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Minimum description length neural networks for time series prediction
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Artificial neural networks~ANN! are typically composed of a large number of nonlinear functions~neurons!
each with several linear and nonlinear parameters that are fitted to data through a computationally intensive
training process. Longer training results in a closer fit to the data, but excessive training will lead to overfitting.
We propose an alternative scheme that has previously been described for radial basis functions~RBF!. We
show that fundamental differences between ANN and RBF make application of this scheme to ANN nontrivial.
Under this scheme, the training process is replaced by an optimal fitting routine, and overfitting is avoided by
controlling the number of neurons in the network. We show that for time series modeling and prediction, this
procedure leads to small models~few neurons! that mimic the underlying dynamics of the system well and do
not overfit the data. We apply this algorithm to several computational and real systems including chaotic
differential equations, the annual sunspot count, and experimental data obtained from a chaotic laser. Our
experiments indicate that the structural differences between ANN and RBF make ANN particularly well suited
to modelingchaotic time series data.

DOI: 10.1103/PhysRevE.66.066701 PACS number~s!: 02.70.Rr, 05.45.Tp, 05.45.Pq
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I. INTRODUCTION

The minimum description length principle states that
model that provides the most compact description of a t
series is best. It is an information theoretic incarnation
Ockham’s Razor: ‘‘plurality should not be posited witho
necessity.’’

Estimates of minimum description length~MDL ! @1# have
been applied to construct radial basis time series models@2#.
In fact, it is easy to see that the technique described in@2#
may be applied to any pseudolinear nonlinear model@3#. A
generalization of MDL for radial basis modelsincluding
nonlinear model parameters has also been described@4#. Al-
though computationally more expensive, this scheme
been shown to be suitable for modeling a wide range
dynamic nonlinearity from time series data@4–6#.

Application of a limited form of MDL for polynomial
models was explored by Brown and colleagues@7# and ex-
tended to the general situation in@8#. For rapidly sampled
systems with low noise it was shown that MDL polynom
models are capable of reconstructing polynomial nonline
ties @8#. However, extrapolation or application to nonpolyn
mial systems remains poor.

Within the engineering community, a radial basis functi
network implementation of description length was describ
recently by Leonardis and Bischof@9#. In contrast to Judd
and Mees@2#, Leonardis and Bischof start from an over
complex model and selectively prune unneeded function

Conversely, neural network analysis is perhaps the m
popular tool for modeling nonlinear phenomenon yet ap
cation of information theoretic techniques for model sel
tion is not well accepted@10#. Nonetheless, performance o
neural networks is notoriously dependent on successful tr
ing of the model@11#. Typically, a neural network will con-
sist of a very large number of nonlinear ‘‘neurons’’~the
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1063-651X/2002/66~6!/066701~12!/$20.00 66 0667
e
e
f

as
f

i-

d

st
-
-

n-

equivalent of basis functions in the nomenclature of rad
basis functions!. Often, much to the chagrin of statistician
the number of neurons, or the number of parameters,
approach or exceed the number of data from which
model is constructed@12#. Parameter estimation for neura
networks is therefore extremely nonlinear and occasion
overdetermined@11#. To prevent overfitting one will typically
only allow the fitting algorithm to continue for some finit
~and relatively short! time, known as the training time. Over
fitting is therefore avoided because the model parameter
ues are not optimal. This inevitably leads to a large num
of distinct local minima and one is often unsure that perf
mance for a particular model is typical.

Sporadic applications of information theoretic concepts
address the problem of model selection have appeared in
neural network literature. In 1991, Fogel@13# applied an in-
formation criterion introduced by Akaike@14# to estimate the
size of neural networks for binary classification problem
However, this approach does not readily extend to time
ries prediction. We also note that the penalty term of
Akaike information criterion is ‘‘slacker’’ than MDL, there-
fore the optimal models obtained with this criterion tend
be larger. For time series prediction we have found that
produces excessively large models that still overfit the d
However, we do support the rationale expounded in@13# that
the choice of model selection criteria is partly a philosop
cal one. In practice one often selects the criterion that wo
best for the given data.

Predictive MDL has been described by Lehtokangas
colleagues@15,16# and implemented for autoregressive@15#
and multilayer perceptron@16# networks. Unlike the mode
selection criterion we introduce here, predictive MDL has
constant cost for each model parameter and is therefore s
lar to the Bayesian information criteria@17#.

