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Minimum description length neural networks for time series prediction
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Artificial neural networkgANN) are typically composed of a large number of nonlinear functioesiron$
each with several linear and nonlinear parameters that are fitted to data through a computationally intensive
training process. Longer training results in a closer fit to the data, but excessive training will lead to overfitting.
We propose an alternative scheme that has previously been described for radial basis fuR&ENVe
show that fundamental differences between ANN and RBF make application of this scheme to ANN nontrivial.
Under this scheme, the training process is replaced by an optimal fitting routine, and overfitting is avoided by
controlling the number of neurons in the network. We show that for time series modeling and prediction, this
procedure leads to small modéfew neurongthat mimic the underlying dynamics of the system well and do
not overfit the data. We apply this algorithm to several computational and real systems including chaotic
differential equations, the annual sunspot count, and experimental data obtained from a chaotic laser. Our
experiments indicate that the structural differences between ANN and RBF make ANN particularly well suited
to modelingchaotictime series data.
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[. INTRODUCTION equivalent of basis functions in the nomenclature of radial
basis functions Often, much to the chagrin of statisticians,

The minimum description length principle states that thethe number of neurons, or the number of parameters, will
model that provides the most compact description of a timeapproach or exceed the number of data from which the
series is best. It is an information theoretic incarnation ofmodel is constructedl12]. Parameter estimation for neural
Ockham’s Razor: “plurality should not be posited without networks is therefore extremely nonlinear and occasionally
necessity.” overdetermine@11]. To prevent overfitting one will typically

Estimates of minimum description lengfDL ) [1] have  only allow the fitting algorithm to continue for some finite
been applied to construct radial basis time series md@éls (and relatively shojttime, known as the training time. Over-

In fact, it is easy to see that the technique describel®]n fitting is therefore avoided because the model parameter val-
may be applied to any pseudolinear nonlinear mg8&lA  ues are not optimal. This inevitably leads to a large number
generalization of MDL for radial basis modelacluding  of distinct local minima and one is often unsure that perfor-
nonlinear model parameters has also been desclitjedl- mance for a particular model is typical.

though computationally more expensive, this scheme has Sporadic applications of information theoretic concepts to
been shown to be suitable for modeling a wide range otddress the problem of model selection have appeared in the
dynamic nonlinearity from time series dd#—6]. neural network literature. In 1991, Foddl3] applied an in-

Application of a limited form of MDL for polynomial formation criterion introduced by AkaiKé 4] to estimate the
models was explored by Brown and colleagligsand ex- size of neural networks for binary classification problems.
tended to the general situation [iB]. For rapidly sampled However, this approach does not readily extend to time se-
systems with low noise it was shown that MDL polynomial ries prediction. We also note that the penalty term of the
models are capable of reconstructing polynomial nonlineariAkaike information criterion is “slacker” than MDL, there-
ties[8]. However, extrapolation or application to nonpolyno- fore the optimal models obtained with this criterion tend to
mial systems remains poor. be larger. For time series prediction we have found that this

Within the engineering community, a radial basis functionproduces excessively large models that still overfit the data.
network implementation of description length was describecdHowever, we do support the rationale expoundefdLBj that
recently by Leonardis and Bisch®]. In contrast to Judd the choice of model selection criteria is partly a philosophi-
and Mees[2], Leonardis and Bischof start from an overly cal one. In practice one often selects the criterion that works
complex model and selectively prune unneeded functions. best for the given data.

Conversely, neural network analysis is perhaps the most Predictive MDL has been described by Lehtokangas and
popular tool for modeling nonlinear phenomenon yet appli-colleagueq 15,16 and implemented for autoregressiieb|
cation of information theoretic techniques for model selec-and multilayer perceptrofil6] networks. Unlike the model
tion is not well accepte@10]. Nonetheless, performance of selection criterion we introduce here, predictive MDL has a
neural networks is notoriously dependent on successful traireonstant cost for each model parameter and is therefore simi
ing of the mode[11]. Typically, a neural network will con- lar to the Bayesian information criterfa 7].
sist of a very large number of nonlinear “neurongthe Leung and colleagues examined prediction of chaotic

time series with radial basis function networks and applied
several criteria to determine model s[4®]. They concluded
*Electronic address: ensmall@polyu.edu.hk that a singular value decomposition based form of cross-
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validation performed best for model size selection, and MDL
performed extremely badly. Their estimate of MDL appeared
to be a decreasing function of model size, with no global
minimum. However, this violates the minimum description
length principle that there is some optimal finite model size.
Therefore, their estimate of MDL was clearly performing
poorly [10]. E(k)
In this paper we suggest an alternative implementation of
MDL. We also propose a fitting algorithm that deviates from Model Size &
the standard approach for neural networks. When building a

heural network, one typically _se_lec’_ts some fixtzige num- description length of a time seri&(k) is the sum of the descrip-
ber of basis fgnctlons and |n|ft|allzes _the parameters raNGon length of a model of that time seridé4(k) and the description
domly. The weights of the basis functlo!’]s can then be SeFength of the model prediction errois(k). As model sizek in-
lected W|th star}dard_least squa[esj. Nonlinear parameters creasesE(k) decreases bub (k) increases. The MDL principle
are then fitted iteratively using a time consuming procedur@ays that the optimal model size is that which minimizes the sum
such as back-propagati¢t9]. Typically the number of pa- D (k) =M (k) + E(K).

