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The Key Technology for Grid Integration of Wind Power: Direct Probabilistic
Interval Forecasts of Wind Power

XU Zhao WAN Can
( Department of Electrical Engineering The Hong Kong Polytechnic University Hong Kong China)

Abstract: The wind power is an important renewable energy but it has features of high volatility and uncertainty therefore a large
scale integration of wind power into power system will impose significant challenges in system operation. Accurate wind power predic—
tion is one of the key technologies to reduce the risk of its grid integration. Because of the nonstationarities and nonlinearities of wind
power series traditional point prediction methods cannot provide satisfactory prediction results. In contrast probabilistic interval based
wind power forecasting techniques can simultaneously quantify the prediction error and the associated probability thereby can more ef-
fectively support power system operation to cope with various uncertainties and risks. This paper firstly summarizes the latest develop—
ments in wind power forecasting techniques then proposes an Extreme Learning Machine ( ELM) and evolutionary computation based
method to directly generate wind power prediction intervals. Compared to the existing methods the advantage of the proposed method
is able to directly generate prediction intervals through one optimization process thus to largely simplify the model construction and a—
void prediction errors analysis. The proposed method has been tested with practical wind farm data in Denmark and the results demon—
strate that it can efficiently and accurately provide probabilistic prediction intervals of wind power.
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The critical challenge of wind power ' tions that are full of uncertainties. Consequently ac—

its high intermittency and uncertainty. In countries like
Denmark where the penetration hits already a fairly

high record close to 30%

wind production is a more critical challenge for power

the management of the

system operators in many aspects. Conventional power
generation technologies apart from occasional fail-
ures are flexibly dispatchable in the sense that future
production can be precisely planned in advance to meet
the demand. This is not the case with wind or solar

power which solely depends on the weather condi—

curate forecasts of the power productions of wind
farms for next few hours or days ahead become essen—
tial for their optimal integration into power systems.
Currently power systems in most countries have
the obligations to accept wind power completely. Thus
system operators have to empirically without specific
analysis entrust large amount of idle resources of high
costs to counterbalance the wind power variations and
ensure the system security. Therefore improvements of

wind forecasts have both technical and economic sig—



nificances to power system operators and electricity
consumers. Wind forecasts with poor accuracies lead
to highly risky operation situations. There have been
incidents happened in practice where poor forecasts
led to serious security events. As illustrated in Fig 1

a case in point happened in January 2005 Denmark

where a power imbalance of over 2 000 MW occurred
between the actual and forecasted wind generation due
to an extremely high wind speed that was not properly

forecasted beforehand *™* .
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Fig. 1 Daily Production Curve

The curves in Fig. 1 show the short-term point—
wise forecasts (up to 21. 5 h) for the severe storm at
2005. The first
forecasts show production capacity of about 2 000 MW

western Denmark on the 8th January

wind power was expected in the period between noon
and 6 pm. The actual production around 4 pm reached
no more than 200 MW

because most wind turbines shut down due to high

only a tenth of the estimate

wind speed ( >20 m/s) . The system operator Energi—
net. dk had struggled to activate all available reserves
to balance the system during the event ° .

The state-of-the-arts wind forecast methods fall
into several categories as follows ’

(1) Physical models i. e.the NWP ( numerical
weather prediction) methods;

(ii) Time series analysis models;

( iii) Advanced methods based on data mining and
machine learning techniques.

The NWP method relies on physical models com—
monly used in meteorological weather forecasts
and performs forecasts by numerically solving a set of
conservation equations considering global air system
parameters such as mass momentum and heat at giv—
en locations. The NWP model usually involves a spa—
tial grid containing local latitude longitude and eleva—

tion information with reasonable horizontal resolutions

to ensure the NWP accuracy. The method is less ef—
fective for the complex nonlinear systems such as the
forecast of wind speed due to the fact that they need
detailed system identification and data analysis at very
high computational costs. E. g. the Hong Kong Ob-
servatory provides NWP based weather forecast using
Operational Regional Spectral Model ( ORSM) on a
spatial grid of 20 km for inner domain and 60 km for
outer domain to provide 42-hour and 72-hour forecasts
respectively ©* The NWP method also suffers from the
insufficient details between the grid nodes. In con-
trast forecast methods in categories ii & iii which are
based on mainly a database of past wind and other me—
teorological data and no detailed system identification
data are expected to be more effective for the forecast
of wind fluctuations.