Leung and colleagues examined prediction of chao
time series with radial basis function networks and appl
several criteria to determine model size@10#. They concluded
that a singular value decomposition based form of cro
©2002 The American Physical Society01-1
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validation performed best for model size selection, and M
performed extremely badly. Their estimate of MDL appea
to be a decreasing function of model size, with no glo
minimum. However, this violates the minimum descripti
length principle that there is some optimal finite model si
Therefore, their estimate of MDL was clearly performin
poorly @10#.

In this paper we suggest an alternative implementation
MDL. We also propose a fitting algorithm that deviates fro
the standard approach for neural networks. When buildin
neural network, one typically selects some fixed~large! num-
ber of basis functions and initializes the parameters r
domly. The weights of the basis functions can then be
lected with standard least squares@18#. Nonlinear parameters
are then fitted iteratively using a time consuming proced
such as back-propagation@19#. Typically the number of pa-
rameters~including both the weights of the individual neu
rons and nonlinear parameters associated with each neu!
is large and given sufficient time, back-propagation w
yield an arbitrarily close fit to the data@20#. The result is a
model that is overfit for a particular data set and general
poorly: a ‘‘brittle’’ model. To avoid overfitting, back-
propagation is typically terminated when cross validat
@21# indicates an optimal result. However, the combinat
of cross validation and back-propagation is time consum
and data intensive. One is usually forced to surrender half
available data for cross validation purposes.

We propose a model fitting algorithm which yields a go
solution for any fixed number of model parameters~neu-
rons!, and we allow training to proceed until the fit appea
to be optimal. We avoid overfitting by constraining the nu
ber of neurons in the network to minimize the descripti
length of the model. This leads to neural networks that
often far smaller than those observed in the literature,
dynamic behavior that is both realistic and repeatable. F
thermore, by avoiding both back propagation and cross v
dation our algorithm is not computationally expensive a
utilizes available data efficiently.

Section II describes the minimum description length pr
ciple in more detail and derives the expression we use
compute this quantity. Section III discusses artificial neu
networks and introduces the modeling algorithm we util
in this paper. Finally, Sec. IV presents some applications
this algorithm to computational and real time series.

II. DESCRIPTION LENGTH

Consider two parties separated by a communication ch
nel. The first party~Bill ! has access to a time series a
wishes to transmit the data to the second party~Ben!, correct
to somefinite accuracy. One possibility is for Bill to transmit
each of the time series values, in succession, to Ben.
will incur a fixed cost related to the required accuracy of
data. Alternatively, if there is structure in the data then B
may build a model of the data and describe that mode
Ben, together with initial conditions and the prediction erro
of the model. If the model is a good model for that data th
describing the model and the model prediction errors will
more compact than the description of the raw data. C
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versely, if the model is poor~produces large errors! or is too
large, then the description of the model and the model p
diction errors will be large.

Typically there is a trade off. As model sizek increases
the model prediction errors decrease—for an optimal mo
this must be the case. Conversely larger models are m
complex and require a lengthier description—this follow
from the definition of description length. LetE(k) be the
cost of specifying the model prediction errors andM (k) be
the cost of describing the model. Intuitively, one can see t
E(k) is a decreasing function ofk and M (k) is increasing.
The description length ofD(k) of a given time series utiliz-
ing this particular model is then uniquely defined asD(k)
5M (k)1E(k) @22#. The minimum description length prin
ciple states that the optimal model is the one for whichD(k)
is minimal. Typical behavior ofE(k) and M (k) is depicted
in Fig. 1.

Let $yi% i 51
N be a time series ofN measurements and le

f (yi 21 ,yi 22 , . . . ,yi 2d ;Lk) be a scalar function ofd vari-
ables that is completely described by thek parametersLk .
Define the prediction errorei by

ei5 f ~yi 21 ,yi 22 , . . . ,yi 2d ;Lk!2yi .

Let L̂k be the solution of

min
Lk

(
i 51

N

ei
2 ~1!

for a fixedk. For anyLk5(l1 ,l2 , . . . ,lk) the description
length of the modelf (•;Lk) is given by the description
length of thek parametersLk @2#:

M ~k!5(
j 51

k

ln
g

d j
, ~2!

whereg is a constant related to the number of bits in t
exponent of the floating point representation ofl j , andd j is
the optimal precision ofl j . The precisionsd j of the optimal

FIG. 1. Description length as a function of model size. T
description length of a time seriesD(k) is the sum of the descrip
tion length of a model of that time seriesM (k) and the description
length of the model prediction errorsE(k). As model sizek in-
creasesE(k) decreases butM (k) increases. The MDL principle
says that the optimal model size is that which minimizes the s
D(k)5M (k)1E(k).
1-2
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MDL model ~for a fixed k) must be computed. Judd an
Mees@2# showed that the optimal (d1 ,d2 , . . . ,dk) are given
by the solution of

S QF d1

d2

A

dk

G D
j

5
1

d j
, ~3!

where

Q5DLkLk
E~k!, ~4!

the second derivative of the description length of the mo
errorsE(k) with respect to the model parametersLk .