rameters(including both the weights of the individual neu-

rons and nonlinear parameters associated with each ﬁe“ro\/nersely, if the model is podiproduces large errorsr is too

is large and given sufficient time, back-propagation will |56 “then the description of the model and the model pre-
yield an arbitrarily close fit to the daf@0]. The resultis @ jiction errors will be large.

model that is overfit for a particular data set and generalizes Typically there is a trade off. As model sifeincreases
poorly: a “britile” model. To avoid overfitting, back- e model prediction errors decrease—for an optimal model
propagation is typically terminated when cross validationyhis must be the case. Conversely larger models are more
[21] indicates an optimal result. However, the combinationcommex and require a lengthier description—this follows
of cross validation and back-propagation is time consuming,om the definition of description length. L&(k) be the

and data intensive. One is usually forced to surrender half thgOst of specifying the model prediction errors avidk) be

available data for cross \_/qlidation purposes. - the cost of describing the model. Intuitively, one can see that
We propose a model fitting algorithm which yields a goodE(k) is a decreasing function of and M (k) is increasing.

solution for any fixed _nymber of model paramgt&émau- The description length db (k) of a given time series utiliz-
rons, anq we allow trgunmg t(.) proceed until Fh_e fit appearsing this particular model is then uniquely defined 2ék)
to be optimal. We avoid overfitting by constraining the num- _ M (K) + E(K) [22]. The minimum description length prin-

ber of neurons in the network to minimize the descr|pt|onCiple states that the optimal model is the one for wHi{tk)

length of the model. This leads to neural networks that are - . . . )
often far smaller than those observed in the literature, an? Eg"Tal' Typical behavior o&(k) andM(k) is depicted

dynamic behavior that is both realistic and repeatable. Fur- Let {y;}" , be a time series ok measurements and let

thermore, by avoiding both back propagation and cross vali- Yiri=1 ) . .

dation our algorithm is not computationally expensive andf (Yi-1.Yi-2, - .- ¥i—qa;Ay) be a scalar function ofl vari-

utilizes available data efficiently. ablgs that is cqmpletely described by th@arameters\ .
Section Il describes the minimum description length prin—Deflne the prediction errce; by

ciple in more detail and derives the expression we use to

compute this quantity. Section Il discusses artificial neural e=f(Yi-1.Yi—2, - - Yi-d: AW Vi

networks and introduces the modeling algorithm we utilize

in this paper. Finally, Sec. IV presents some applications of et A, be the solution of

this algorithm to computational and real time series.

Mik)

Cost (bits)

FIG. 1. Description length as a function of model size. The
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Il. DESCRIPTION LENGTH mA'knzl € (1

Consider two parties separated by a communication chan-
nel. The first party(Bill) has access to a time series andfor a fixedk. For anyA,=(X\{,\5, ... ,A) the description
wishes to transmit the data to the second péBen), correct  length of the modelf(-;A,) is given by the description
to soméefinite accuracy One possibility is for Bill to transmit  length of thek parameters\ [2]:
each of the time series values, in succession, to Ben. This
will incur a fixed cost related to the required accuracy of the k y
data. Alternatively, if there is structure in the data then Bill M (k)= 2 In—, 2
may build a model of the data and describe that model to =19
Ben, together with initial conditions and the prediction errors
of the model. If the model is a good model for that data therwhere y is a constant related to the number of bits in the
describing the model and the model prediction errors will beexponent of the floating point representationgf and; is
more compact than the description of the raw data. Conthe optimal precision ok;. The precisions); of the optimal
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MDL model (for a fixed k) must be computed. Judd and networks and radial basis function networks. Some authors

Mees[2] showed that the optimal¥ , &, . .. ,8,) are given  consider multilayer perceptron networlsich as Eq(7) be-
by the solution of low] and radial basis function networks to be specific classes
of neural networks. In such instances the characteristic com-
61 mon to all “neural networks” is that they are networkand
5, 1 nothing more [23]. We do not adopt that nomenclature here,
Q| . =5 3 we prefer rather to contrast the two distinct architectures.
: j
Sk i A. Radial basis functions and neural networks
where Letz,_1=(Yi_1.Yi_2, ---.Y;_q); a radial basis function
network is then a function of the form
Q=D E(K), 4 m

the second derivative of the description length of the model FYi-1.Yi-2, - - - Yi-d ;Ak):)‘OJFJZl )\iyi%j
errorsE(k) with respect to the model parametég.

Rissanern 1] has shown thaE(k) is the negative loga- i lzi—1—ci
rithm of the likelihood of the errore={e;}! 4. ; under the +j21 >‘J+m¢(f)'
assumed distribution of those errors: . ©

where Ay=(Ng,A1, A2, ... Ay, ¢;eRY ;>0 and I<¢;
If one assumes that the errors are Gaussian distributed witk €;, ;=<d are integers. The functiog is the radial basis
mean zero and standard deviatierthen function and is typically Gaussian

d(x)=exp —x3/2)

(a more detailed discussion of other possible forms ¢or
may be found irf4]). The vectorc; is the centerof the jth

The assumption of Gaussianity is reasonable in many situeBasis function and. is referred to as theadius
J

tloqs and expedlgnt.m qll cases. If one has good reason 10 To achieve a fit of Eq(6) to the time seriey;}; subject
believe that the distribution of errors should take some othe{ .
0 Eg.(1), one must select the nonlinear parametgrandr

form (such as a uniform distribution if machine precision is ! .