Short term wind prediction based on time series
models and statistical methods has been reported
in 77* . Autoregressive Models ( AR)
age ( MA)
( ARMA) models are frequently used to model linear

Moving Aver—
and Autoregressive Moving Averages
dynamic structures to depict linear relationships a-
mong lagged variables and to serve as vehicles for lin—
ear wind forecasting. The linear regression models can
be computationally efficient with however poor per—
formances due to the high volatility of wind power
time series and cannot fulfill the operation needs of
Different Neural Network ( NN)

based methods are also proposed for short term wind

power systems.
speed forecasts including e. g. fuzzy-neural network
function and recurrent neural net—

The NN based methods have shown

somewhat good performances for short term wind

radial Dbasis

5 9-11
works .

speed forecasting. However the NN models common—
ly suffer from a number of deficiencies especially with
respect to generalization local minima overtraining
and applicability to large scale systems. Nevertheless
most existing methods provide only a single point-wise
estimation of wind speed or power into future scope.
Accordingly using the forecasted results for power sys—
tem operation planning can imply a high risk due to
the high uncertainties involved in the actual wind vari—
ations as evidenced by practical experiences * .
Recognizing the importance and limitation of ex—
isting forecast methods this paper develops an innova—

tive probabilistic forecasting tool that can provide both



robust wind forecasts and quantified uncertainties sim—
ultaneously. Compared to existing methods in the
field the new method distinguishes itself in an integral
optimization approach to directly construct optimal Pls
without the prior knowledge statistical inference or
distribution assumption of forecasting errors required in
most traditional approaches.

The paper is organized as follows Section 1 in—
troduces the-state-of-the-arts probabilistic interval fore—
casting methods and formulation of the prediction in—
tervals for wind power. Section 2 focuses on the eval—
uation criteria of probabilistic prediction intervals.
Section 3 presents the proposed formulation of the op—
timal PI construction followed by case studies in Sec—
tion 4. Section 5 concludes the paper with several con—

clusions and future scope.

1 Probabilistic Prediction Intervals for Wind
Power

1.1 State-of-the-arts Probabilistic Forecasting
Methods for Wind Power
Traditional point forecasts of e. g. a wind farm

power production Y,,, at time ¢ for h hours ahead in—

t+h

volves finding a function f, such that
Yt+h =f}1( YtAh;Xth) + Ersh ( 1)
Where Y?h = ( Yz Yt—l Yt—l)

lagged values of the wind power series to be predicted

is a vector of

and X, , can be a vector of lagged exogenous variables
informing about the instantaneous weather conditions
around the measurement location e. g. ambient tem—
peratures.

Fora e 0 1

the a — quantile ¢, ,,,,( &) (or confidence interval) of

and an integer h=1 predicting

wind power Y, , given the information at time ¢ is de—

t+h

fined as finding the smallest value ¢,,, |,( @) such that

P( Yl+h Squh\[(a) ‘Xth) = Q. (2)
If given X, ,
Y

(a) = F''(a).

horizon h is therefore the forecast of ¢, ,,,,( @)

the cumulative distribution function F of

is increasing and known beforehand then ¢,

[ u
The quantile forecast at time ¢ for
deno—
ted as §¢,,,|, (a) termed as Prediction Interval
(PI) 727" . Eq. (2) defines the upper bound of PI
and the lower bound can be defined in a similar way.

Compared to the traditional point forecast the

probabilistic forecast methods generate a pair of pre—

diction intervals ( PIs) with associated confidence lev—
els that can effectively quantify the uncertainties of fu—
ture wind production thus enabling all power system
players to do e. g. beforehand preparation for possible
scenarios. This can significantly reduce the risks due
to high wind penetration in various operation and plan—
ning activities such as the wind farm control reserve
setting energy storage sizing unit commitment wind
power trading and so forth ‘™" .

