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Abstract - In chaos-based communication systems, pa- 
rameter variation in the chaos generator and additive channel 
noise represent two practical problems that are hard to sol*. 
For chaos-based digital communication, non-coherent detec- 
tion has the advantage that the receiver does not need to 
reproduce the same chaos basis function that has been gen- 
erated in the transmitter. SUC h reproduction typically re- 
quires a fragile operation of chaos sync hronisation between 
the transmitter and the receiver. In this paper, we consider 
non-coherent detection under the practical condition of the 
transmitted signal being contaminated by noise and its gen- 
erating function being subject to strong parameter variation. 
-4 novel tracker is proposed forreconstructing the transmit- 
ted chaotic signal. This tracker uses a modified radial-basis- 
function (RBF) neural netw ork whih incorporates a learning 
algorithm for tracking the noisy chaotic signal under param- 
eter variation. Using this tracker, a non-coherent detector is 
designed for demodulating chaos-shift-keying (CSK) signals in 
a CSK digital communication system. Computer simulations, 
in whic hthe Chua’s circuit is used as the chaos generator, 
are presented to demonstrate the tracking ability and CSK 
demodulation of the proposed method. 

I INTRODUCTION 

Coherent detection and non-coherent detection represent 
tw o distinct approahes for detecting chaos-based digital 
modulated signals such as in chaos-shift-keying (CSK) 
or differential c haos-shift-kying (DCSK) communication 
systems. While coherent detection requires the receiv er 
to  reproduce the same chaos basis function as in the 
transmitter, for example b y  chaos sync hronisation [l], 
non-coherent detection makes use of some distinguish- 
able property (e.g., bit energy) of the chaotic segments 
representing the different digital symbols [2]. How ever, 
additive channel noise and parameter variation in the 
chaos generator in the transmitter can seriously impair 
detection at  the receiver. In this paper we consider non- 
coherent detection under the practical condition of the 
transmitted signal being con taminatedb y noise and its 
generating function being subject t o  strong parameter 
variation. 

The above problem is equiden t to the basic problem 
of trac king achaotic system with time-varying parame- 
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ters from an observation signal that has been con tami- 
nated by additive white Gaussian noise (AWGN). In par- 
ticular, we assume that the parameter is varying at a rate 
much slow er thanthe motion of the system itself. Our 
main contribution in this paper is a novel tracler which 
can be used to  reconstruct the transmitted chaotic signal 
in a chaos-based communication system. The tracking is 
accomplished in the sense of Taken’s reconstruction the- 
ory [3]. Specifically, our proposed tracker uses a modified 
radial-basis-function (RBF) neural netw ork whih incor- 
porates a learning algorithm for accomplishing the afore- 
described tracking task. Finally, using this tracker, a 
non-coherent detector can be designed for demodulating 
chaos-shift-keying (CSK) signals in a CSK digital com- 
munication system. We will demonstrate the demodula- 
tor’s performance by computer simulations. 

11 RECONSTRUCTION OF ATTRACTOR 

Consider the chaos generating system 

x = g(2, t )  (1) 

where x = [XI, 2 2 ,  . . e ,  x ~ ] ~  is the D-dimensional state 
vector of the system, T denotes transposition of a vector 
or matrix, and g is a smooth nonlinear function defined 
on !RD x 8. The transmitted signal s is generally given 
bY 

where 4(.) is a continuous scalar real-valued function. A t 
the receiver, the received (observed) signal is 

s = 4(x(t)) (2) 

y = s + 7 )  (3) 

where 7) is the channel noise (AWGN). Furthermore, we 
assume in this paper that the parameters of system (1) 
are time-varying in a range that keeps the system in the 
chaotic region. The rate of variation of the parameters is 
much slow er than t h e h o t i c  transmitted signal. Thus, 
in a certain time window, the parameters of the transmit- 
ter’s chaos generator are constant, all0 wing system (1) to  
be viewed as an autonomous system. The essential task 
of the trackeris, within the time window, to t rackthe 
transmitted signal s through the impaired signal y. 

