node in the above authentication,
and by verifying t[0] of the first node and t[n+1] of the
last node (in this example, t3 and t8) are beyond T , the
verifier can guarantee no location falling in T is missing
from authentication.

5.2.2 PS*-Tree: PMAC Clustered Search Tree

While preserving the temporal locality, a PS-tree does not
consider the spatial locality. As a consequence, we cannot
exploit the spatial predicate q to reduce the number of nodes
to authenticate. For example, in Fig. 3, if q is a prefix of
the root node’s pre(x), authenticating it alone suffices for
authenticating the entire spatiotemporal predicate (q, T).
However, there are two challenges to enable such pruning.
First, showing the entire trajectory from t1 to t8 falling in
q discloses more information to the verifier than he/she is
supposed to know, which should only be that locations from
t4 to t7 fall in q, and that all other timestamps are beyond
T . Second, to reduce the number of nodes to authenticate,
locations in a node should share as long prefix as possible
so that q can be authenticated by upper-level nodes. As
such, an algorithm that clusters spatial locations while still
retaining their temporal order in the trajectory should be
devised. In what follows, we propose a second PMAC index
— PS*-tree — that addresses these two challenges.

Fig. 4 illustrates this index with the same user trajectory
and predicate as in Fig. 3. The horizontal and vertical axes
denote the temporal and 1D spatial dimension, respectively.
Same with the threaded search tree, each leaf node in the
PS*-tree represents a location with a timestamp. Since a
leaf node and an intermediate node consist the same four
pieces of information as in Fig. 3, the node layouts are
omitted in Fig. 4. The only difference lies in the definition of

9

aggregated PMAC, where we replace ψk(t) with Ψk(t) and
call it PMAC*:

PMAC∗(x, t) = gα
∑n

i=1 [Π(x[i])r[i]+Ψk(t[i])] mod p, (5)

where
Ψk(t) = ψk(G(t− tL)|G(tU − t)|h(t)), (6)

where h(t) is a cryptographic hashing function, L and U
are the lower and upper bounds of timestamps, and G(t)
is a digest function as defined in [31], [14] that satisfies the
following properties.
• non-negative: The input domain of G() only accepts

non-negative numbers.
• addictively homomorphic: That is,

G(a+ b) = G(a)⊗ G(b),

where ⊗ is a well-defined operation on G.
By introducing G in the aggregated PMAC, the client can
prove to the verifier that a time interval T = [T.l, T.u]
is fully contained in the time interval of a node with-
out disclosing the actual interval to the verifier. To prove
T.u ≤ t[n], the client sends G(t[n]−T.u) to the verifier, who
then restores G(t[n] − L) = G(t[n] − T.u) ⊗ G(T.u − L).
By computing the PMAC∗ value in Eqn. 5 and matching it
with the one directly from the client, the verifier can assure
T.u ≤ t[n]. Similarly, the same construct can be used to
prove T.l ≥ t[1].

Given a predicate (q, T), the verification procedure on
PS*-tree is as follows.
• Starting from the root node, the client recursively

checks whether q is a prefix of this node’s pre(x). If
so, the PMAC* value of this node will be authenticated;
otherwise, all child nodes whose timestamps overlap
with T will be checked instead. This procedure termi-
nates when no more node needs to be checked. In Fig. 4,
for predicate Q1 = (q1, T), since q1 is not a prefix of
x[1 − 8]’s pre(x), the PMAC* values of x[4 − 5] and
x[6 − 8] will be authenticated; for Q2 = (q2, T), since
q2 is a prefix of x[1 − 8]’s pre(x), the PMAC* value of
x[1−8] will be authenticated. In either case, the number
of nodes to be authenticated is reduced from 3 in the
case of PS-tree.

• For each node above, the client authenticates that q is a
prefix of this node’s pre(x), by computing the same σ
as in PS-tree authentication:

σ =
n∏
i=1

(g
∏

(su(x[i]))r[i])
∏d

j=d′+1
(x[j].j,j)

The client sends σ together with the PMAC value, and
timestamps t[0], t[1], t[n], and t[n + 1] of this node.
Note that, if any of these timestamps is beyond the time
interval T , to protect them the client sends digest value
G and h() of these timestamps instead. Specifically, if
t > T.u, the client sends G(t− T.u), G(U − t) and h(t);
if t < T.l, the clients sends G(T.l−t), G(t−L) and h(t).

• For each received σ, the verifier first restores Ψ(t) using
Eqn. 6 for t = t[0], t[1], t[n] and t[n− 1], then computes

σαΠ(q)·gα(−Ψk(t[0])+Ψk(t[1])+Ψk(t[n])−Ψk(t[n+1])) mod p
(7)

and verifies if it matches the received PMAC value.
Note that by successfully verifying the PMAC* values
of all nodes whose timestamps overlap with T , the
verifier can guarantee no location falling in T is missing
from authentication.