Quite a few methods can be applied for probabi-
listic wind power forecast. 16 and 17 proposed a
quantile regression based method to estimate different
forecasting quantiles. Based on the point forecast re—
sults by well recognized systems such as AWPPS
( armines wind power prediction system) and WPPT
( wind power prediction tool) Pls are constructed
through a combined nonparametric probabilistic fore—
casting and adaptive resampling approach in 7 . Me-
teorological ensembles are adopted to generate predic—
tive distribution and Pls. The uncertainty of wind
power forecast is analyzed through the nonlinear power
curve and statistical analysis of wind speed prediction
errors in 18 . The conditional kernel density estima—
tion is applied to approximate the probability distribu—
tion of wind power series

Most existing methods of probabilistic forecast re—
ly on statistical analysis of point forecast errors to de—
velop Pls. Therefore these methods require several
major steps to construct the forecasting model ( inclu—
ding to construct the point forecast models) to ana—
lyze the point forecast errors and to finally estimate
and test the Pls. In addition prior assumption of fore—
cast error distribution is usually involved in these
methods. In view of these deficiencies this paper pro—
poses a new direct approach for PI forecast of wind

power based on ELM ( extreme learning machine) *

and particle swarm optimization ( PSO) *  simplify—
ing the Pl construction as one optimization step. Be-—

cause of ELM
drawbacks of the traditional NNs based methods such

the new approach overcomes many

as local minima overtraining and high commuting
costs etc.
1.2 Extreme Learning Machine

ELM is a novel learning algorithm dedicated for
single-hidden

( SLFNs) with extremely fast learning and superior

layer feedforward neural networks



generalization. Different from traditional gradient—
based training algorithms such as the Back-propagation
(BP) * ELM randomly chooses the input weights
and hidden biases

in the training process

which are not needed to be tuned
thus dramatically saving the
training time. Given a dataset with NV arbitrary distinct
samples { (v, #,) } i‘vzl
inputs and targets respectively ELM with K hidden

where x, e R " and ¢, e R " are

neurons and activation function ¢( *) can approximate

the V samples with zero error as follows:

ﬂ@p=;BMWJ%%J=wj=1“'M (3)

where a, = a, a, - a,

in

" is the weight vector
connecting the i" hidden neuron and the input neu—
rons B = By PBa
connecting the i" hidden neuron and the output neu-

rons b.denotes the threshold of the ;" hidden neuron

Bin "is the weight vector

and (@, *x; +b,) is the output of the i" hidden neu—
ron with respect to the input x;. Eq. (3) can be sim—
plified as
Hg =T (4)

where H is the hidden layer output matrix of the mod-
eled ELM and

Dl/'( a; "% +b,) Plag x +by) 0
H=g SN

qb( a, " xy+b,) p(ag xy+by) De\"xK
The i"column of H denotes the output vector of the "
hidden neuron with respect to the inputs x, = x,, x,

x. '. In addition

in

B is the matrix of output
weights and T is the matrix of targets.

With the weights a; and the hidden layer biases b,
randomly determined the hidden layer output matrix H
can be uniquely determined and consequently the esti—

b, and B, can be obtained by

.
mated parameters a;

[H(a; = a, b - b )8 -Tl=
min|[H(a, - a, by = b)B Tl (6)

which is equivalent to minimizing the cost function of
the traditional gradient-based learning algorithms used
in e. g. BP algorithm.

Training an SLFN using ELM is simply equiva—
lent to finding a unique smallest norm least-square so—
lution of the linear system in (4) i e.

B =H'T (7)
where H" is the MoorePenrose generalized inverse of

the hidden layer output matrix H which can be ob-

tained through singular value decomposition ( SVD)
method.

The advantages of the ELM algorithm are signifi-
cant. The traditional gradient based NNs learning al-
gorithms like BP always involve iterative training that
is time consuming. The ELM training features ex—
tremely fast speed because of the simple matrix com—
putation according to (7) and can always guarantee
the optimal performance. In addition it has many ad-
vantages such as avoiding overtraining and local mini—
ma etc
1.3 Formation of Pls
)}

relevant input variables and future target to forecast

Given a dataset { ( x, where x,and,; are
PI with nominal confidence (1 —«) of the future tar—
represented as I( x;) is defined as

IH(x) = Li(x) Ui(x) (8)
where L(x;) and U;(x;) denote the lower and upper

get t;

bounds of I7( x;) respectively such that the future tar—

get t, is expected to be covered by I ( x,) with the
probability (1 - a) .

