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Abstract—In this paper, we present a special virtual keyboard
for computer users with disabilities who have problems typing.
In particular, the keys are placed based on user typing habit
and determined by a genetic algorithm (GA). When a disabled
user types on a QWERTY keyboard, the typing cost is high,
because the keys are not optimally arranged for disabled users,
who can only type with one finger. With the proposed keyboard,
the keys can be customised and arranged to minimise the
typing cost (e.g., certain keys should be placed close to one
another). Our analysis indicates that the proposed keyboard
can outperform the traditional keyword by about 40 per cent.
Hence the special virtual keyboard can facilitate disabled users
to type more effectively and efficiently.

Index Terms—assistive technology, keyboard, human com-
puter interface.

I. INTRODUCTION

TODAY, computers and smartphones play an important
role in people’s daily lives. People type messages to

communicate with others through WhatsApp, WeChat and
LINE every day. The keyboard is the typical device for
interacting with computers. In this paper, we study a new
keyboard design for people with disabilities. Basically, the
keys on a keyboard are re-organised in a new way based on
a genetic algorithm (GA). The objective is to minimise the
typing cost, so as to facilitate people with disabilities to type
more efficiently. Examples will be provided, and an analysis
of the algorithm will be explained in detail.

Disabled people suffering from muscular dystrophy have
difficulties in typing. In other words, typing can be a difficult
task for them. They can only move their hands a little bit,
and they tire easily because of their weak muscles. Some can
use only one hand, or only one finger [1][2]. People without
disabilities can use the traditional QWERTY keyboard and
easily type with 10 fingers. For people without disabilities,
pressing a key takes less than a second. Typing a word takes
a few seconds. Typing 40 words takes one minute on average
[3]. However, for those who are disabled, typing tasks are
not easy.

Some researchers have suggested that disabled people use
a brainwave-based keyboard. For example, P300 is a brain-
computer interface (BCI) system based on a matrix of letters,
numbers and symbols with visual feedback/stimuli. For the
matrix, the columns and rows flash continuously for input
purposes. Basically, a user should focus on the flashing
item that he/she wants to choose. According to [4] and
[5], the typing speed of the P300 system is 1-4 words per
minute[4][5]. Hence the input speed is slow. Furthermore, it
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is very expensive, so most disabled users would not be able
to afford to use it.

Inspired by [6] and [7], we present a GA-based keyboard
in this paper. Compared with the previous works [6] [7],
we focus on designing a customised virtual keyboard for
disabled people, who can only use one finger to type.
Furthermore, more performance analysis is conducted. In
general, the proposed keyboard can also be used with a
computer mouse, and other sensors or tools as an input device
[8].

The rest of the paper is organised as below. Section
II defines the typing problems and typing cost. Section
III presents the design of the proposed keyboard. Section
IV compares the performance of the proposed keyboard
and standard QWERTY keyboard. Section V presents the
implementation of the special virtual keyboard. Section VI
concludes this paper.

II. CURRENT PROBLEM

When people type, they need to move their fingers to
the corresponding keys and then press the keys. For our
performance analysis, we define typing cost as the sum of
moving cost and pressing cost. The moving cost reflects the
cost of moving a finger from one key to another. The pressing
cost reflects the cost of pressing a key after moving the finger
to the top of the key. Two estimations are made, to compare
the typing cost for abled users, with the typing cost for those
who have a disability.

A. Estimation of typing cost for people without disabilities

This estimation is based on three assumptions to calculate
the typing cost for people without a disability.

1) Moving cost is 1 per key move.
2) Pressing cost is 1 per key press.
3) People without a disability can use both hands (i.e., 10

fingers) to type with standard finger placement.
Using standard finger placement, both hands are placed on

the keyboard. Left-hand fingers (i.e., little, ring, middle and
index fingers) are placed on the keys ”A”, ”S”, ”D” and ”F”.
Right-hand fingers (i.e., index, middle and ring fingers) are
placed on the keys ”J”, ”K” and ”L” (see Table I)[9].

For example, for “A”, the left little finger is placed on top
of “A”, so the moving cost is 0. For another example, “Q”,
as the finger needs to move from “A” to “Q” and the keys
are next to one another, the moving cost is 1 (see Table II).