the limiting factoy then Eq.(5) may be modified accord- zn: tgg gzleeacrt;’\('jefuhgéd-[:e,wtgfl number of parameteks

ingly. For the general case of an unknown distribution of |¥or functions of thle formn(6) thé procedures described in

errors the situation is more complex. One alternative is tth 4] may be employed to find the MDL best model of a time

measurdexactly the description length of the actual model -~ y be employ . ) Lo
series. In this paper we are interested in the application of

deviations[using a formulation similar to Eg2)]. In the L ;
current correspondence we restrict our attention to the Situ%d_escrlpnon length to neural networks. We restrict our atten-

tion where the errors are knowgor believed to follow a lon to mu|t||.ayer pe_rceptroqs ‘.N'th a single hidden Iam]'
normal distribution. For scalar time series prediction these networks will hdve

In principle we may now compute description length asnputs 1Yi-1,¥i-2, ... Yi-q} fitted to a single outpuy;.
follows. Solving Eq.(3) yields the precision with which we Mathematically these networks can be expressed as
must specify each parameter. Substituting into Egs.and m
(5) one is able to compute the description length of thes . ‘ A = Vi
model M (k) and also of the model prediction errdegk). i Yizz: - - Yi-aib) =4 )\0+J21 MYi-g
We note that the nonlinearity of various model parameters
enters into the computation through E4). For excessively
largek a computational bottleneck results from ensuring that
the matrix(4) yields a solution to Eq(3).

E(k)=—In Prol(e|Ay).

N/2
+In

N 2
E(k)=—=+In

N N/2
2
> +Inl 2 € ) : (5)

n
+J§_:1 Njim®(Zi—1-Cj—1j) |.

(0
lll. RADIAL BASIS MODELS ARE NOT NEURAL For neural networksp is usually selected to be a bounded
NETWORKS monotonically increasing function. We choose the hyperbolic
Judd and Mee$2] proposed an algorithm to implement tangent
the minimum description length principle for radial basis o
function networks. In this section we introduce the class of _ _e7-1
. . C ; $(x)=tanh(x) =

neural networks which we will consider in our analysis and e>*+1
contrast these with radial basis networks. We then describe
the nonlinear fitting algorithm we employ to solve Ed). and¢ is another nonlinear function, usually of the same form

In this section we draw a clear distinction between neurahs ¢. For time series prediction it has been shown that one
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only needs to consider the situation wherés linear[19]. OO=[h1pp - Pi_1Dis1- - Prsal’,
Furthermore, it is well established that a sufficiently large

neural network with a single hidden laylesuch as Eq(7)] is whered; is thejth row of the +1)xd matrix <+ 1) (i.e.,

capable of modeling arbitrary nonlineariffl9]. In most it tho |ast neuron addedow contributes the least then en-

cases we find that it is sufficient to s{ix) =x. However for 5146 the model, otherwise remove the neuron that does the
data that is highly non-Gaussian we have found that chooqéasj_

ing ¢ such thaté(x) is Gaussian distribute@mean 0, stan- (IX) If necessary, recompute the weights, and the
dard deviation 1aids the nonlinear fitting procedure. model prediction errors.

Unlike many other implementations of neural networks, (X) Compute the description lengt (k) +E(K). If we

we have included constant and linear terms explicitly in bothy, 5.6 reached the minimum then stop, otherwise go to step
Egs.(6) and(7). This is because we are interested only in the(m ). '

time series prediction problem. Historically and aesthetically 1o major distinction between this algorithm and that pro-

one should not resort to nonlinear modeling unless "neabosed in[2] is that the candidate basis functiofreurons
methods are inadequate. Therefore, we provide both possiye recomputed for each model expansion. By expending this

bilities and choose that which fits the data best. Typically one,qitional efforfstep(Ill )] all candidate functions are much
expects a combination of linear and nonlinear terms: 0 better fits to the current model error.

andn>0. The least mean square estimates of the linear basis func-
tion weights are computed in three different places in this
B. Fitting the neural network to the data algorithm[steps(ll), (VI), and(1X)] and for each value dk.

. - Although this calculation is not overly expensive it can be
The functional formg(6) and(7) are similar and one may minimized by utilizing a QR factorizatiof18]. This also

suspect that the model selection algorithm should proceed in. | . .
- . : aids in the computation of E¢4).
a manner similar t¢2]. Certainly, provided one can compute .
A - Step(lV) selects from amongst the current host of candi-
Eq. (4) and solve Eq(3), the estimation of description length ) .
) ; . . dates the best fit to the current error, and diép) rejects
is no different. However, we are still faced with the problem

. : . : the current worst neuron in the model. Only when the neu-
of fitting the various linear and nonlinear model parameters . .
o ; : i tons selected in stegdV) and (VIl) differ does the model
and determiningrecursively the optimal model of sizé.

For this burbose we extend the algorithm oreviousl de_expand. This helps with the nonlinearity of the problem. Of-
. purp 9 P y ten a combination of two basis functionsgither of which
scribed for Eq(6).

