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Abstract—In this paper, we propose a generalized correlation-
delay-shift-keying (GCDSK) scheme for noncoherent chaos-based
communications. In the proposed scheme, several delayed versions
of a chaotic signal are first produced. Some of them will be mod-
ulated by the binary data to be transmitted. The delayed signals
will then be added to the original chaotic signal and transmitted.
At the receiver, a simple correlator-type detector is employed to de-
code the binary symbols. The approximate bit error rate (BER) of
the GCDSK scheme is derived analytically based on Gaussian ap-
proximation. Simulations are performed and compared with the
noncoherent correlation-delay-shift-keying (CDSK) and differen-
tial chaos-shift-keying (DCSK) modulation schemes. The effects
of the spreading factor, length of delay, and the number of delay
units on the BER are fully studied. It is found that GCDSK can
achieve better BER performance than DCSK under reasonable
bit-energy-to-noise-power-spectral-density ratios.

Index Terms—Chaos communications, correlation-delay-shift-
keying, noncoherent communications.

I. INTRODUCTION

WHEN a narrow-band signal modulates a wide-band car-
rier, the signal bandwidth will be increased substantially.

Also, the power spectral density (psd) will be lowered accord-
ingly without affecting the bit error performance. Because of
the low psd, the signal can be hidden under the background
noise, thus guaranteeing a low probability of detection by unin-
tended parties. In addition, the wide signal bandwidth can pro-
vide antijamming capabilities when appropriate demodulation
techniques are applied. Such features, namely, low probability
of detection and antijamming, are typical characteristics pos-
sessed by spread-spectrum communication systems [1].

Recently, chaotic signals, having a wide-band nature, have
been proposed as carriers for spread-spectrum communications.
A number of coherent systems have been suggested and studied
[2]–[5]. For a coherent system, an exact replica of the chaotic
signalneeds tobereproducedat the receivingend.Becauserobust
synchronization techniques are yet to be developed, coherent
systems are still not realizable in a practical environment [6].

Noncoherent communication schemes, which do not require
the reproduction of the chaotic signals at the receiving end, are
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more feasible in practice. The first noncoherent chaos-based
digital communication scheme, namely, differential chaos-shift-
keying (DCSK) scheme, was proposed by Kolumbán et al. [7].
In DCSK, a reference chaotic signal is sent, followed by the
same signal modulated by a binary symbol. At the receiver,
these two pieces of chaotic signals are correlated. The binary
symbol is then decoded based on the sign of the correlator
output [5]–[9]. Another noncoherent detection technique, which
is applicable to chaos-shift-keying (CSK) modulation scheme,
has been proposed by Hasler and Schimming [10]. The technique
is based on an optimal classifier which optimizes the bit error rate
(BER) by selecting the symbol that minimizes the a posteriori
probabilities. The computational complexity of the classifier is
further studied by Lau and Tse [11], and an approximate-optimal
detection scheme is then proposed [12]. In addition, Tse et
al. have reported another noncoherent detector for CSK [13].
The detection principles are formulated on the reconstruction
of the return map of the chaotic signals and the regression
method.

Besides the aforementioned basic noncoherent detection
schemes, a number of DCSK-based derivatives have evolved
to further enhance the DCSK scheme. For example, fre-
quency-modulated DCSK (FM-DCSK) has been proposed to
overcome the varying bit-energy problem in DCSK [14], [15].
Instead of feeding a chaotic signal into a DCSK modulator, the
chaotic signal is applied to modulate the frequency of a sinu-
soidal carrier, producing a chaotic FM signal. By sending the
chaotic FM signal to a DCSK modulator, an FM-DCSK output
is produced which has a constant amplitude, and hence constant
power and energy per bit duration. Quadrature CSK (QCSK),
a multilevel version of DCSK, has been investigated by Galias
and Maggio [16]. Based upon the generation of an orthogonal
of chaotic functions, QCSK allows an increase in data rate with
respect to DCSK, with the same bandwidth occupation. In the
DCSK scheme, because of the similarity between the reference
and information-bearing chaotic samples, the bit rate of the
system can be easily derived. This may not be very desirable
if we want to hide the signal away from unintended parties.
In the permutation-based DCSK (P-DCSK) scheme [17], a
permutation transformation is introduced in the modulator to
shuffle the chaotic samples, destroying the similarity between
the reference and information-bearing samples in the DCSK
system. By doing so, the bit rate is made undetectable from
the frequency spectrum, thereby enhancing the data security.
Correlation delay-shift-keying (CDSK) scheme is similar to the
DCSK scheme in that a reference chaotic signal is embedded in
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Fig. 1. CDSK system. (a) Transmitter. (b) Receiver.