Table II summarises the moving cost for people without
disabilities typing with standard finger placement. The maxi-
mum cost is 2. When users type on the same key, the moving
cost is 0 and the pressing cost is 1.

For example, the cost of typing the word “APPLE” can be
estimated by the following six steps:
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TABLE I
FINGER PLACEMENT ON A STANDARD KEYBOARD

Letter Responsible finger

Q, A, Z Left little finger

W, S, X Left ring finger

E, D, C Left middle finger

R, F, V, T, G, B Left index finger

Y, H, N, U, J, M Right index finger

I, K Right middle finger

O, L Right ring finger

P Right little finger

TABLE II
MOVING COST WHEN USING TEN FINGERS TO TYPE

Letters Moving cost

A, S, D, F, J, K, L 0

Q, W, E, R, T, U, I, O, P, Z, X, C, V, N, M 1

Y, B 2

1) For “A”, the moving cost is 0 and the pressing cost is
1.

2) For “P”, the moving cost is 1 and the pressing cost is
1.

3) For the second “P”, the moving cost is 0 and the
pressing cost is 1.

4) For “L”, the moving cost is 1 and the pressing cost is
1.

5) For “E”, the moving cost is 1 and the pressing cost is
1.

6) Summing up all the costs, the total cost is 8.

B. Estimation of typing cost for people with disabilities

Here, we consider the typing cost for disabled people. The
cost estimation is based on four assumptions:

1) Moving cost is 1 per key move.
2) Pressing cost is 1 per key press.
3) The target disabled users can use only one finger to

type.
4) The finger is placed on the first letter of the word

before typing.
The finger moving cost can be estimated by key distance.

When users type the same key, for example “ZZZ”, the finger
remains on the same key, so the moving cost is 0. When
users type nearby keys, for example “AS”, after typing “A”,
the finger should move from “A” to “S” with a moving cost
of 1. When moving from “A” to “D”, the moving cost is 2
and when moving from “A” to “F”, the moving cost is 3.
The maximum cost is 9 e.g., from “A” to “P” and from “P”
to “Q”.

For example, the cost to type the word “APPLE” can be
determined by the following six steps:

1) For “A”, the moving cost is 0 (based on the aforemen-
tioned assumption) and the pressing cost is 1.

2) For “P” (i.e., from “A” to “P”), from “A” to “P”, there
are the letters “S”, “D”, “F” ... “L” then “P”. The
moving cost is 9 and the pressing cost is 1.

3) For the second “P”, the finger does not need to move,
so the moving cost is 0 and the pressing cost is 1.

4) For “L” (i.e., from “P” to “L”), the letters are adjacent
to one another, so the moving cost is 1 and the pressing
cost is 1.

5) For “E” (i.e., from “L” to “E”), there are the letters
“K”, “J”, “H” ... “D” then “E”. The moving cost is 7
and the pressing cost is 1.

6) Summing up all the costs, the total cost is 22.
For people without disabilities, the cost to type the word

“APPLE” is 8, while the cost for target disabled people to
type “APPLE” is 22, which is 2.75 times higher than the cost
for abled people (i.e., typing with 10 fingers).

III. KEYBOARD DESIGN

The current QWERTY keyboard design can basically be
modelled as a 4 times 10 rectangle shape. It is not a compact
design. For general communication, a disabled user needs 26
letters (A to Z) and 10 numbers (0 to 9). There are a total 36
units. Therefore, we propose using a 6 times 6 square shape
(i.e., more compact design) for disabled people.

One key problem is how to organise the letters and
numbers. One possible method is to organise the keys in
ascending order. However, this does not take into consider-
ation the relationship between the letters (e.g., it is better to
place certain letters close to one another). Note that our goal
is to minimise the moving cost to facilitate disabled users to
be able to type with only one finger.

Another simple method is to generate the keys randomly.
With the use of a random number generation algorithm, we
can easily build a 6 times 6 matrix. The following matrix
(see Table III) is an example. However, it is quite confusing,
in that numbers and letters are mixed together. It is difficult
for users to distinguish letters from numbers. Therefore, it is
better to separate numbers and letters (see Algorithm 1).