2 Evaluation Criteria for Prediction Intervals

Different from the traditional point forecast meth—
ods the performance evaluation of probabilistic fore—
cast model cannot employ traditional indices like
NMAE ( normalized mean average error) etc. In—
stead the indices of reliability and sharpness are spe—
cially defined and applied * .

2.1 Reliability

Reliability refers to the ability of probabilistic
forecasts to fulfill the nominal probabilities. Under a
large number of e. g.20% forecasted quantiles ide—
ally 20% of the power output should be observed. The
reliability herein is measured by the deviation of ob-
served proportion from the theoretical one.

In principle the future targets ¢; are expected to
be enclosed by the constructed Pls with the nominal
coverage probability (1 — «) termed as PI nominal
confidence ( PINC noted quantitatively as Cpy.) . Pl
coverage probability measured by PICP ( noted quanti—

is a key indicator of the reliability
13 2

tatively as Ppcp)

for the constructed Pls defined as

N,
1 a

Prep zﬁzci (9)
ti=1
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where N, is the number of test samples and ¢! is the
indicator of PICP
target is enclosed by the produced PI
The PICP of derived Pls is expected close to the nomi—

which is equal to 1 if the future

otherwise 0.

nal confidence. Then average coverage error ( ACE

noted quantitatively as E,.;) can be calculated to as—

sess the reliability of PIs  defined by
Eyce = Poep = Coiye- (10)
Ideally the E,.; should be zero or as close to zero as

the higher
reliability of the constructed Pls will be resulted.
2.2 Sharpness

Sharpness refers to the ability of a probabilistic

possible. The smaller the absolute E, is

forecast to concentrate the probability of a future out—
come and can be calculated as the width of Pls 1. e.
5°(x) = US(x) —If(x). (1)
In the study we are interested in Pls with two quan—
tiles defined as ( 2)

sess the overall skill of constructed Pls to take into ac—
13 22

the interval score is used to as—
count the sharpness perspective The interval
score of PI I7( x;) for a single prediction point deno—

ted as Sc;( x;)

can be defined as

-2a8](x;) =4 L'(x;) —t, if ¢, <L(x;)

Sei(x) ={ - 2a87(x,) if1, e I(x,) -
-2a8i(x;) =4 t,-U(x,) ift,>Ux,)

(12)

The Sci( x,;) is for each prediction point and the over—

all score value Sc} is the average of Sc;'( x;) over the

entire test data

N,
w:i;wum (13)
The score awards narrow Pls provided the future
target is enclosed. Otherwise penalties should be ap-
plied. Including all properties of Pls the interval
score could assess the overall skill of forecasted Pls
but cannot quantitatively distinguish the contributions
of the two aspects. Nevertheless given Pls with simi—
lar reliability the smaller the absolute score gf‘ indi-
cates the higher sharpness and consequently the higher
quality of Pls.

3 Direct Construction of Pls

3.1 Objective
The core idea of the proposed method is to for—

mulate the PI construction as a multi-objective model

where the objectives addressing reliability and sharp—
ness of Pls are included. Although the interval score
accounts for reliability and sharpness it cannot quanti—
tatively distinguish the contributions of the two aspects
specifically. Moreover the score is not a dedicated in—
dex for reliability assessment anyhow. Therefore to
which should be pri-
ELM output weights B are opti-

emphasize the reliability aspect
oritized in forecasts
mized with respect to the objective F combining K.
and overall score gf( or noted quantitatively as S_,,.)

to optimize both reliability and sharpness of Pls at par—

ticular confidence levels 100(1 -a,) % i=1 2
n

minF = x| B, |+ A|Sc; | (14)
where |- | is the absolute value function and y and A

are importance weights of the reliability and overall
skill respectively. The weights y and A are simply set
as unit values in our study indicating that equal im—
portance is assigned to both objectives and this is not
unreasonable.

3.2 Particle Swarm Optimization

The objective function of the proposed approach
is non-differentiable and therefore solved by Particle
Swarm Optimization ( PSO) in our study which is a
heuristic optimization method and has been proved to
be an efficient robust and gradientdree optimization
algorithm *' . PSO also distinguishes itself from other
heuristic optimization methods by its strong searching
capability and fast convergence speed.