(1) Let ©O={1]y; 1] .[y: ] [y 4]} be the set are the best fit to the current error, provide a good fit to the
- LYi—21disLYi—2diy - - -sLYi—dli

of all possible constant and linear terms, d80)= 2 be the error. If the resultant model was found to still be ill-fitting,
empty (null) matrix and letk=0. In what ,followstl)(k) is a deeper recursion may be implemented. In all our numerical

matrix consisting of the evaluation of the(selecte neu- calc_u!ations we fouqd that t_his single Ievel_ of recursion was

rons and affine terms on the data sufficient. We note in passing that an qptlonal s(v!ulg)
T Compte the welhts :[)\. A, -] such thate could be added to app_ly _back propagation some similar

v A ® is minimal. Inii k" Al .2 tk e proceduraato further optimize the parameters of the mode'llof
y= Ak IS minima’. initially, A 1S émpty an y. sizek. However, the computational cost of such an addition
(Ill) Generate a set of candidate nonlinear neur®fs

() e d . could be substantial.
such thatG). Clg(x-c—1)|ce R , TR} (i.e., choose a We have not yet described how the candidate basis func-
set of candidate centersand radiir).

tions are generated in stépl). This step is extremely im-
(IV) Selectde ®@UO® such thal=;6(y;)ej| is maxi- g épl) P y

L h he basis f ion that fits th ortant and the procedure outlined [i2] is not sufficient.
LneaS)(Le., choose the basis function that fits the current errofy hen one considers sigmoidal functions foB1, ¢(x)

~1 and forx<—1, ¢(x)~—1. Therefore, the region of
(V) Let interest isxe[ —1,1], and we choose andr so that{z-c
—rli=d+1d+2,... NJU[—1,1]#J. To achieve this we
selectc such tha(z;-c); e[ —1,1]. The offset termr may
then either be selected randontfgr excessively large prob-
lems or computed via a nonlinear optimization routine. For
(VI) Compute the weightsA,,; such that e=y  a moderate number of basis functions we have found that a

oK

1)
[0(Ya+1)0(Ygr2) - 0(Yn)]

— Ay 1@ is minimal. standard Newton-Rapheson steepest descent algofitBm
(VII) Given ® 1=[d1ds- - 1]’ find i (1<i<k rapidly converges to a local minimum and provides signifi-
+1) such that cantly improved results.
C. Why the architectures are different
’2 di(yelee <’E Di(yo)e Y
¢ ¢ We have already observed that the formulésand (7)

are very similar—one simply replacefz(-c|)/r with z-c
for all j (1=j<k+1) (i.e., find the term in the current —r. However, there are some fundamental difference be-
model that contributes thieas?. tween radial basis functions of the forf@) and neural net-
(VI If i=k+1 then incremenk, otherwise set works (7). As we have described in the previous section, the
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TABLE |. Estimates of correlation dimension for data and models. The correlation dimension is shown for the data, iterated model
predictions of the same length, and 50 noisy simulations. For the five data sets described in @#acditaminated with either experi-
mental or artificial noisewe show the length of time serié§ embedding parameters used to estimate the correlation dimemnkiand7),

MSE of the nonlinear modek?, number of lineam) and nonlinearn) parameters of the optimal model, and correlation dimendion
estimates. The correlation dimension estimates are shown for the time seri€sld&ta), a model simulatiori“model’—an iterated model
prediction with no noisg and mean and standard deviation of 50 noisy simulatitgwsrogates”. The noise level is either 20% or 50%
of the model MSE.

d. (surrogates

System de 7 N a? m n d (datg  d (mode) 0.20? 0.50

lkeda 2 1 500 0.035451 0 25 1.4207 0.039667 1.340964 116  1.23880.080 872
Rossler 3 1 500 0.3198 2 12 1.6029 1.4763 1.5191050691 1.63160.065 429
Sunspots 2 1 271 1.167 1 14 1.3597 0.918 89 1.339471 34 1.10470.279 47
Infant respiration 4 5 1200 0.057 865 1 12 2.3799 1.7539 2.64136466 1.949F 0.58539
Chaotic laser 3 1 1000 0.015707 2 145 1.616 1.6605 162073326 1.65950.1312

IV. APPLICATION TO TIME SERIES DATA

lz—c]
r

fitting procedures one typically applies differ tremendously.vice versa. Specifically, for time series prediction, since

networks are typically “trained” using procedures either in- bounded. The same is not true for neural networks. However,

here, we do find that new technique®scribed in Sec. Il B ior approximation for chaotic dynamical systems.

tinction between the two types of functions. Because neural In this section we present the application of this algorithm

[24]. Conversely, for radial basis functions Rossler system and the Ikeda map, both with the addition of

the famous sunspot time serig26], and the chaotic laser

neural networks are composed of infinitely long “ridges” in 10 Provide a quantitative comparison to previous pub-

d>1) is global(this is independent of ones choicedfand ~ (€7). Similarly, NMSE is (ef)/o* where o® is the actual

do not necessarily extend to radial basis function networksgood measures of how well the model captures the dynam-

that the same method will work for neural networks. As wefor the data and model simulatiorisoth with and without
Furthermore, as a consequence of the localization of rallajectories, and a corresponding ensemble of correlation di-

(multilayer perceptronneural network, but the converse is duote the mean and standard deviation of the correlation di-

those that can be fitted by E¢Z). We must stress that this A. Computational experiments

required nor necessarily desirable. There are numerous eroise we examine the behavior of this modeling algorithm on