TABLE III
A MATRIX/KEYBOARD EXAMPLE

H X U 7 5 C
P S A 1 I 8
L Q N Y 3 V
B J R D E F
T K M O W 2
6 Z G 9 0 4

In this paper, we study a GA-based keyboard. The same as
with the current QWERTY keyboard design, the numbers 0-
9 are placed in the top row. In the proposed design, only
six keys can be placed in each row. Therefore, numbers
0-9 are placed in the top two rows, with two remaining
spots. Assume that “Y” and “Z” are the least commonly used
letters. Therefore, they are placed in the remaining spots in
the second row. For the remaining letters, a genetic algorithm
is applied to arrange the keys.

As one of the evolutionary algorithms, GA is commonly
used for solving general optimisation problems. Here we
study the use of GA to organise the keys (see Algorithm
2). The steps are discussed as follows.

Initialisation - First, a population of chromosomes is
generated based on the random number generation algorithm
and the preset matrix. Note that each chromosome should
contain the basic elements: A to Z and 0 to 9. As an example,
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Algorithm 1 Generating a matrix with random keys
1: procedure RANDOMMATRIXPRESET(matrix[6][6])
2: matrix[0][0] = 0
3: matrix[0][1] = 1
4: ...
5: matrix[1][3] = 9
6: Letter = [A,B,C...X, Y, Z]
7: for each i ∈ Letter do
8: while True do
9: if matrix[random][random] == ∅ then

10: matrix[random][random]← i
11: Break
12: end if
13: end while
14: end for
15: end procedure

Algorithm 2 Using a genetic algorithm to generate keys
1: procedure GAMATRIX(matrix[6][6])
2: checkingTable[letter] = [A,B,C...X, Y, Z]
3: c1← matrix[random]
4: c2← matrix[random]
5: for row ← 2 : 3 do
6: GAmatrix[row]← c1[row]
7: for col← 0 : 5 do
8: letter ← c1[row][col]
9: Checking(letter)← True

10: end for
11: end for
12: for row ← 4 : 5 do
13: for col← 0 : 5 do
14: letter ← c2[row][col]
15: if letter /∈ checkingTable then
16: Checking(letter)← True
17: GAmatrix[row][col]← c2[row][col]
18: end if
19: end for
20: end for
21: for row ← 4 : 5 do
22: for col← 0 : 5 do
23: if GAmatrix[row][col] == ∅ then
24: GAmatrix[row][col]← Remain()
25: end if
26: end for
27: end for
28: mutation(GAmatrix[6][6])
29: end procedure

the initial population size is set at 10. In other words, 10
initial chromosomes are generated (see Figure 1). Note that
the initial population size can be adjusted.

Selection - Second, the cost of each chromosome is com-
puted based on a fitness function. Then, two chromosomes
are randomly selected from the pool. For example, the second
chromosome (C1) and ninth chromosome (C2) are selected
as shown in Figure 2.

Crossover - Third, the crossover operation is performed for
the selected chromosomes. As row 1 and row 2 are preset,
they will not be changed by the crossover operation. That

Fig. 1. Initialisation

Fig. 2. Selection

means the crossover operation is performed for rows 3 to 6
only. In the example, row 3 to row 4 of C1 and row 5 to row
6 of C2 are selected to generate a new chromosome based on
the crossover operation. However, there are some duplicate
letters. That means, a direct crossover cannot be performed
and a special arrangement should be made. To handle this
issue, a checking table is maintained for recording the used
letters or checking for duplication (see Figure 3). The letters
in C1 are recorded in the table for checking the letters in
C2. In the example, “B”, “E”, “R”, “M”, “N” and “S” are
duplicated. They are not added to the new chromosome.
Instead, “D”, “F”, “I”, “Q”, “T” and “V” remain and are
randomly filled to the new chromosome (see Figure 4).

Fig. 3. Crossover step 1

Fig. 4. Crossover step 2
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Mutation - Then, mutation is applied to the chromosomes
with a certain probability in order to enhance the results. Mu-
tation is useful because it seeks to enhance genetic diversity
by introducing changes. For example, in a chromosome, two
letters are swapped with a probability of 0.1. In the example,
letter “M” and letter “J” are swapped (see Figure 5).

Fig. 5. Mutation

Termination - The generation process ends when the
required number of chromosomes is reached. In the example,
the process ends when 100 chromosomes are generated. The
best one will be used for generating the keyboard.