In the Euclidean space !RRM the T ak ens’reconstruc- 
tion theorem [3] simply says that giv en s in (2), the 
chaotic attractor of (1) can be reconstructed from 5 = 
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[s, 8, 1, ... , dMe1)IT where M 2 ( 2 0  + l), and S, 
s, . . .  d M - l )  denote g, 9 ... $;::, respectively. In 
other words, there exist a function Q such that 

z, 

z1 

2 = !P(i5,t) (4) 

-."-I 

?U 

where Q = [+I, $2, . . . , +*IT. It should be noted that 
def s = fb(s(t)) !sf fl(2, t ) ,  s = Vzfb(z(t)).g(z, t )  = f2(2,t) 

ds(X-1)  tJ f , (Z, t )  def and di) = dt = Vzfi(z , t )  . g ( z , t )  + - 
fi+l(z, t ) ,  where V?,fi(x, t )  is the gradient of fi(z, t )  with 
respective to x, and "." denotes the vector dot (inner) 
product. Also, 

at 

i5 = f(z,t) ( 5 )  

where f = [fl, f2, . . .  , f ~ ] ~ ,  and fi (i = 1,2,  . . .  , M )  
is a smooth function. Combining (4) and (5),  we have 

Thus, it is generally possible to reconstruct the chaotic 
attractor of (1) on the higher dimensional space if f(.) 
and fP are known. How ever, the receiw usually has no 
exact knowledge off  and Q in practical applications even 
in the absence of noise. Thus, the crucial step is to find 
f and !2 in order to  realize the reconstruction task. This 
problem is tackled in this paper by a modified RBF neural 
netw ork whim will be described in the next section. 

I11 R B F  NEURAL NETWORKS AND TRACKER 

The modified RBF netw orksho wnin Fig. 1 is a three- 
layer neural netw ork, comprising an input Iqer, a hidden 
layer and an output layer. The input layer consists of 
M units, connecting the input vector. The i th  input 
unit is directly connected to the output unit through a 
gain factor ci, and the ith hidden unit is connected to 
the output unit through a w eigh ffactor wi. The input 
vector that defines the w ayembedding is done is given 
by ~ ( n )  = [z1 z2 . . . Z M ] ~  which is an M-dimensional 
input vector given b y 

%(n) = [y(n(M+l)-1) y(n(M+l)-2) ' ' . y(n(M+l)-M)]T. 
(7) 

T oavoid confusion, w edefine an observation step as 
the duration for one complete observation, i.e., the time 
for reading ( M  + 1) data points. The network operation 
can be described by 

M N 

i=l i=l 

where WO is the bias term of the output unit. Also, (pi is 
the Gaussian activation function defined as 

(9) 

where Qi and ui are the center and width of (pi, respec- 
tiv ely 

Input layer Hidden layer Output layer 

Fig. 1: A modified RBF network configuration 

IV TRACKING ALGORITHM 

The netw ork begins with no hidden lqer unit. As signal 
y is received, the network grows by creating new hidden 
units. Precisely, given an observation [ ~ ( n ) ,  y(n(M+l) ) ] ,  
the criteria for creating a new hidden unit are 

II%(n) - Qnrll > 71 (10) 

where Qnr is the center of the hidden unit which is near- 
est z (n ) ,  T3 is the number of observation steps of a sliding 
data window covering a number of latest observations for 
computing the output error, and 771, 772 and 713 are thresh- 
olds. Specifically, 771 = max(qm,x/?n,qmin), where /? is a 
decaying factor, and r],,, and rl7,in are the maximum 
and minimum of 71. The first criterion essentially re- 
quires that the input be far aw g~ from stored patterns, 
the second criterion requires that the error signal be sig- 
nificant, and the third criterion specifies that within the 
sliding data window of T3 observation steps, the root- 
mean-square (RMS) error is also significant. Now sup- 
pose the ( N  + 1)th hidden unit is to be added to  the 
net w ork.The parameters associated with this new unit 
are assigned as follows: 

W N + 1  = €(n)  (13) 
Q N + ~  = ~ ( n )  (14) 
UN+1 = Pll%(n) - Qnrll (15) 

where p ( p  < 1) is an overlap factor whih controls the 
extent of overlap of the responses of the hidden units for 
an input. 