the transmitted signal [18]. Unlike in DCSK, however, the ref-
erence signal and the information-bearing signal are now added
together with a certain time delay in CDSK. As a consequence,
each transmitted signal sample includes one reference sample
and one information-bearing sample, and the transmitted signal
sample is never repeated. Since no individual reference signal is
sent, the bandwidth efficiency is improved. Moreover, by elim-
inating the switch required to perform the switching between
the reference chaotic signal and information-bearing signal in
the DCSK system, CDSK allows a continuous operation of the
transmitter. Also, the transmitted signal is more homogeneous
and less prone to interception. However, because the sum of
two chaotic signals is sent, more uncertainty (interference) is
produced when the received signal correlates with its delayed
version at the receiving side. Therefore, the performance of
CDSK is worse than that of DCSK.

In this paper, we propose a generalized CDSK (GCDSK)
scheme. The transmitted signal is composed of a reference
chaotic signal and a number of delayed chaotic signals, some of
which are modulated by the data being sent. Such a construction
of the transmitted signal allows the transmission of more than
one reference signal and more than one information-bearing
signal simultaneously. The useful signal component, as well as
the interference component, will be enhanced at the receiving
side. We show that with appropriate choice of system parame-
ters, the bit error performance of the proposed system improves
over the CDSK scheme. The system also inherits the merits
of the CDSK system such as being switchless and allowing
continuous operation of the transmitter. The organization of the
paper is as follows. In Section II, the operation of a baseband
implementation of the CDSK system is briefly reviewed, and
in Section III, the proposed GCDSK scheme is described.

Assuming a Gaussian correlator output, an approximate BER is
derived analytically in terms of the spreading factor, length of
delay and the number of delay units. Finally, using the Cheby-
shev map as the chaotic generator, we perform simulations
for the GCDSK system and present the results in Section IV.
Besides comparing with the analytical results, the simulation
results for the GCDSK scheme are also compared with those of
the DCSK and CDSK schemes.

II. REVIEW OF CDSK SCHEME

Fig. 1 shows the transmitter and receiver structures of a
CDSK system [18]. Denote the th transmitted symbol by

and assume that “ ” and “ ” are transmitted
with equal probabilities. First a chaotic signal, denoted by

, is generated in the transmitter. The transmitted signal,
, is the sum of the chaotic signal and the delayed version

of the signal, , modulated by the symbol ,
where denotes the delay, i.e.,

(1)

Denote the spreading factor by , i.e., chaotic signals , are
sent within one bit duration. Consider the th transmitted symbol

and the transmitted signals related to it. For
, the transmitted signal equals

(2)

in which the reference signal for the th symbol is embedded,
and with represents the symbol modulating the delayed
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Fig. 2. Block diagram of a generalized CDSK communication system.

chaotic signal component. Further, during the time when
, the transmitted signal

(3)

now contains the information-bearing part for the th
symbol. Therefore, by correlating the chaotic signals in these
two time intervals, the th transmitted symbol can be decoded.

Assume that the transmitted signal is passed through an addi-
tional white Gaussian noise (AWGN) channel with a two-sided
power spectral density . The received signal, denoted by

, is given by

(4)

where denotes the AWGN signal with zero mean and vari-
ance . At the receiving side, the received signal correlates
with an -sample-delayed version of itself within each symbol
duration.