Generally, the parameters of a radial basis function are fittedh(x) —0 asx— o for radial basis functions, one can ensure
using a surface approximation paradigm. Conversely, neurdhat trajectoriegiterated predictionsof Eq. (6) will remain
spired or motivated by neurobiology. Although we do not usethe loss of stability of neural networks appears to be bal-
these standard back propagation and training techniquediced by our computational results in Sec. IV showing supe-
are required to fit neural networks well.
The reason for this is related to a more fundamental dis-

networks are formed from the dot product, a single basis on two test system&Sec. IV A) and three experimental data
function inRY for d>1 will always have divergent measure sets (Sec. IV B. The test systems we consider are the

y dynamic noise. We then describe the application of this

P method to experimental recordings of infant respirafi®si,
J? dz| <«
data utilized in the 1992 Santa Fe time series competition

[if r>0 and as usuadp(x)—0 asx—x]. In other words, (11,27
RY and radial basis functions are finite “bumps.” Each radial iShed results we compute mean square eif$E) and nor-
basis function has only local effect, while every neuttor ~ Malized mean square err@IMSE). The MSE is given by
depends only on the form of the argumentiote that, the ~Variance of the datéover the predicted rangieHowever, as
convergence theorems obtained for neural networks therefoMé€ Will demonstrate later, MSE and NMSE are not very
nor vice versa. Specifically, application of minimum descrip-ics. To quantify the structure of the data and that of the
tion length for radial basis function modeling does not imply Mmodel we compare estimates of correlation dimen$R#
have found, different parameter estimation procedures argfochastic perturbationsBy repeatedly generating iterated
required. noise driven predictions, one obtains an ensemble of possible
dial basis functions and non-localization of neurons, everynension estimates. As described 4} these may be consid-
radial basis function network can be simulated by soméered as a nonlinear surrogate hypothesis [8{ and we
can be fitted to arbitrary precision by E@) is a subset of these results.
result only applies when one requirasbitrary precision
For most real applications to time series data this is neither Before considering systems with unknown dynamics and
amples of applications for which radial basis models haveime series generated from two well known dynamical sys-
out-performed neural network methodologiesd of course, tems.
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FIG. 2. The Ikeda map. Five hundred points of the lkeda map

are shown, both in original coordinates, (y;) (upper pangland
reconstructed coordinatex;(x;, 1) (lower panel. Reconstruction
of this map (lower panel is considerably less trivial than the
equivalent reconstruction for either the logistic orrida maps.

1. The Ikeda map

Ikeda equations are given by
X+ 1= 1+ u(X; cOSO— Y, Sinby),

Yi+1= 1+ pu(X; sin6+y, cosoy),

6=04— ———.
! 1+xt2+yt2

duce the delay reconstructed attractor.

X
t

FIG. 3. Reconstruction lkeda map from a noisy trajectory. The
noisy model datdtop panel and the iterated noise free prediction
from a model of these datéower panel, solid dojsare shown. The
model generated dynamic behavior exactly equivalent to the origi-
nal data. Even in the absence of noise the attractor produced from
the model prediction is as “noisy” as that from the noisy data. The
) ) ) expected noise free dynamics are shown in Fig. 2. Comparing in-

The simplest test we apply is reconstruction of the Ikedasample and out-sample predictions, this model appears to overfit the
map with the addition of various levels of dynamic noise. By data. A second model which does not overfit the datsample and
dynamicnoise we mean that system noise is added to th@ut-sample MSE: 1.2810°2 and 2.15<10 %) produced a high
dynamicsprior to prediction of the succeeding state. The order periodic orbit(lower panel, open circlésThe two models
contained 91 and 25 nonlinear “neurons,” respectively. Correlation
dimension estimates for the overfit model were equivalent to the
data; for the smaller model these estimates are shown in Table I.

In virtually all real systems deterministic dynamics are
corrupted by some dynamic noigeoise that is intrinsic to
the dynamics rather than added afterwarddle therefore
repeat the Ikeda simulation with the addition of Gaussian
random variates to each scalar component at each iteration.
The standard deviation of the variates are set at 10% of the
The bifurcation parametex=0.7 provides chaotic dynam- the standard deviation of the data. For this level of noise Fig.
ics. We choose to examine this map because the record-shows the attractor reconstructed from the original data and
structed dynamics are much more complex than those ddttractors reconstructed from noiseless model simulations of
either the logistic map or the lHen map. Figure 2 shows length 500. One can see that from this short and noise sec-
500 points of this map both in original and reconstructection of data the basic features of the attractor have been
coordinates. For trajectories of length 500, in the absence a#xtracted. Table | reveals that the noise free trajectory is a
noise, the modeling algorithm was able to accurately reprostable limit cycle. However, the limit cycle does lie on the
true attractor(Fig. 3). Furthermore, the addition of dynamic
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RIS chaotic system are reproduced from the model of this short
Y -'s',?'i_"'-" RS and noisy time series segment. Table | confirms that the cor-
S e e T relation dimension estimates for the data and surrogates were
VR _'.'- comparable. Underestimation of correlation dimension for
R Vi e el this data(and possibly the experimental systems in the next

BT T section is due to the finite short and noisy time series.
T et '.";, RFRS Larger, noise free data produced more accurate estimates.
NI . Irrespective of this, the importance of Table | is asan-

. parison of statistic valued5]. With higher noise levels or
shorter time series we found that the reconstructed dynamics
) - did not satisfactorily mimic the true behavior. For longer or
less noisy data segments we found that performance im-
proved.