Similar to the PS-tree, the PS*-tree can be constructed
by the client in a bottom-up manner. However, there are
two notable differences. First, in the leaf node information,
the client is unable to generate the PMAC* value by itself,
so the authenticator needs to compute it in addition to the
PMAC value for an incoming leaf node. Second, the PS*-
tree clusters nodes with spatial locality along with tempo-
ral locality. As such, instead of always merging k nodes
together, a clustering algorithm decides whether or not to
stop merging with the next node along the temporal axis.
For simplicity, we propose a greedy merging algorithm as
follows. It always merges the next node with the current
cluster unless either the current cluster has already k nodes,
or by treating the next node as a new cluster, the average
length of shared prefix between this cluster and the current
cluster is even longer than merging this node with the
current cluster. For example, in Fig. 4, k = 3. When (x4, t4)
arrives, since cluster x[1−3] already has 3 nodes, x4 will
start a new cluster. Then when (x5, t5) arrives, the shared
prefix length in cluster x[4−5] is 6. Next, when (x6, t6)
arrives, if it is merged with the current cluster, the shared
prefix length is reduced to 3. However, if we start a new
cluster with it, the current cluster will retain the length of 6
whereas the new cluster has a length of 0. Since the average
length is (6 ∗ 2 + 0)/3 = 4, which is larger than 3, the
greedy algorithm chooses to start a new cluster with x6 and
construct intermediate node x[4−5].

5.3 Security Analysis

We prove the security of spatio-temporal predicate authen-
tication. As with Section 4.2, we show below that both
the aggregated PMAC and the two indexes satisfy location
confidentiality against the verifier and location integrity
against the client. Due to space limit, we only sketch the
key points of proofs.

The confidentiality of the aggregated PMAC during ver-
ification is obvious as it directly follows Theorem 4.3 by
further suppressing the disclosure of individual σ’s and
sending only their modular multiplication to the verifier.
In addition to this, the PS-tree also discloses the accumula-
tive suffix g

∑n
i=1 Π(su(x[i]))r[i] mod p, whose confidentiality

directly follows Theorem 4.3 by further suppressing the
disclosure of individual gΠ(su(x))r . On the other hand, the
PS*-tree discloses the same information as the PS-tree except
that PMAC(x, t) is replaced with PMAC∗(x, t) in each
node. According to Eqn. 5 and 6, while they share the
same function on x, the latter only differs from the former
by wrapping t with digest function G() and h(). As such,
PMAC∗(x, t) achieves the same confidentiality with respect
to x as PMAC(x, t).

As for the location integrity, similar to Section 4.2.2, we
need to prove that: (1) it is hard for the client to forge
PMAC(x, t) as defined in Eqn. 3 (for aggregated PMAC
and PS-tree) or PMAC∗(x, t) as defined in Eqn. 5 (for
PS*-tree); (2) given (q, T) as the predicate, it is hard for

10

the client to forge σ that satisfies Eqn. 4 (for aggregated
PMAC), or Eqn. 4 (for PS-tree), or Eqn. 7 (for PS*-tree). The
proof of the former follows the first proof in Section 4.2.2
as there is no probabilistic polynomial time bounded algo-
rithm for the RSA problem where x = Πxi. Note that t
is irrelevant in this proof so it applies to both PMAC or
PMAC∗. The proof of the latter takes two steps because the
verifier performs a modular multiplication of σαΠ(q) and
gα(−ψk(t[0])+ψk(t[1])+ψk(t[n])ψk(t[n+1])). In the first step, we
prove that the client cannot forge σ that leads to the correct
first operand of the multiplication. This directly follows
the second proof in Section 4.2.2. In the second step, we
further prove that the client cannot manipulate the second
operand either to match the correct PMAC or PMAC∗.
This is due to the hardness of discrete logarithm problem
and pseudorandomness of ψk() or Ψk().

6 PERFORMANCE OPTIMIZATIONS

In this section, we propose two optimization techniques that
further reduce the computational cost of our scheme.

6.1 Accelerating PMAC Verification
According to Euler’s theorem [19]: for modulus p and g that
is co-prime to p, gφ(p) mod p ≡ 1, where φ(p) denotes p’s
totient number, i.e., the number of integers between 1 and p
that are co-prime to p. Applying this theorem, the client can
reduce the cost of computing σ = gΠ(su(x))r mod p by

gΠ(su(x))r mod p = gΠ(su(x))r mod φ(p) mod p

Similarly, the verifier can reduce the cost of computing
PMAC by applying mod φ(p) on the exponents:

(σΠ(pre(x)) mod φ(p)gψk(t))α mod φ(p) mod p

Note that since in practice p is the product of two large
primes, disclosing φ(p) to the client may cause security
implications if p is not properly chosen [19]. As such, in
our implementation, only the verifier learns φ(p) and can
accelerate its computation.