IV. PERFORMANCE ANALYSIS

In order to analyse the performance of the GA-based
keyboard, it is necessary to adjust the parameters of the
genetic algorithm [10]. In the following sub-sections A
to E, the initial population size, mutation probability and
termination size are adjusted to evaluate performance. The
standard QWERTY keyboard is a good reference for com-
parison. To compare the performance between a GA-based
keyboard and a standard QWERTY keyboard, Algorithm 3
is used for computing the typing cost of each keyboard.
Basically, the moving cost between two keys is based on
distance (i.e., as calculated by their coordinates). For exam-
ple, if key 1 and key 2 have coordinates (1,2) and (3,4),
respectively, the moving cost (i.e., from key 1 to key 2) is√

(3− 1)2 + (4− 2)2 = 2.8284.

Algorithm 3 Calculating the moving cost between two keys
1: procedure NORMALCOST(text)
2: score← 0
3: for each i ∈ text do
4: x1, y1← LookupStandardKeyboard (i)
5: x2, y2← LookupStandardKeyboard (i)
6: distance←

√
(x2− x1)2 + (y2− y1)2

7: score← score+ distance
8: end for
9: return score

10: end procedure

A. Tuning initial population

Figure 6 shows the performance improvement of the GA-
based keyboard as compared with the normal (QWERTY)
keyboard for different initial population sizes. The simulation
results indicate that performance is not stable when the initial
population size is small. When the initial population size is
10, the performance is unstable and the proposed GA-based
keyboard outperforms the QWERTY keyboard by approxi-
mately 35 to 40 per cent. When the initial population size

is set to 50, performance becomes more stable. With more
than 1,000 chromosomes, performance becomes stable and
the performance improvement of the GA-based keyboard is
around 42 per cent. When the initial population size is set to
100, the performance becomes steadier and the performance
improvement of the GA-based keyboard is about 42 per cent
after 1,000 chromosomes. Therefore, it is suggested to set
the initial population size to at least 100 chromosomes to
achieve a better and more stable performance.
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Fig. 6. GA initial population and performance

B. Tuning mutation probability

Figure 7 shows the performance improvement of the GA-
based keyboard as compared with the normal (QWERTY)
keyboard for different mutation probabilities. The simula-
tion results indicate that the mutation probability has little
effect on performance improvement. When the number of
chromosomes is small, performance improvement is around
37 per cent. When the number of chromosomes is large,
performance improvement becomes steady at around 42 per
cent. Based on the simulation results, it is suggested to set
the mutation probability to 5 per cent.
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Fig. 7. GA mutation probability and performance

C. Tuning termination

Figure 8 shows the time cost of the simulations. With
more than 200 chromosomes, the time cost increases more
than double. To generate 1,000 chromosomes, it takes around
three minutes. For generating 2,000 chromosomes, it takes
close to seven minutes. According to sub-sections A and
B, performance becomes steady when the program gen-
erates 1,000 chromosomes. Performance does not improve
distinctly after that. However, the time cost and computer
resources cost increase significantly. Therefore, it is sug-
gested to terminate a simulation when 1,000 chromosomes
are generated.
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D. Comparing typing cost for different subjects

The above analysis provides the preferred setting for the
simulations: initial population size of 100 chromosomes,
mutation probability of 5 per cent and termination size of
1,000 chromosomes. The following evaluation is based on
this preferred setting.

In order to evaluate the performance of the GA-based
keyboard for different subjects, various articles from the
Internet were used. The article subjects are Art, Business,
Education, Geography, History, Law and Science. Figure 9
shows the typing cost per word for each subject for people
with disabilities using the standard QWERTY keyboard. The
typing cost is around 15 to 16 except for Law, which is higher
than 17. This is because legal terms are generally longer
and more complicated than in other subjects. Therefore, the
typing cost per word for Law is higher than for other subjects.
For the same reason, Science has the second highest typing
cost. It is found that Art has the lowest typing cost compared
with other subjects.
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Fig. 9. Typing cost per word for seven subjects