B. Experimental data

We now present the application of this algorithm to data
from three experimental systems: the Wolf annual sunspot
time series[25], experimental recordings of infant respira-
tion [26], and the chaotic laser data utilized in the 1992 Santa
Fe time series competitigril,27]. We have deliberately se-
lected these three sources of data because each of them has
been the focus of considerable attempts to model the dynam-
ics.

FIG. 4. Reconstruction Rsler system from a noisy trajectory.
The noisy model datéop panel and the iterated noisy free predic- 1. Sunspots

tion from a model of these datebottom panel solid dojsare The annual sunspot count time series has been the subject

shown. Also shown in the bottom panel is a comparable noise freg¢ o \hotantial interest in both the physics and statistics com-

S'mu.lat'on Of.th's Systemo'oen C'rde.$ The .mOdel g.enera.ted dy- munities. Tong 26] describes models of this time series us-
namic behavior equivalent to the differential equations in the ab-

sence of nois¢Table )). In-sample and out-sample MSE.101 and ![ng both gutorgg[re:;lv(e\l?)darlld Silf_deé(cmn% th;/?ShO|dhau_
0.250 were comparable. oregressive ( ) models. Ju an ees have

subsequently shown that superior predictive performance can

noise produces trajectories very similar to the original dataP® achieved with nonlinear radial basis function models

With models built from larger data sets, or lower noise Ievels[z’il]' tai ¢ . f h q
the quality of the simulations improves and one obtains the 0:1. a|r?ess of comparison we transform the raw data
expected chaotic dynamics. according to

2. The Rassler system Yi—=2Vy+1-1. (8)

The second computational simulation we wish to conside

is a chaotic flow. The Rssler system is given by This transformation was selected by Tong to improve the

performance of linear models with this highly non-Gaussian
distributed data. Table Il compares the mean sum of square

X==y—z prediction error achieved with our algorithm and the meth-

. ods proposed by Ton®6] and Judd and Med2].

y=Xx+ay, Our main interest is not in the MSE, but in dynamic per-
_ formance. Linear models described by Td@§] behave as a
z=b+z(x—c). stable focus. The nonlinear methods described by Judd and

Mees produce either stable fdd] or a stable periodic orbit

For a=0.398,b=2, andc=4 the system exhibits “single- [31]. Figure 5 shows that the algorithm described here gen-
band” chaos. We integrated these equations with step sizerates chaotic dynamics that closely resemble the original
0.5 adding dynamic noise to each component at each stdpme series. In Table | we observed fractional correlation di-
(and then using the noisy coordinates for the integration tanension in both the data and model simulations. Further-
the next time stepto generate 500 points of the system. more, prediction over a longer time horizon shows that the
From this noisy data we constructed a neural network modahethods described here perform better than the alternatives.
(the optimal model had only 12 “neuronstising the meth- The iterated model prediction shown in Fig. 5 exhibits
ods described in Sec. lll. Figure 4 shows the original embeddynamics remarkably similar to those observed in the histori-
ded data, the reconstruction from a noise free simulation ofal data. By comparison, linear models clearly cannot cap-
the model and the clean attractmomputed in the absence ture the long terntnonlineaj dynamics. Radial basis models
of noise. One can clearly see that the main features of thigdescribed in[2,31] exhibit stable periodic orbits and only
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TABLE Il. Mean free run prediction error for the annual sunspot been shown that these data are not consistent with a linear
count time series. Mean sum of the square of the prediction erronoise proces§25] and that the data areonsistent withthe
for models of the sunspot time series produced with five differenthypothesis of deterministic chaos. However, nonlinear radial
modeling techniques are reported. Values marked with * are thospasis models of these data typically behave as a noise driven
reporteq in(2]; T denotes atyp_lcal result from an equivalent model periodic orbit[4]. While this result is consistent with the
employing the methods described [8] (we do not have access 0 concjusions 0f25], it is perhaps unsatisfactory that the only
Fhe earlier model All other results are computed directly. Follow- deterministic structure that one may extract from these data
ing Tong[26], the AR(9) and reduced ARRAR) models are com-  jo 5 narindic motion. It has recently been observed that in
puted from the untransformed data. Applying the transforma8on o ain circumstances complex period doubling phenomenon
produced similar results. The SETAR model is describeB3]. may be used to describe this d&&2]. This is an attractive
observation, but the phenomenon has not been observed con

Model 1980-1988 MSE 1980—2002 sistently in all such data using the methods dgscribeﬁ(ﬂh

In this section we apply the modeling algorithm described
AR(9) 334¢ 416 in this paper to several recordings of infant respiration. In
SETAR 413 1728 each case we find that the MDL best model of this data
RAR 214 201 exhibits chaotic dynamics and the free run behavior of the
Radial basis 306 489" model behaves qualitatively similar to the data. Figure 6 de-
Neural network 625 356 picts a representative data set and simulation. In Table | we

see that correlation dimension fooisysimulations are com-
parable to the datébut not without noisg Perhaps this is
approximate the true dynamics when driven by h|gh dimen.further evidence of the stochastic behavior left unmodeled by
sional noise. Although the predictions of Fig. 5 are qualita-our algorithms(a similar observation was made [ig5]).

tively plausible, we do not claim them to be quantitatively

accurate. Table Il clearly shows that the neural network 3. Chaotic laser dynamics

model behaves poorly for short term prediction. We are cer-
tainly not claiming to predict the observed values for the
entire first half of this century.

Our final test system is data from a chaotic laser experi-
ment. This data was utilized in the 1992 Santa Fe time series
competition. From a large number of potential modeling re-
gimes a nearest neighbor techniq@¥] and a neural net-
work model were found to perform best?2].