6.2 Density-Based Spatial Recoding
In previous sections, we adopt a hierarchical regular grid
as the space encoding scheme. The disadvantage of using
a regular grid, however, is that every user location has
to be encoded in a full-length string. In fact, for a given
alphabet of c characters and string length of m, there can be
totally cm combinations, much larger than the total number
of user locations collected in a long period of time. As
such, if we map distinct user locations to each of these
combinations, the string length m can be greatly reduced. In
this optimization, we propose density-based spatial recoding
that uses an auxiliary index to translate a user location in
a full-length string to an “acronym” with shorter length,
which can reduce the computational cost of generating and
verifying PMACs.

Fig. 5 illustrates the idea of density-based recoding and
the auxiliary index for c = 2. We assume for privacy protec-
tion, the client only recodes the first τ = 3 characters. In the
figure, all 12 user locations are clustered in three full-length
prefixes: “000”, “010” and “101”, which may correspond

000 111100001 010 011 101 110Full Length

Acronym 0 11

0 1

000

101

Auxiliary Index

4 5 3

10 0 1

010

Fig. 5. Density-Based Recoding

to his/her neighborhood and workplaces. The digits “4”,
“5” and “3” denote the occurrences of user locations in
each of these prefixes. As the objective of recoding is to
minimize the average string length of user locations, this
is similar to Huffman coding that minimizes the average
string length of a set of symbols, except that to enable
authentication, our recoding must also preserve the original
order of the recoded strings. It is noteworthy that the greedy
Huffman coding algorithm achieves the minimum string
length while for this order-preserving variant, an optimal
solution can only be achieved by dynamic programming,
which is extremely costly given the size of the prefixes.
In this regard, we propose the following order-preserving
Huffman coding algorithm. Instead of merging any c symbols
that have the minimum sum of occurrences, the algorithm
merges the c consecutive symbols that have the minimum
sum. In this figure, “000” “010” and “010” “101” serve as
the only two sets of consecutive symbols, and the latter has
the minimum sum. As such, “010” “101” will be merged first
and then be merged with “000”. The resulted auxiliary index
is shown on the right hand side. The verifier will receive
this index before the first verification request and recode
a predicate into the same form of acronym. Then all PMAC
generation and verification will be conducted in the recoded
string space.

One remaining problem is how the verifier can authen-
ticate the auxiliary index itself. In the literature, there are
a wide range of authentication data structures for trees, in
particular, the family of Merkel Hash Tree [26]. Specifically,
each node will be accompanied with a digest: a leaf node
digest is the hash value of its contents (in our auxiliary index
they are the prefix string such as “010”); and an intermediate
node digest is the hash value of its children digests and its
contents (in our auxiliary index they are empty). As such,
the digest of the root node depends on the entire tree and
can be signed by the authenticator when the auxiliary index
is constructed.

7 PERFORMANCE EVALUATION

In this section, we evaluate the experimental results of the
proposed PMAC scheme and spatio-temporal authentica-
tion protocols. To test the performance in a real-life setting,
we use dataset “GeoLife GPS Trajectories” from Microsoft
Research [46]. This dataset collected 17,621 GPS trajectories
(latitude, longitude, altitude, timestamp) from April 2007 to
August 2012. We filter out those trajectories whose number
of locations are fewer than 990 and convert all longitude, lat-
itude and timestamps into 32-bit binaries. For each resulted
2D trajectory, we build both a 2-way PS-tree and a PS∗-tree
on its PMACs.

The code of both client and verifier is implemented in
Java. The client is set up on a Samsung Galaxy Tab S2

11

Parameter Symbol Value
total number of trajectories N 5881
average trajectory length n 3463
spatial predicate bit length |q| [16, 32]
temporal interval bit length |T | [2, 8]
number of additional grids in the overlay τ 16

TABLE 2
Parameter Settings for Experiments

9.7 tablet with Exynos 5433 Octa SoC (4 ARM Cortex-A57
1.9GHz cores and 4 Cortex-A53 1.3GHz cores) and 3GB
RAM, running Android 5.0, and the verifier is set up on
an IBM server with Dual 6-core Intel Xeon X5650 2.66GHz
CPU and 32GB RAM, running GNU/Linux and OpenJDK
1.6 64-bit. The hash function h() is 160-bit SHA-1, and to
enable high security, we set all security parameters in our
scheme, including the modulus p, α, r, and g as 1024-bit.
The pseudo random function ψk() adopts AES-256. We use
the same digest function G() as in [31], [14] with the base
of the canonical representation set to 2. By default, the au-
thentication algorithms adopt both optimizations proposed
in Section 6.

For performance evaluation, we measure the computa-
tional cost (in terms of the client and verifier’s CPU time)
for authentication, and the communication overhead (in
terms of the transmitted data size). The bit length of spatial
predicates ranges in from 16 to 32, and the bit length of
timestamps range from 2 to 8. For each measurement, 500
spatio-temporal predicates are authenticated and their av-
erage value is reported. Table 2 summarizes the parameter
settings used in the experiments.