The output of the correlator at the end of the th symbol du-
ration, denoted by , equals

(5)

where , and denote the required signal, the intrasignal in-
terference and the noise component, respectively, and are given
by

(6)

(7)

(8)

Note that in the above equations, the function computes the
integral part of . As in a DCSK system, the required signal in
(6) is a time-varying component, depending upon the bit energy
of the transmitted signal. The intrasignal interference, similar
to the interuser interference in a multiple access system [19],
originates from the correlation between the chaotic samples and
may contribute positively or negatively to the required signal.
The net effect is that more uncertainty on the correlator output
is produced. Finally, the noise component comes from the noisy
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channel. Based on the correlator output, the symbol is decoded
according to the following rule

if
if

(9)

Because of the additional uncertainty due to the intrasignal in-
terference, the performance of the CDSK system is always lower
than that of the DCSK system. In particular, under a noiseless
condition, the correlator for the CDSK receiver produces

(10)

Under the same condition, the correlator in the DCSK receiver
gives only the required signal component, i.e., [6]. By com-
paring these two expressions, we may conclude that DCSK out-
performs CDSK in a noiseless environment.

III. GCDSK SCHEME

A. Transmitter Structure

We propose a generalized CDSK (GCDSK) communication
system, as shown in Fig. 2. The transmitter contains a chaotic
signal generator and delay blocks. We assume that

because when , the GCDSK system degenerates to the
CDSK system. Denote the minimum delay by . The chaotic
signals with delays are modulated by the data se-
quence , whereas the signals with delays
are unmodulated. Finally, the transmitted signal is formed by
adding the original chaotic signal and all the delayed signals. As
in Section II, we define as the spreading factor, i.e., the number
of transmitted signals in each bit duration. During the th bit du-
ration, i.e., for time , the
transmitted signal is given by (11), as shown at the bottom of
the page, where in each case, the first and second terms repre-
sent summation of all the unmodulated and modulated chaotic
signals, respectively.

B. Receiver Structure

As in Section II, we assume an AWGN channel and we use
a similar correlator-type detector. The only difference in the

correlator is that only terms (assuming ) will
be added in the summation block. Although part of the useful
signal component will be lost by summing only terms,
the intrasignal interference component will also be reduced be-
cause the appearance of the bit value will be avoided in
the received signal for . For the th symbol, the corresponding
output of the correlator equals (12), as shown at the bottom of
the page, where

(13)

(14)

(15)

if is even

if is odd
(11)

if is even

if is odd

if is even
if is odd

(12)
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(16)

(17)

(18)

with and denoting the
sets of required signal, the intrasignal interference and the noise
component when is even and odd, respectively. Based on the
value of , the symbol is decoded according to (9). It can be
observed that when is small compared to , the useful signal
component in the GCDSK receiver is approximately
times larger than that of the CDSK case. Although both the in-
trasignal interference and the noise component increase com-

pared with the CDSK case, their effect can be compensated by
the increase in signal component. Therefore, with appropriate
values of and , GCDSK can be designed to outperform
CDSK.

1) Gaussian-Approximated BERS: In our paper, we make
use of the Chebyshev map of degree 2 to generate the chaotic
signal. The map is given by

(19)

and its correlation properties have been reported previously [6],
[20]. Assuming that the chaotic signal is stationary, it is
readily shown that for a given transmitted symbol , the mean
value of the correlator output equals

(20)

where represents the expectation operator and

(21)

If the conditional correlator output follows a Gaussian distribu-
tion, the approximate BER for the GCDSK system can then be
derived analytically and is given by (22), as shown at the bottom
of the page (see Appendix A for details), [see (23), shown at the
bottom of the page], and the variables , and the func-
tions are defined as in Appendix A.

IV. RESULTS AND DISCUSSIONS

In this section, we present our findings on the bit error perfor-
mance of the GCDSK system. We denote the average bit energy
by which can be readily shown equal to

(24)

For various average-bit-energy-to-noise-psd ratios, we
simulate the GCDSK system and record the BERs. Also, we
compute the approximate BERs using (22). We then compare
our results with those derived from the CDSK and DCSK sys-
tems whenever appropriate.

A. Effect of Delay

First, we investigate the effect of the delay on the bit error
performance. Fig. 3 plots the BER of the CDSK system to-
gether with that of the GCDSK system with and .

when

when
(22)

when

when

(23)
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Fig. 3. Simulated BER versus delay L for CDSK and GCDSK systems. � =

100.