If the search space of PSO is D-dimensional and
the size of the particles population is S the i" particle
of the swarm can be represented by X, and the best
particle in the swarm 1i. e. the particle generating the
smallest objective function value is denoted as
P,. The previous best position i. e. the position with
the smallest objective function value of the i" particle
is denoted as P! and the position velocity of the ;"
particle is represented as V,. In each iteration the ve—
locity of each particle is computed and all the parti—
cles are updated accordingly

Vi:Vi+RI(P?_Xi) +R2(Pg_Xi) (15)
X, =X, +V, (16)
where i =1 2 S; R, and R, are random num-

bers within 0 ¢, and 0 ¢, respectively. The ve-

locity of the i" particle is a function of three compo—



the dis—

tance between the particle’s previous best position and

nents namely the particle’s previous velocity
current position and the distance between the swarm’s
best success and the particle’s current location. After
the updating the velocity are kept in the range
-V +V

max max

. The performance of each particle
is evaluated through the formulated objective function
(14).
3.3 The Training Procedure

The proposed method is actually a MOOP based
regression procedure to construct the optimal Pls. The
first step of implementation is to collect datasets for
training and test including historical wind power data
and wind speed and NWP information etc. With the
obtained training datasets the parameters of ELM in—
cluding the network structure input weights a, and bi-
ases b, are determined. As the decision variables in
PSO a population array of particles for the output
weights of ELM p,, are prepared for evolution
process. Velocities V in the search space are initialized
as well. Then it goes into the PSO iteration to opti—
mize the formulated forecaster. Finally the resultant
forecaster is evaluated based on the test data.

Because of the superb mapping capability of
ELM

clude various input information or output forecasts at

the proposed algorithm is highly flexible to in—

various lookahead steps. The proposed approach is in—
deed performance-oriented and the quality of con-
structed Pls with respect to reliability and sharpness is

ensured.
4 Case Studies

The highly chaotic climate systems are responsi—
ble for the high level of uncertainties in wind power
generation. To comprehensively validate the effective—
ness of the proposed approach it is tested by the wind
farm on Bornholm Island in Denmark with a total in—
stalled capacity P, of 30 MW approximately. Wind
power generation data with one-hour resolution of the
wind farm is used in the study covering the period
from February to December 2012.

When the look-ahead time is shorter than a few
hours the statistical approach can usually outperform
the NWP-based technique. Without loss of generality
in the case study we just focus on one-hour and two-—
hour ahead wind power forecasting which provide es—

sential information in dispatching generation and ancil-

lary services in practice e. g. in the Nord Pool mar—
ket in Scandinavia the hourly market plays a key role

Notably the

wind power series is used as the inputs alone to the

in maintaining the system balance *

proposed approach to conduct the prediction. For lon—
ger look-ahead time other relevant data such as the
NWP information can be incorporated as the input eas—
ily to enhance the accuracy.

To evaluate the performance of the proposed

there PI

forecasting techniques including the climatology meth—

probabilistic interval forecasting approach
od the normal forecast method and the persistence
method are used to estimate Pls using the same data—
sets for benchmarking. The climatology is regarded as
the most widely applied benchmark for probabilistic in—
terval forecasting of weather—elated processes e—
. g. wind power forecasting herein. It is actually based
on the unconditional predictive distribution obtained
from all historical wind power data. In the normal ap-
proach the normal distribution is used to estimate Pls
and its mean and variance can computed from the ob-
served data. Both the climatology and normal approa—
ches are unconditional predictions and cannot properly
address the heteroscedasticity of wind power series.
The two approaches are easy to outperform for short
look-ahead time forecasting. For point forecasting the
persistence forecast method is a widely used bench-
mark and is known to be difficult to outperform for
short look-ahead time. The persistence based probabi—
listic forecast model is used as benchmark herein
which can be a fair and popular benchmark for short-
term forecasting ” '° . The forecast error by this meth—
od is assumed to be random and normally distributed.
Its mean is given by the last available power measure—
ment and the variance is computed using the latest
observations.