7.1 Overall PMAC Generation and Authentication Per-
formance

In this subsection, we evaluate the overall performance of
PMAC generation, PS-tree and PS*-tree construction and
authentication. Table 3 shows the CPU time and size of
PMAC, PS-tree, and PS*-tree, of three sample trajectories
with different length n. We observe that both metrics of the
PS-tree and PS*-tree increase in proportion to the length of
the trajectory. Note that theoretically a PS*-tree has the same
size of a PS-tree, but to speed up subsequent computation
on the G() during verification, we pre-compute and store
the canonical form of G() as in [31]. Therefore, in this table
a PS*-tree is about 4 times larger than a PS-tree. In terms
of the CPU cost, both PMAC and PS-tree are efficient to
compute, whereas PS*-tree takes about twice the time of
PMAC, but still fewer than 20 minutes even for the longest
trajectory (whose temporal interval is over 2, 000 minutes).
To demonstrate the practical use of our scheme in a trusted
environment, we also deploy the authenticator in Samsung
My Knox, a secure container powered by ARMs TrustZone,
and measure the authenticator’s CPU time. We observe that
the container introduces a mild and consistent overhead of
about 20% more CPU time than its non-Knox counterpart.

To evaluate the authentication cost of a spatio-temporal
predicate, we first vary the spatial predicate bit length
|q| from 16 to 32. Figs. 6(a) and 6(b) plot the CPU and
communication costs with respect to |q|. In all cases, as |q|
increases (i.e., the spatial predicate gets smaller), the costs
are reduced because the authentication can terminate in
higher-level nodes in the tree. PS*-tree is up to 2-orders of
magnitude more efficient than PS-tree in terms of CPU cost,

0.01

1

100

16 20 24 28 32

C
P

U
 T

im
e

 (
m

s
)

|q|

PS-tree Client PS-tree Verifier

PS*-tree Client PS*-tree Verifier

(a) CPU Time v.s |q|

0

1

2

3

4

16 20 24 28 32

C
o

m
m

.
C

o
s
t
(k

b
)

|q|

PS-tree PS*-tree

(b) Comm. Cost v.s |q|

0.1

1

10

100

8 6 4 2

C
P

U
 T

im
e

 (
m

s
)

|T|

PS-tree Client PS-tree Verifier

PS*-tree Client PS*-tree Verifier

(c) CPU Time v.s |T |

0

5

10

8 6 4 2

C
o

m
m

.
C

o
s
t
(k

b
)

|T|

PS-tree PS*-tree

(d) Comm. Cost v.s |T |

Fig. 6. Authentication Performance on PS- and PS*-trees

because it can terminate in even-higher-level nodes, thanks
to the G function and the clustering effect. However, it is at
the cost of larger communication size, due to the additional
canonical form of G being sent.

We then vary |T | from 8 to 2. Figs. 6(c) and 6(d) plot the
CPU and communication costs with respect to |T |. As |T |
decreases, the temporal interval of the predicate becomes
longer, and therefore all verification costs increase. Nonethe-
less, in terms of both CPU time, PS*-tree outperforms PS-
tree by at least one-order of magnitude, and it also costs
less communication than PS-tree. This demonstrates that the
PS*-tree is insensitive to the temporal interval of a spatio-
temporal predicate and performs exceptionally well when
this interval is long. The rationale is that, as the temporal
interval increases, the corresponding spatial predicate must
also have a shorter prefix, and therefore negates the factor
of a longer temporal interval spanning more tree nodes.

7.2 Effect of Relative Authentication Performance

In the above experiments, each measurement is averaged
by a variety of spatio-temporal predicates and thus can be
influenced by the location distribution in the trajectories.
To show how PS-tree and PS*-tree behave when a verifier
enlarges or reduces a given predicate, in this subsection we
create a variety of minimum viable predicates (MVPs), which
have the smallest spatial size |q| given a temporal interval or
vice versa, according to the tightest bound of a trajectory. We
then create other predicates by increasing |q| or decreasing
|T | of these MVPs. Fig. 7 show the relative performance for
these predicates with respect to their MVPs, with measure-
ments for MVPs set as base. As such, the leftmost position
in the x-axis denote the measurement for MVPs and always
has value 1. In Figs. 7(a) and 7(b), each position reduces
the bit length of |q| by 4 bits, so the size of the predicate
becomes 16 times larger in each dimension. In general, as |q|
decreases, the performance improves as the authentication
can terminate at higher-level of nodes for both PS-tree and
PS*-tree. PS-tree has an even sharper drop of the costs,