A spreading factor of 100 is used. It is observed that the bit
error performance for the GCDSK system degrades as the delay

increases. As stated in Section III-B, the correlator in the
GDCSK receiver computes the sum of terms before
deciding upon whether the received symbol is a “ ” or “ .”
Hence, the correlator output becomes more unreliable when the
number of terms reduces due to an increase in , thereby in-
creasing the BER. For the CDSK system, the number of the
terms used in the correlator block is fixed at and is independent
of the delay . Therefore, the bit error performance of the CDSK
system is found to be unaffected by the delay . Comparing the
CDSK and GCDSK systems, it can be observed that for the same

, the GCDSK system outperforms the CDSK system with
delay values up to 50.

In Fig. 4, the simulated BER is plotted against for the
CDSK and GCDSK systems. The spreading factor is kept at 100.
Again, it is shown that for a fixed , the BER for the CDSK
system is hardly affected by the delay whereas the BER for
the GCDSK system increases as increases. As expected, the
BER for both systems improves with increasing .

B. Effect of the Number of Delay Blocks

Recall that in the GCDSK transmitter, the signal from the
chaos generator is added to delayed chaotic signals (some
are modulated by the symbol to be sent) before transmission.
In Fig. 5, we plot the simulated BER against . (Note that
the CDSK system corresponds to the case where .) A
spreading factor of 100 is used. It is shown that for a fixed

value, the BER reaches an optimal value at a certain
value of . Specifically, when increases, the average bit en-
ergy and the detected signal component given by (24) and (20),
respectively, increase initially. Although the intrasignal interfer-
ence and the noise power also go up for a given , there
is a net improvement in the signal quality initially, thereby im-
proving the BER. As the value of is further increased be-
yond the optimal point, the percentage increase in the detected
signal component is overshadowed by the degradation due to
intrasignal interference and noise. Therefore, the BER starts to
degrade for large values of .

Fig. 4. Simulated BER versus E =N � � = 100. (a) CDSK system.
(b) GCDSK system with M = 6.

C. Effect of Spreading Factor

Next, we study the effect of the spreading factor on the
bit error performance. Fig. 6 plots the simulated BER versus
the spreading factor. A delay value is used. As in
other noncoherent chaos-based communication systems, it is
observed that the BER improves initially before an optimal
point is reached [13], [18]. Apparently, the gain in the signal
component is significant as the spreading factor first increases.
Further increasing the spreading factor beyond the critical
point degrades the performance because the increase in noise
component become more prominent. It is also found that for
different combinations of and , the corresponding
optimum values of are different.

D. Comparison of the Simulated and Gaussian-Approximated
BERS

Fig. 7 compares the simulated and Gaussian-approximated
BERs for the CDSK and GCDSK systems. (See Appendix B
for the derivation of the Gaussian-approximated BER for the
CDSK system.) A spreading factor of 100 is used. In Fig. 7(a),
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Fig. 5. Simulated BER versus M for the CDSK (M = 2) and GCDSK
systems. � = 100. (a) L = 1. (b) L = 5.

Fig. 6. Simulated BER versus spreading factor for the CDSK and GCDSK
systems. L = 1.

it is observed that for the CDSK system, the simulated and
Gaussian-approximated BERs are close when the delay is

Fig. 7. Simulated and Gaussian-approximated BERs versus E =N . � =
100. Simulated results are plotted as solid lines and Gaussian-approximated
results are plotted as dotted lines. (a) CDSK system. (b) GCDSK system with
M = 6.

large, which is in good agreement with the results reported by
Sushchik et al. [18]. For the GCDSK system with , the
discrepancy between the simulated and Gaussian-approximated
BERs is quite significant when is large. When we ana-
lyze the statistics of the correlator output from the simulation re-
sults, it is found that the conditional means and variances match
with those derived in Appendix A. However, the distribution of
the conditional correlator output does not follow a Gaussian dis-
tribution.

E. Comparison With DCSK System

Fig. 8 plots the simulated BERs of the GCDSK and DCSK
systems. For the DCSK system, a spreading factor of

is used. It can be observed that with a delay and
a spreading factor of , the GCDSK system can achieve
similar BER performance as the DCSK system. In particular,
when is lower than 16 dB, the GCDSK system slightly
outperforms the DCSK one.
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Fig. 8. Simulated BER versus E =N for the GCDSK (L = 1;M = 6) and
DCSK systems.