When the observation [z(n) ,  y(n(M+l))] does not sat- 
isfy the criteria (10) to (12), no hidden unit will be added, 
and the extended Kalman filter (EKF) is then used to  
adjust the parameters of the network. These parameters 
define the state vector, U ,  of the netw ork, 

T T  
21 = [ C i ,  C z ,  . . . , C M ,  WO, W i ,  QT, P i , .  . . , W N ,  Q N ,  U N ]  . ( 16) 

Now, denote the corrected error covariance matrix of 'U 
at time instant (n - 1) b y  P ( n  - 1,n - 1). Then, the 
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current estimate of the error covariancematrix can be 
found from the following relation: 

P(n,  7~ - 1) = I P ( n  - 1, n - l ) IT = P ( n  - 1,  n - l), (17) 

where I is an identity matrix. Other parameters used in 
the EKF algorithm are the variance R(n) of y and the 
Kalman gain vector K ( n )  , whose propagation equations 
at time instant n satisfy 

(18) 

(19) 

where Rd is the variance of the measured noise, and B 
is the gradient vector of h(.) with respect to v .  Having 
computed K ( n ) ,  w ecan then update the state vector 
according to 

R(n) = B(%(n))P(n,  n - l)BT(%(n)) + Rd 

K ( n )  = P(n ,n  - l)BT(.(n))/R(n) , 

w(n) = v(n - 1) + K(n)€(n) ,  (20) 

where v(n) and v(n - 1) are respectively the state vector 
of the present and previous observation step. Finally, the 
error CO variance matrix is corrected according to 

(21) 

where y is a small scaling factor introduced to improve 
the RBF netw ork's adaptability to future observations 
[4]. Finally, it is w orthnoting that when a new unit 
is added to the hidden layer, the dimension of P(n,n)  
changes, as can be seen from the following relation. 

P(n ,  n) = ( I  - K(n)B(r(n) ) )P(n ,  n - 1) + 71 , 

The above algorithm is used to tradc the transmitted 
signal during the first T2 observation steps of the TI time 
window. T ypicallythe EKF algorithm, i.e., (16) through 
(21), helps to  find a suitable state v ector for the recon- 
structed system, i.e., v in (16). How ever, once this state 
vector is found, typically within the T2 observation steps, 
this EKF algorithm can be modified to improve conver- 
gence of the netw ork b y enlarging the attracting domain 
[5]. Specifically, for (T2 + 1) to TI observation steps, we 
replace (18) and (21) by 

(25) 
(26) 

R(n) = a1B(z(n))P(n, n - l)BT(z(n)) + (112 

P(n,  n) = (I - K(n)B(z(n) ) )P(n ,  72 - 1) 

where a1 and a2 are t w o parameters u$e+uaran 
the convergence of this algorithm [5]. 

tee 

v APPLICATION T O  NON-COHERENT DETECTION 

A Tucking 

The Chua's circuit [6] is selected as the chaos generator 
to be used in the transmitter. This chaos generator can 
be described by the following dimensionless equations: 

il = (113(xZ - K Z ( 2 1 ) )  

(27) x z  = 21 - 2 2  -1-23 

x 3  = aq(t)xz 

(22) where a3 is fixed at  9, and aq(t) varies according to 
L 

(28) 
85 15 . ~ ( t )  = -- - -sin(t/20), 7 7  where 01 and 02 are zero matrices of appropriate dimen- 

sion, and po is a constant representing an estimate of the 
uncertainty in the initial assigned to the netw which ensures the chaotic motion of the system. Also, 

parameters, which in this algorithm is also the variance K 2 ( . )  is a piecewise-linear function given Y 
of the observation [ z ( n ) , y ( n ( M  + l))]. 