12

CPU Time (s) CPU Time in My Knox (s) Size (MB)
n PMAC PS-tree PS*-tree PMAC PS-tree PS*-tree PMAC PS-tree PS*-tree
993 3.8 0.75 7.1 4.5 0.87 8.7 0.35 1.2 5.4
10019 34.2 5.7 62.4 41.4 6.8 73.6 3.4 11.6 54
92645 322 55.9 471 389 66.9 572 32 110 512

TABLE 3
PMAC and Index Construction Cost

0

0.2

0.4

0.6

0.8

1

0 -4 -8 -12 -16

C
P

U
 T

im
e

 (
ra

ti
o

)

|q|

PS-tree Client PS-tree Verifier

PS*-tree Client PS*-tree Verifier

(a) CPU Time v.s |q|

0.1

1

0 -4 -8 -12 -16

C
o

m
m

.
C

o
s
t

(r
a

ti
o

)

|q|

PS-tree PS*-tree

(b) Comm. Cost v.s |q|

0.1

1

10

100

0 -2 -4 -6 -8

C
P

U
 T

im
e

 (
ra

ti
o

)

|T|

PS-tree Client PS-tree Verifier

PS*-tree Client PS*-tree Verifier

(c) CPU Time v.s |T |

0.95

1

1.05

0 -2 -4 -6 -8

C
o

m
m

.
C

o
s
t

(r
a

ti
o

)

|T|

PS-tree PS*-tree

(d) Comm. Cost v.s |T |

Fig. 7. Relative Authentication Performance on PS- and PS*-tree

0.01

0.1

1

10

|q|=16 |q|=32 |T|=8 |T|=2

C
lie

n
t

 C
P

U
 T

im
e

 (
m

s)

none acceleration
density-based both

(a) Client CPU Time

10

100

|q|=16 |q|=32 |T|=8 |T|=2

V
e

ri
fi

e
r

 C
P

U
 T

im
e

 (
m

s)

none acceleration
density-based both

(b) Verifier CPU Time

Fig. 8. Effect of Optimizations

which means that it is more sensitive to the spatial size
of the predicate while PS*-tree already achieves satisfactory
performance for the MVPs and thus further improvement is
less noticeable. Similar observation can be made in Figs. 7(c)
and 7(d), where each position reduces the bit length of
|T | by 2 bits and effectively shrinks the temporal interval
by 1/4. PS*-tree leads to worse performance than PS-tree
as shorter |T | favors the latter more. To conclude, with
reasonably higher construction and storage cost, a PS*-tree
achieves better performance than a PS-tree, especially when
the temporal interval is long or the spatial predicate is small.

7.3 Effect of Optimizations
In this subsection, we evaluate the effect of the two schemes,
namely, PMAC accelerating and density-based spatial re-
coding introduced in Section 6. We choose four settings
for predicates: |q| = 16, |q| = 32, |T | = 8 and |T | = 2,
and plot the client and verifier’s CPU time on PS*-tree in
Fig. 8. Note that for a tight security model, we disable client-
side PMAC accelerating, so it has no effect on client’s CPU
time. Other than that, both optimizations achieve significant

performance enhancement over the original scheme, by
factors ranging from 2 to 8. In particular, by adopting both
optimizations, the verifier’s CPU time can be reduced by
almost an order of magnitude.

8 RELATED WORK

In this section, we review existing literature on integrity as-
surance, query authentication, privacy-preserving location
publication, and location provenance.

Integrity Assurance Most existing database literature
on integrity is based on digital signature, where a verifier
proves the integrity of the message by the signer’s public
key and a signature produced by the signer’s private key.
Classic indexing schemes have been modified to store a
signature for every data value. The VB-tree [32] augments
a conventional B+-tree with a signature in each leaf entry.
By verifying the signatures of all returned values, the client
can guarantee the soundness of these results. To further
guarantee the completeness, Pang et al. proposed signature
chaining [31], which connects a signature with adjacent data
values to guarantee no result can be left out. Signature
chaining was also adapted to multi-dimensional indexes,
such as R-tree, by Cheng and Tan [7].

Another family of data structure for integrity assurance,
namely the Merkle hash tree (MHT) [26], is based on both
digital signature and one-way hash function. In an MHT,
only the root node is signed, whereas any other node is
protected by a digest, a hash value jointly determined by its
own value and the digests of all its children. The notion of
MHT has been adapted to various index structures. Typical
examples include Merkle B-tree and its variant Embedded
Merkle B-tree (EMB-tree) [21], and Merkle R-tree [40], [41].

In cryptography, message authentication code (MAC)
is an alternative mathematical scheme for proving the in-
tegrity of a message. It was adopted in [3] for exact-match
and range queries in outsourced database. Papadopoulos et
al. used standard HMAC as a component in their pseudo-
random function for linear algebraic queries in outsourced
data streams [33]. While these works adopt standard MAC
schemes, to the best of our knowledge, our PMAC is the
first MAC designed specifically for integrity assurance on
spatio-temporal data.