In Fig. 9, the simulated BERs are plotted again for the CDSK,
GCDSK, and DCSK systems. is used for all systems
and a delay of is employed for the CDSK and GCDSK
systems. It is found that the CDSK system gives the worst BER
and is approximately 2 dB worse than the DCSK system. For the
GCDSK system, the BERs are about the same for
and . Its performance is similar to that of the DCSK system
and is better for values below 16 dB.

V. CONCLUSION

In this paper, we develop and study in detail a GCDSK scheme
for noncoherent chaos-based digital communications. We also
compare the BER of the proposed system with two previously
studied noncoherent chaos-based communication schemes,
namely, CDSK scheme and DCSK scheme. Results show that
the CDSK scheme gives the worst BER and is approximately
2 dB worse than the DCSK scheme. For the GCDSK scheme,
the BERs are about the same as the DCSK scheme and are
better for values below 16 dB. Further, we find that a
simple Gaussian approximation is not sufficient to model the
conditional correlator output at the receiver end. Hence, a more
accurate model should be further investigated. In addition, as
mentioned in Section III-B, part of the useful signal component
is lost as a result of summing only terms in the receiver.
The GCDSK system should thus be evaluated when a receiver
that makes use of all useful signal component, i.e., terms, is
employed for demodulation.
Finally, it is also worthwhile to explore the possibility of ex-
tending the GCDSK scheme to allow multiple users within the
system. One possible approach to differentiating the users is by
assigning different delays to different users. At the receiving
end, appropriate delays will be set to ensure that the data
symbols of the desired user are decoded. Since different users
are using different delays, the combination of the delay values
would have a major effect on the system performance. Hence,
various sets of delay values should be tested in optimizing the
results.

Fig. 9. Simulated BER versus E =N for the CDSK, GCDSK, and DCSK
systems. � = 100 for all systems. L = 1 for the CDSK and GCDSK systems.

APPENDIX A
DERIVATION OF BERS FOR GCDSK SYSTEM BASED ON

SIMPLE GAUSSIAN APPROXIMATION

All symbols are defined as in Section III. Without loss of gen-
erality, we consider the probability of error for the th symbol
when all delay units at the transmitter side begin generating
chaotic signals. Based on (12)–(18), it is readily shown that for
a given transmitted symbol , the mean value of equals

(25)

where denotes the expectation operator and

(26)

In the evaluation of the variance of , terms con-
taining appear. For the particular map

that we are using

if
if

(27)

Thus, we derive the variance of under two different sce-
narios: and . Note that when a different map
is used, different nonzero terms containing may appear.

When , the variance of can be shown equal to

(28)

where denotes the variance operator, and [see (29)–(34)at
the bottom of the next page]. For the case when , we
define

(35)

(36)

where the function computes the integral part of . The var-
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iance of can be shown equal to

(37)

In this case, it can be observed that the variance of is
independent of .

If follows a Gaussian distribution for a given transmitted
symbol , the approximate BER of the GDCSK system can
be found as shown in (38) at the bottom of the page, where
[see (39) at the bottom of the page] and represents the
complementary error function [1].

APPENDIX B
DERIVATION OF BIT ERROR RATES FOR CDSK SYSTEM BASED

ON SIMPLE GAUSSIAN APPROXIMATION

All symbols are defined as in Section II. Without loss of gen-
erality, the probability of error for the th symbol is considered.

(29)

when
when

(30)

when

when

(31)

(32)

when

when

(33)

when

when
when
when

when

when

(34)

when

when
(38)

when

when

(39)

(40)

when

when

when

(41)
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The derivation is similar to that of the GCDSK system and will
not be shown here. In summary, we have (40) and (41), as shown
at the bottom of the page, where

(42)

(43)

(44)

Note that for the case , the variance of can be
rewritten as

(45)

which is independent of and can be shown equal to that ob-
tained by Sushchik et al. [18]. The only difference is that the
value of is different for different maps (symmetric tent
map used by Sushchik et al. and Chebyshev map used here). The
Gaussian-approximated BER can then be obtained similarly as
in (38).
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