Radial basis models built with minimum description  We utilize the same data as describedllif,27] to build a
length have previously been tested with infant respiratorymodel using the algorithm described in Sec. lll. Initial model
data[4]. These data are recordings of instantaneous abdomiesults were relatively poor. We found that transforming the
nal cross section of human infants during normal sleep. It hadata so that it was normally distributed prior to modeling

2. Infant respiration

200

FIG. 5. The annual sunspot
count. The actual sunspot count
and iterated predictions from a
neural network model of these
data (the model is described in
Table ). The top panel shows the
actual sunspot count for each year
of the period 1920—2000. The bot-
0 tom panel shows a noiseless free-

1920 1930 1940 1950 1960 1970 1980 1990 2000 run (iterated prediction for the
Year model of these data over a period
of 80 years(1980-2060. Actual
200 : : : : ; ; ; known values are also shown
(circles for the years 1980—-2000.
The free run prediction does not
fit the dynamics exactly, but it
does provide a good model of the
dynamics. Qualitative features are
common to both panels. The an-
nual sunspot count is a dimension-
less quantity derived from the
number of sunspots observed
throughout that yeafsee[26]).

150

100

Annual sunspot count

1504

100

Annual sunspot count

0 |
1980 1990 2000 2010 2020 2030 2040 2050 2060
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FIG. 6. Human infant respiration. The top panel shows the short term prediction from infant respiration data. True data are depicted as
circles; the model prediction is a solid line. The second and third panels show longer representative segments of both the original data
(second pangland the MDL-best neural network mod@dlable )) free-run prediction. The model is built from the data shown in the second
panel and the free-run prediction is generated without any additional noise. In this example the model simulation does not exhibit the peak
variation present in the data. All other features are comparable: the same irregular asymmetric wave form and frequent variation in amplitude
are present in both the data and simulation, and both had correlation dimension exceeding 2. The measured abdominal area is proportional
to the cross sectional area, but the units of measurement are arbitrary and have been rescaled to have a mean of zero and a standard deviatic
of one[25].

produced far superior results. We believe that this data iSauer[27] and Wan[12]. Sauer’'s model utilized a nearest
sufficiently non-Gaussian so that the assumption §{a) neighbor techniqu¢27] and therefore does not provide an
=x in Eq. (7) is inappropriate. We are forced to impose anactual estimate of the equations of moti@ne cannot dif-
arbitrary transformation to aid the modeling algorithm andferentiate a nearest neighbor prediciiom [12] user inter-
improve results. In Table Il we quantitatively compare ouryention is required to produce a plausible prediction. The
prediction results to those presented 12,27 dynamic behavior depicted in Fig. 7 is produced directly
Figure 7 depicts representative results of the modelingrom the data. The NMSE of our modeling algorithm is not
algorithm with the inclusion of this static nonlinear transfor- substantially better than those [df2,27], but the qualitative

rﬂgtion ?jf }h_e data. We br}ote thﬁt tr;)e qualitz:\jti\l/_e behavilor hehavior is better and the algorithm therefore provides equa-
this model is comparable to the best modeling resuits o{ions of motion that are a more plausible model for the un-

derlying dynamics. Table | confirms that the behavior of data
TABLE Ill. Mean free run prediction error for the chaotic laser and model simulationévith and without noisgare remark-
data. NMSE for models of the laser time series produced with thregp|y similar. Perhaps indicating that this systamlike that

different modeling techniques are reported. NMSE are computegh, e previous sectioris completely(or largely determin-
for 100 point free run predictions initiated at datum number 1000‘istic

2180, 3870, 4000, and 518€hese initial conditions are those se- The model prediction in Fig. 7 is typical of our results.

) o
lected in[27)). Values marked with * are those reported 7). But, we observed that small changes in the initial conditions
of a model (less than 0.01% of the data valuegreatly

Model N;/(I)%I(E) 2180 3870 4000 5180 chgnged the NMSE prediction error over the nt_axt_ 100 de_lt:_a.
Using the expected values we were able to optimize the ini-

Sauer[27] 0.027 0.065 0.487% 0.023 0.160° tial condition of the model and obtained improved “predic-

Wan[12] 0.077 0.174 0.18% 0.006 0.111 tions.” Of course, these are not true predictions as they re-

MDL-neural network 0.066 0.061 0.086 0.479 0.038 quire knowledge of the actual trajectory. Rather, we are
providing a maximum likelihood estimat®LE) of the ini-
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FIG. 7. Chaotic laser dynamics. Free-run predictisalid line) and actual datécircles for a MDL-best model of the chaotic laser data.
The prediction error is shown as a dotted [iNMSE of 0.0955. The simulated performance is qualitatively comparable to those presented
in [12]. However, the neural network model describeddifi] “breaks down” soon after the collapse of the laser. We found that the neural
network model was large and highly chaotic; tiny changes in the initial conditions yielded substantial variation in the model predictions. This
model evidently exhibits extremely sensitive dependence on initial conditions and the uncertainty of this simulation as a prediction is
therefore great. The laser intensity takes values from 0 to(265 the units of measurement are arbitjary