Query Authentication Following the above work on
integrity assurance, there is a large body of research works
on authenticating the integrity of results from queries more
complex than selection and range queries. These works
study kNN queries [6], [45], [16], top-k queries [8], shortest
paths [44], join queries [41], aggregation queries [20], and
subgraph queries [11]. Authenticating streaming data for
various aggregation queries is also studied in [22], [43], [34],
[27], [33]. As for privacy-preserving query authentication,
Hu et al. presented a solution for range queries in location-
based service [14], based on a cryptographic construct
in [31]. They also extended it to authenticate location-based
top-k queries, where ranks are based on both spatial and

13

non-spatial scores [5]. Our work differs from these previous
works as being the first work on MAC-based authentication
scheme that addresses data privacy.

Location Integrity and Provenance They have been
studied in mobile computing, particularly in the field of
localization. Existing works can be categorized in three
contexts, namely trusted hardware based, wireless infras-
tructure based, and peer-to-peer based context. The first
context uses trusted SoC (e.g., Trusted Platform Module) to
generate location proofs in end devices. Yap et al. proposed
a secure user-centric attestation service protocol that gener-
ates location evidence using a tamper-resistant device [42].
Liu et al. proposed software abstraction on x86 and ARM
architectures to offer trusted readings from GPS sensors to
mobile applications [23]. The second context signs users GPS
data by co-located wireless access points. The original work
by Saroiu and Wolman does not consider user privacy [36],
which was later addressed by Luo and Hengartner [24]
through non-colluding trusted parties holding user’s iden-
tity and location separately. Pham et al. also addressed pri-
vacy by only reporting location activity summaries (e.g., to-
tal walking distance) using Wi-Fi access-point networks [35].
The third context relies on collocated peer users to generate
proofs. In [12], proofs gathered from trusted neighboring
devices (called proof providers) are used to verify the device
location in a vehicular ad-hoc network. Zhu et al. proposed
APPLAUS, which assumes the peers are not trusted and
detects colluding attackers by ranking and correlation clus-
tering approaches [47], [48]. Wang et al. presented a simi-
lar scheme STAMP with an entropy-based trust evaluation
approach to detect collusion and fake proofs [38]. Khan et
al. studied the security and performance of a variety of se-
cure proof schemes for location provenance, including hash
chain, bloom filter, and RSA chaining [13]. Note that except
for [38], the above works focus on standalone location points
and cannot address the completeness issue when applied
to spatio-temporal trajectories. Recently Lyu et al. proposed
a Merkle hash tree based continuous location provenance
protocol [25]. It requires multiple rounds of communication
between wireless APs, peer witness, raw sensors of the
device, and a certificate authority. Our work belongs to the
first context but differs from existing works by focusing on
continuous, privacy-preserving location provenance.

Privacy-Preserving Location Publication As location an-
alytic has become popular in data mining and mobile com-
puting community, privacy protection has been introduced
to user location or trajectory publication. Main approaches
include clustering [2] and location cloaking (i.e., location
generalization) [39], [15]. For trajectories, location suppress-
ing, i.e., omitting sensitive locations, and noise sampling (for
differential privacy) have been proposed in [37], [17]. Our
work differs from them by focusing on integrity assurance
during location publication. As such, it can work orthogo-
nally with the above works.

9 CONCLUSION

In this paper, we studied the problem of integrity assurance
which discloses to the verifier no more information beyond
the spatio-temporal predicate itself. The solution is based on
prefix-verifiable MAC (PMAC), a cryptographic construct

designed by us to verify the integrity of any prefix of
a string. We then presented authentication protocols for
both spatial and spatio-temporal predicates. Two indexing
schemes for PMACs were proposed to pre-aggregate sub-
trajectories and accelerate the verification process. We fur-
ther proposed two optimization techniques to reduce the
computational and communication costs. Our security anal-
ysis and experimental results show that this authentication
scheme is both secure and efficient for practical use.

As for future work, we plan to study the integrity assur-
ance schemes for more complex predicates. In particular, we
are interested in the complement of a containment predicate
— a user is “not in” a specific region. This problem is even
harder as it is equivalent to authenticating that a string x
has a prefix from any of a set of strings, instead of all of
them.

10 ACKNOWLEDGMENTS

This work was supported by Research Grants Council,
Hong Kong SAR, China, under projects 210612, 12200914,
15238116, 12244916, 12232716, and C1008-16G, and was also
supported by National Natural Science Foundation of China
(Grant No: 61572413 and U1636205).

REFERENCES

[1] Discrete root extract. http://e-maxx.ru/algo/discrete root.
[2] O. Abul, F. Bonchi, and M. Nanni. Never walk alone: Uncertainty

for anonymity in moving objects databases. In Proc. of ICDE, 2008.
[3] G. Amanatidis, A. Boldyreva, and A. O’Neill. Provably-secure

schemes for basic query support in outsourced databases. In
Proc. the 21st annual IFIP WG 11.3 working conference on Data and
applications security, pages 14–30, 2007.