-4s the network grows, the number of hidden units in- 
creases, and so will the computing complexity. Moreover, 
some added hidden units may subsequently end up con- 
tributing very little to the netw ork output.Thus, pruning 
redundant units in the hidden lay er becomes imperati=. 
We denote the weigh ted response of theith hidden unit 
for input z ( n )  as 

ui (n) = w i q ,  for i = 1 , 2 ,  . . , N . (23) 

Suppose the largest absolute output value for the nth 
input z (n)  among all hidden units' w eighed outputs is 
lumax(n)l. Also denote the normalized output of the ith 
hidden unit for the nth input as 

In order to keep the size of the net w orksmall, w e 
need to remove hidden units when they are found non- 
contributing. Essentially, for each observation, each nor- 
malized output value &(n) is evaluated. If &(n) is less 
than a threshold 6 for T3 consecutive observations, then 
the ith hidden unit should be removed, thereby keeping 
the netw ork size and the computing complexik to mini- 
mal. 

m121+ (mo - ml), 2 1  2 1 
K Z ( 2 1 )  = moz1, 1x11 < 1 (29) { m121 - (mo - ml),  2 1  I -1 

where mo = -117 and ml = 217. The signal to  be 
transmitted is normalized to the range [-0.5, 0.51, i.e., 

(30) 
2 3  - X3,min 

Z3,max - 23,min 
s = S(23)  = - 0.5 

Fig. 2 sho wsthe error w aveformf the reconstructed s 
when SNR is 20dB. It can be noted from Fig. 2 that 
the error signal has a rapid ariation (transient) during 
the tracking duration T2, and a variation with a small 
amplitude at  the duration of [Tz + 1,T1], respectively. 
Thus, w ecan see clearly that the above algorithm can 
track the transmitted chaotic signal even when a system 
parameter varies with time. 

B Application to Digital Communication 

One useful application of the proposed t r a c k r  is to  re- 
construct the transmitted chaotic signal in a chaos-based 
communication system. In particular, we consider a sim- 
ple digital communication system as shown in Fig. 3, 
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Fig. 2: Error w aveformof the reconstructed signal s when 
SNR of the channel is 20dB. 

Fig. 3:Bloc k diagram of a chaos-based digital communication 
system 

which effectively employs a chaos-shift-keying modula- 
tion. Here, {bi}  is the source message bit train which is 
shown in Fig. 4. The signal to be transmitted is given b y 

S(23) ,  t E [1,Tz]; for all bi 
if b, = 1 

-S(Z~),  t E [Tz + 1,T1]; if b, = 0 ,  
s = { S(z3), t E [Tz + 1,T1]; (31) 

for the duration [l,Tl], where S(.) is the normalization 
function defined in (30) and the unit o f t  is observation 
step. 

A tthe receiver, an integrator is used to  compute the 
energy of the error signal, 0, in the interval Tz + 1 to  TI 
for eac hT1 window, i.e., 

Ti 

0 = 2 ( n )  
n=Tz+l 

where i(n) is the tracking error at the nth step. Since 
the signal s (which is always equal to23 during [1,T2]) is 
tracked during the firstTz observation steps, 0 becomes 
large if bi = 0, and is small if bi = 1. Thus, 0 can be used 
b y  a suitable decision circuit to  determine whih digital 
symbol was sen t ,  i.e., 

(33) 

where T is the threshold of the decision circuit. Fig. 5 
shows the Bit Error Rate (BER) of the retrieved digital 
message signal for different SNRs in the channel. It can 

I I 
0 1ooO 2WO 3000 4wO 5WO Boo0 lo00 Boo0 

Time 

Fig. 4: Source bit stream 
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Fig. 5: Bit error rate of the retrieved digital message vs SNR 

be seen from Fig. 5 that the digital message signal can 
be successfully retrieved from an AWGN channel .by the 
proposed demodulator. 

VI CONCLUSION 

In this paper, w ehave designed a chaos tracker bised 
on a modified RBF neural network. The tracker is able 
to  reconstruct a chaotic system which has time-varying 
parameters and whose observation signal is contaminated 
by AWGN. A specific application has been demonstrated 
for a CSK digital communication system employing the 
proposed tracker for non-coherent detection. 
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