tial state given the observed trajectory. For that MLE valueparameters must be specified. Because the MDL criterion
we compute a modedimulation the deviation between the described here computes the precision of the parameters one
actual observed value and the MLE of the initial state isnas 3 much fairer estimate of the best model of a particular
substantially less than the coarse grain digitization of thyata set. Furthermore, this avoids the need to wasiten
model. Therefore, initial states that are indistinguishable tG5re or valuablgdata during cross validatiori0].
the experimental apparatus exhibit wildly varying perfor-  \we cannot prove that this algorithm will work best for
mance. Such variation in prediction draws into doubt theany given data set. For any particular data set we actually
significance of the relative small quantitative difference Ob'expect this algorithm to be sub-optimal. However, theory
served in the NMSE depicted in Table Ill. We prefer only to shows that the functional forrv) is adequate for any non-
conclude that the model produced by this algorithm provideqinearity and, with sufficiently largel andk, it will capture
quantitatively realistic simulations, which for the correct iy dynamics of a sufficiently long time series. Assuming the
choice of initial condition could shadow the true trajectory. {ime seriess sufficiently long(let N, be the minimum such
length, so thalN> Ny is sufficienj, then there existd, and
V. CONCLUSION ko such that the neural networl@) captures the required
nonlinearity. We rely on heuristic techniques to deterndge
Neural networks have a happy history of producing goodand MDL selection criteria is used to fing. If N<N, then
(and sometimes not so goprksults in situations where the we have insufficient data to find the optimal model with this
number of parameters exceeds the number of available datgproach. In some situations other modeling algorithms may
([12] provides a good example of both casésowever, this  perform better: for example, a global polynomial model may
is not a contradiction of the statistical view thdtata points  model polynomial nonlinearities well. However, fof<N,
may only be used to fitat mosj N parameters. The impor- MDL selection will still find the best model siz&(d,N)
tant consideration is the precision with which one chooses tgiven the available data.
specify each parameter. Assumiimdinite precision of every To justify our failure to find the optimal model in every
observation and parameter,(énear, linearly independent case, we note that the combinatorial nature of this problem
problem withN observations is overdetermined if the num- means that there is no known polynomial time algorithm to
ber of parameterk is less tharN. Conversely iftk=N the find a solution. One need only note that a restricted version
problem is underdetermined and one can achieve an arbitranf our MDL nonlinear model selection problem can be recast
fit to the data. By terminating the training of a network be-as the knapsack proble[83]. We therefore conclude that it
fore optimization one obtains parameters with a relativelyis highly unlikely that an efficiengenericalgorithm exists
low precision and one is therefore able to specify a largdor estimating the best neural netwotkr basis functioh
number of thenk>N. However, because parameter optimi- model of a given data set.
zation is a nonlinear problem this premature termination It is interesting to note that many of the modeling results
leads to a local minima—uvery often repeated application willpresented herémost notably those of the chaotic laser dy-
yield a different local minima and different model behavior. namics exhibit the (expected sensitive dependence on ini-
One then simply chooses the model that performs best on tht@l conditions. This sensitivity is sufficient to generate a
training data. wide variety of dynamic evolution within the experimental
In an attempt to address this problem, predictive MDLprecision of the raw data. The data are digitized as 10-bit
[15,16 and other information theoretic model selection cri- integers. However, change in initial condition of less than
teria [13] have been suggested in the literature. Howeverp.001(in each componehprovided indistinguishable initial
none of these techniques consider fitecisionwith which  conditions but NMSE over the prediction range of 100 val-
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ues varies between the optimal results shown in Table lll andTable ) and provided a fairer and more useful test of
NMSE greater than 1. Therefore, if this model is an accuratégoodness” of the models.
representation of the dynamics in question, then comparing Finally, we note that model prediction errors of test and fit
NMSE over this horizon is irrelevant because of the excesdata observed for the simulated systems were not exactly
sive uncertainty in the initial conditions. One should test howequal. We have observed, for MDL-best models a slight, but
well the model captures the dynamics. NM$&ther one  systematic overfitting of the data. The one-step in-sample
step or iterates as in Tables Il and)ll§ a poor measure of MSE values quoted in Figs. 3 and 4 were systematically
dynamic fit. The correlation dimension or other dynamic in-lower than the corresponding out-sample MSE. This is due to
variants are far bettgisee Table)I[5]. a flaw in the current algorithm. To alleviate computational
We do not emphasize the predictive power of this algo-burden we assumed that the only significant parametegrs
rithm. Each of the systems tested was potentially chaotic. Wevere the linear ones\g,\1, . .. ,A\). While this is clearly
demonstrated for the laser data that prediction from theonly an approximation it seems to produce adequate results.
model was poor because of the sensitive dependence on irffor the case of radial basis models it was found that the
tial conditions and possible undersampling of the originaladditional expense of computing the full description length
experiment. However, in each of the experimental systemprovided only a slight advantage for the final mop#l It is
we found that the qualitative behavior of model simulationslikely that the improvement in neural network models af-
was highly accurate. Realistic chaotic dynamics were obforded by the full calculation would also be marginal.
served for the sunspot time series. Simulations of infant res-
pirations appear indistinguishable from real data. Finally,
simulations from models of the Santa Fe laser data exhibited
the same features as the data and achigfadoptimal se- This work was supported by a Hong Kong Polytechnic
lection of initial condition$ free-run prediction that ex- University research graniNo. G-YW55. The authors ac-
ceeded previous results. Comparing dynamic invariants odknowledge the helpful comments of Z. Yang and J. P. Bar-
the data and model simulations showed good agreememiard regarding neural network technology.
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