[4] D. Bradbury. Making sense of mobile marketing: it’s about the
customer journey. The Guardian, https://www.theguardian.com/
technology/2014/jan/15/making-sense-of-mobile-marketing,
January 2014.

[5] Q. Chen, H. Hu, and J. Xu. Authenticating top-k queries in
location-based services with confidentiality. In Proc. VLDB, 2014.

[6] W. Cheng and K. Tan. Authenticating knn query results in data
publishing. In SDM, 2007.

[7] W. Cheng and K. Tan. Query assurance verification for outsourced
multi-dimensional databases. Journal of Computer Security, 2009.

[8] S. Choi, H. Lim, and E. Bertino. Authenticated top-k aggrega-
tion in distributed and outsourced databases. In SOCIALCOM-
PASSAT12, pages 779–788, 2012.

[9] A. Department of Health. Zika virus information
for clinicians and public health practitioners. http:
//www.health.gov.au/internet/main/publishing.nsf/content/
ohp-zika-health-practitioners.htm.

[10] M. Erwig and M. Schneider. Spatio-temporal predicates. TKDE,
14(4):881–901, 2002.

[11] Z. Fan, Y. Peng, B. Choi, J. Xu, and S. S. Bhowmick. Towards ef-
ficient authenticated subgraph query service in outsourced graph
databases. IEEE Transactions on Services Computing, 2014.

[12] M. Graham and D. Gray. Protecting privacy and securing the
gathering of location proofs – the secure location verification
proof gathering protocol. In Proc. of 1st International Conference
on Security and Privacy in Mobile Information and Communication
Systems (MobiSec), 2009.

[13] R. Hasan, R. Khan, S. Zawoad, and M. M. Haque. Woral: A wit-
ness oriented secure location provenance framework for mobile
devices. IEEE Transactions on Emerging Topics in Computing, 2015.

[14] H. Hu, J. Xu, Q. Chen, and Z. Yang. Authenticating location-
based services without compromising location privacy. In Proc.
SIGMOD, pages 301–312, 2012.

[15] H. Hu, J. Xu, S. T. On, J. Du, and K. Ng. Privacy-aware location
data publishing. TODS, 35(3), 2010.

[16] L. Hu, W.-S. Ku, S. Bakiras, and C. Shahabi. Spatial query integrity
with voronoi neighbors. IEEE TKDE, 25(4):863 –876, 2013.

14

[17] J. Huang, Y. Xue, Y. Zheng, R. Zhang, X. Xie, and Z. Xu. Destina-
tion prediction by sub-trajectory synthesis and privacy protection
against such prediction. In Proc. of ICDE, 2013.

[18] IETF. Rfc 2104: Hmac: Keyed-hashing for message authentication.
https://tools.ietf.org/html/rfc2104.

[19] J. Katz and A. Y. Lindell. Aggregate message authentication codes.
In Proceedings of the 2008 The Cryptopgraphers’ Track at the RSA
conference on Topics in cryptology, 2008.

[20] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Authenticated
index structures for aggregation queries. ACM TISSEC, 13(32):1–
35, 2010.

[21] F. Li, G. Kollios, and L. Reyzin. Dynamic authenticated index
structures for outsourced databases. In Proc. SIGMOD, pages 121–
132, 2006.

[22] F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios. Proof-infused
streams: Enabling authentication of sliding window queries on
streams. In VLDB, 2007.

[23] H. Liu, S. Saroiu, A. Wolman, and H. Raj. Software abstractions
for trusted sensors. In Proc. of ACM MobiSys, pages 365–378, 2012.

[24] W. Luo and U. Hengartner. Veriplace: a privacy-aware location
proof architecture. In Proc. of ACM GIS, 2010.

[25] C. Lyu, A. Pandea, X. O. Wang, J. Zhu, D. Gu, and P. Mohapatra.
Clip: Continuous location integrity and provenance for mobile
phones. In Proc. of IEEE 12th International Conference on Mobile
Ad Hoc and Sensor Systems, 2015.

[26] R. C. Merkle. A certified digital signature. In Proc. Crypto, pages
218–238, 1989.

[27] S. Nath and R. Venkatesan. Publicly veriable grouped aggregation
queries on outsourced data streams. In Proc. ICDE, 2013.

[28] B. News. One driver explains how he is helping to rip off uber in
china. https://www.bloomberg.com/news/articles/2015-06-28/
one-driver-explains-how-he-is-helping-to-rip-off-uber-in-china,
June 29 2015.

[29] D. of Communications and A. the Arts. Internet gover-
nance: Online gambling. https://www.communications.gov.au/
what-we-do/internet/internet-governance/online-gambling.