Figure 10 shows the performance improvement (i.e., as
compared with the typing cost for the normal keyboard). As
mentioned, the costs for Law and Science are higher, because
legal and scientific terms are generally longer and more com-
plex. Note that moving cost is affected by word complexity.
With the design of the GA-based keyboard, moving costs can
be minimised. In general, the performance improvement is
between 37 and 42 per cent as compared with a QWERTY
keyboard. This shows that the proposed GA-based keyboard
can enhance the standard QWERTY keyboard when typing
long and complicated words. For example, the performance
improvement for Law and History can reach more than 42
per cent. The performance improvement for Science and
Business can reach more than 40 per cent. In summary,
the proposed GA-based keyword can facilitate people with
disabilities to type more effectively and efficiently.
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Fig. 10. Performance of the GA-based keyboard for seven subjects

Next, it is of interest to analyse the relationship between
performance improvement and the word count. Another set
of articles from the Internet was used for the evaluation. The
number of words was between 250 and 2,000. Figure 11
shows that in general, there is no direct relationship between
performance and word count. In other words, a long article
(with more words) has little effect on the typing cost per
word. However, it is found that performance improvement
is better when the number of words is between 450 and
900, possibly because people tend to use simpler words for
shorter articles. Also, performance decreases slightly when
the number of words falls between 900 and 2,000.

In general, performance improvement is approximately 35
to 45 per cent. That means, when a disabled person uses a
GA-based keyword for typing, the typing cost can be reduced
by 40 per cent, compared with a normal keyword.
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Fig. 11. Performance versus number of words

E. Comparison for different keyboard designs

Last but not least, the typing cost for different keyboard
designs is evaluated based on a set of news articles obtained
from the Internet. Each article, from different newspaper
websites e.g. BBC, CNN, etc., has 200-250 words. Figure
12 shows that the typing cost for the standard keyboard is
the highest. In comparison, keyboards with keys arranged in
ascending or random order can provide some improvements.
The GA-based keyboard provides the best performance. Its
typing cost is about 40 per cent of the normal QWERTY
keyboard. Hence people with disabilities can type more
efficiently with the GA-based keyboard.

V. IMPLEMENTATION

For demonstration and evaluation purposes, a virtual key-
board prototype has been implemented based on the Model-
View-Controller (MVC) model [11]. Model (M) is related to
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the keyboard algorithm as well as data management. View
(V) is about keyboard interface (i.e., based on the design
discussed above). Controller(C) is for handling a user request
with the Leap Motion sensor [12].

First, it is necessary to construct the program structure.
There are two threads. One is responsible for keyboard
operation. Another one is responsible for Leap Motion com-
munications. Both threads start at the beginning when the
keyboard program is initiated. There is a controller in the
MVC model program. It is necessary to provide a dedicated
listener for the Leap Motion sensor. The listener is managed
by the controller. It is added to the controller when the
program is started. In addition, the listener is removed before
the program ends.

The suggested keyboard size is 600 pixels in height and
600 pixels in width (see Figures 13 and 14). Each button is 70
pixels in height and 70 pixels in width. The gap between the
buttons is 30 pixels. The button size is designed to be larger
than the normal key size, so that it is easier for a disabled
user to select the number or letter. The gap is to prevent the
user from inadvertently clicking an incorrect button.

Fig. 13. Keyboard prototype

The proposed keyboard may also be used with other input
tools for disabled users, some of whom may have other
special tools for using computers. Scanning software is par-
ticularly useful for disabled users. With just one button, the
software can scan the screen from left to right horizontally
and then up and down vertically [13]. Users can select the
position by pressing a button. Eye tracking software may
also be used with the proposed keyboard. The larger button
size is designed to allow disabled users to click the buttons
more easily. Also, the larger gap between consecutive buttons
seeks to prevent them from selecting an incorrect key.

VI. CONCLUSION

In summary, Table IV gives the suggested setting for
the genetic algorithm (i.e., for generating the GA-based

Fig. 14. Testing the special virtual keyboard prototype

keyboard). The parameters are found based on the aforemen-
tioned performance analysis. It is suggested to set the initial
population size to 100 chromosomes, mutation probability
to 5 per cent and termination size to 1,000 chromosomes. A
virtual keyboard prototype has been built with the Model-
view-controller (MVC) model. The performance analysis
indicates that the proposed keyboard can outperform the
normal QWERTY keyboard by about 40 per cent in terms
of typing cost.

TABLE IV
SUGGESTED GA SETTING

Initial population 100 chromosomes

Mutation probability 5 percent

Termination size 1,000 chromosomes
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