In the case study we focus on high confidence PI
forecast. This is because decision makers in power
systems prefer information of high confidence levels in
their daily operation. Specially Pls with 90% and
99% confidence levels are studied in this study. The
wind power data from February to September 2012 is
used for training the proposed and the benchmark
models. The rest data are used for testing purpose.

Tab. 1 and Tab. 2 compare the performances of
PlIs generated by different methods in terms of ACE

PICP and overall score.



Tab. 1 Evaluation of Constructed Pls with
One-Hour Horizon
Coye /% Methods Pocp /% Excp/%  Sep!%
Proposed Method 90. 60 0. 60 -5.12
Climatology 88. 84 -1.16 -16.35
% Normal 87.70 -2.30  -19.59
Persistence 88.83 -1.17  -5.79
Proposed Method 98. 86 -0.14  -0.99
Climatology 97.27 -1.73 -1.84
” Normal 97.95 -1.05  -2.09
Persistence 96. 18 -2.82 -1.37
Tab.2 Evaluation of Constructed Pls with
Two-Hour Horizon
Crine /% Methods Pocp!%  Epepl%  Seel%
Proposed Method 90. 24 0.24 -7.62
Climatology 88. 84 -1.16  -16.35
% Normal 87.70 -2.30  -19.59
Persistence 88.55 -1.45 -9.27
Proposed Method 97.72 -1.28 -1.24
Climatology 97.27 -1.73 -1.84
% Normal 97.95 -1.05  -2.09
Persistence 96. 18 -2.82  -1.98

The proposed method outperforms all other meth—
ods for both one and two hour ahead forecasts. It pres—
ents the best reliability with smaller average absolute
ACE. It also provides the best overall score. E.g. for
Cone =90%. the Ppep E, o and S, of the proposed
method are 90. 60% 0.60% and -5.12% respectively
for one hour ahead forecast. The persistence method
generally presents the second best performance while
the other two methods perform very poorly. The Pyp
E, . and S, generated by the persistence method are

88.83%

hour ahead forecast.

-1.17 and -5.79% respectively for one

Fig. 2 and Fig. 3 present the Pls generated by the
proposed method for one and two hour ahead forecasts
at Cpne =90% . The effectiveness of the proposed ap—
proach is well demonstrated in the figures where the
actual wind productions are well enclosed by the con—
structed Pls. Obviously Pls with two-hour look-ahead
time are wider than that of one-hour look-ahead time
which can be understood that the longer time predic—
tion would have higher uncertainty.

Among the benchmarks the climatology and nor—
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Fig. 2 Pls with Nominal Confidence 90% and
One-Hour Look-ahead Time Obtained by
the Proposed Approach in October 2012.
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Fig. 3 PlIs with Nominal Confidence 90% and
Two-Hour Look-ahead Time Obtained by
the Proposed Approach in November 2012.
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mal ones are based unconditional predictive distribu—
tion of the historical data therefore cannot reflect the
actual properties of the wind production. The persist—
ence model adopts relatively advanced modeling of the
uncertainties involved in the time series and therefore
can provide much better forecasts. Still the proposed
method exhibits the best forecasting performance due
to the optimization and ELM based approach which
possesses strengthened generalization and flexibility.
The method can also be extended to different predic—
tion horizons by incorporating different external infor—
mation such as NWP. With the unique advantages and
outstanding performance the proposed method can
provide accurate and meaningful information to sup-—
port various decision making problems in power sys—

tems such as unit commitment and system dispatch.
5 Conclusions

Wind power forecast is critical challenging yet

due to its nonstationarites and nonlinearities. Tradi—



tional point prediction cannot provide satisfactory per—
formance and probabilistic interval forecast presents a
new and effective way to quantify the uncertainties in—
volved in wind power forecast. Without the need of
prior analysis or assumptions about forecasting errors

this paper proposes a novel direct approach to con—
struct prediction intervals of wind power. Based on
extreme learning machine and particle swarm optimiza—
tion the proposed method produces Pls of high quality
in one single optimization step which can not only
guarantee the optimal performance but also greatly re—
duce the computing efforts distinguishing the method
from most existing methods. The method presents an
excellent generalized framework of probabilistic wind
power forecasting with high flexibility and extendibili—
ty. Future work is underway to extend the method for

multiple-step forward forecasting.
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