[30] C. C. of Insurance Regulators. Jurisdiction specific
requirements life insurance and accident and sickness.
http://www.ccir-ccrra.org/en/forms/Appendix A (En) 2
LifeInsurance-21Mar06 RV.pdf.

[31] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying
completeness of relational query results in data publishing. In
SIGMOD, pages 407–418, 2005.

[32] H. Pang and K.-L. Tan. Authenticating query results in edge
computing. In Proc. ICDE, 2004.

[33] S. Papadopoulos, G. Cormode, A. Deligiannakis, and M. Garo-
falakis. Lightweight authentication of linear algebraic queries on
data streams. In Proc. ACM SIGMOD, pages 881–892, 2013.

[34] S. Papadopoulos, Y. Yang, and D. Papadias. Continuous authenti-
cation on relational streams. VLDBJ, 19:161–180, 2010.

[35] A. Pham, K. Huguenin, I. Bilogrevic, and J. Hubaux. Secure
and private proofs for location-based activity summaries in urban
areas. In Proc. of ACM International Joint Conference on Pervasive and
Ubiquitous Computing (Ubicomp), 2014.

[36] S. Saroiu and A. Wolman. Enabling new mobile applications with
location proofs. In Proc. of ACM HotMobile, 2009.

[37] M. Terrovitis and N. Mamoulis. Privacy preservation in the
publication of trajectories. In Proc. of MDM, 2008.

[38] X. Wang, J. Zhu, A. Pande, A. Raghuramu, P. Mohapatra, T. Ab-
delzaher, and R. Ganti. Stamp: Ad hoc spatial-temporal prove-
nance assurance for mobile users. In Proc. of 21st IEEE International
Conference on Network Protocols (ICNP), 2013.

[39] T. Xu and Y. Cai. Exploring historical location data for anonymity
preservation in location-based services. In IEEE Infocom, Phoenix,
Arizona, 2008.

[40] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. Spatial
outsoucing for location-based services. In Proc. ICDE, pages 1082–
1091, 2008.

[41] Y. Yang, S. Papadopoulos, D. Papadias, and G. Kollios. Authenti-
cated indexing for outsourced spatial databases. The VLDB Journal,
18(3):631–648, 2009.

[42] L. Yap, T. Yashiro, M. Bessho, T. Usaka, M. Khan, N. Koshizuka,
and K. Sakamura. Sucas: An architecture for secure user centric
attestation in location-based services. In Proc. of IEEE International
Conference on Social Computing, pages 760–767, 2010.

[43] K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and
D. Srivastava. Small synopses for group-by query verification on
outsourced data streams. ACM TODS, 34(3), 2009.

[44] M. L. Yiu, Y. Lin, and K. Mouratidis. Effcient verification of
shortest path search via authenticated hints. In Proc. ICDE, pages
237–248, 2010.

[45] M. L. Yiu, E. Lo, and D. Yung. Authentication of moving knn
queries. In Proc. ICDE, 2011.

[46] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting
locations and travel sequences from gps trajectories. In In Proc.of
International Conference on World Wild Web (WWW 2009), 2009.

[47] Z. Zhu and G. Cao. Applaus: A privacy-preserving location proof
updating system for location-based services. In Proc. of INFOCOM,
2011.

[48] Z. Zhu and G. Cao. Toward privacy preserving and collusion
resistance in a location proof updating system. IEEE Transactions
on Mobile Computing, 2013.

Haibo Hu is an assistant professor in the De-
partment of Electronic and Information Engi-
neering, Hong Kong Polytechnic University. His
research interests include information security,
privacy-aware computing, and location-based
services, where he has published over 60 re-
search papers. As a principal investigator, he
has received over 6 million HK dollars of external
research grants. He is the recipient of ACM-HK
Best PhD Paper Award, Microsoft Imagine Cup,
and GS1 Internet of Things Award.

Qian Chen is a PhD student in the Depart-
ment of Computer Science, Hong Kong Bap-
tist University. His research interests include
privacy-aware computing. He is a member of the
Database Group at Hong Kong Baptist Univer-
sity. (http://www.comp.hkbu.edu.hk/˜db/)

Jianliang Xu is a Professor in the Department
of Computer Science, Hong Kong Baptist Uni-
versity. He received his PhD degree in computer
science from Hong Kong University of Science
and Technology in 2002. He held visiting posi-
tions at Pennsylvania State University and Fu-
dan University. His research interests include
data management, mobile/pervasive computing,
wireless sensor networks, and distributed sys-
tems, where he has published more than 120
technical papers.

Byron Choi received the bachelor of engineer-
ing degree in computer engineering from the
Hong Kong University of Science and Technol-
ogy (HKUST) in 1999 and the MSE and PhD de-
grees in computer and information science from
the University of Pennsylvania in 2002 and 2006,
respectively. He is now an associate professor
in the Department of Computer Science at the
Hong Kong Baptist University.