Rissanen@1# has shown thatE(k) is the negative loga-
rithm of the likelihood of the errorse5$ei% i 5d11

N under the
assumed distribution of those errors:

E~k!52 ln Prob~euLk!.

If one assumes that the errors are Gaussian distributed
mean zero and standard deviations then

E~k!5
N

2
1 lnS 2p

N D N/2

1 lnS (
i 51

N

ei
2D N/2

. ~5!

The assumption of Gaussianity is reasonable in many si
tions and expedient in all cases. If one has good reaso
believe that the distribution of errors should take some ot
form ~such as a uniform distribution if machine precision
the limiting factor! then Eq.~5! may be modified accord
ingly. For the general case of an unknown distribution
errors the situation is more complex. One alternative is
measure~exactly! the description length of the actual mod
deviations@using a formulation similar to Eq.~2!#. In the
current correspondence we restrict our attention to the si
tion where the errors are known~or believed! to follow a
normal distribution.

In principle we may now compute description length
follows. Solving Eq.~3! yields the precision with which we
must specify each parameter. Substituting into Eqs.~2! and
~5! one is able to compute the description length of
model M (k) and also of the model prediction errorsE(k).
We note that the nonlinearity of various model paramet
enters into the computation through Eq.~4!. For excessively
largek a computational bottleneck results from ensuring t
the matrix~4! yields a solution to Eq.~3!.

III. RADIAL BASIS MODELS ARE NOT NEURAL
NETWORKS

Judd and Mees@2# proposed an algorithm to implemen
the minimum description length principle for radial bas
function networks. In this section we introduce the class
neural networks which we will consider in our analysis a
contrast these with radial basis networks. We then desc
the nonlinear fitting algorithm we employ to solve Eq.~1!.

In this section we draw a clear distinction between neu
06670
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networks and radial basis function networks. Some auth
consider multilayer perceptron networks@such as Eq.~7! be-
low# and radial basis function networks to be specific clas
of neural networks. In such instances the characteristic c
mon to all ‘‘neural networks’’ is that they are networks~and
nothing more! @23#. We do not adopt that nomenclature he
we prefer rather to contrast the two distinct architectures

A. Radial basis functions and neural networks

Let zi 215(yi 21 ,yi 22 , . . . ,yi 2d); a radial basis function
network is then a function of the form

f ~yi 21 ,yi 22 , . . . ,yi 2d ;Lk!5l01(
j 51

m

l j yi 2, j

1(
j 51

n

l j 1mfS izi 212cj i
r j

D ,

~6!

where Lk5(l0 ,l1 ,l2 , . . . ,lk), cjPRd, r j.0 and 1<, j
,, j 11<d are integers. The functionf is the radial basis
function and is typically Gaussian

f~x!5exp~2x2/2!

~a more detailed discussion of other possible forms forf
may be found in@4#!. The vectorcj is thecenterof the j th
basis function andr j is referred to as theradius.

To achieve a fit of Eq.~6! to the time series$yi% i subject
to Eq.~1!, one must select the nonlinear parameterscj andr j
and the linear weightsl j . The total number of parametersk
may be selected subject to MDL.

For functions of the form~6! the procedures described i
@2,4# may be employed to find the MDL best model of a tim
series. In this paper we are interested in the application
description length to neural networks. We restrict our att
tion to multilayer perceptrons with a single hidden layer@11#.
For scalar time series prediction these networks will havd
inputs $yi 21 ,yi 22 , . . . ,yi 2d% fitted to a single outputyi .
Mathematically these networks can be expressed as

f ~yi 21 ,yi 22 , . . . ,yi 2d ;Lk!5jS l01(
j 51

m

l j yi 2, j

1(
j 51

n

l j 1mf~zi 21•cj2r j !D .

~7!

For neural networksf is usually selected to be a bounde
monotonically increasing function. We choose the hyperbo
tangent

f~x!5tanh~x!5
e2x21

e2x11

andj is another nonlinear function, usually of the same fo
asf. For time series prediction it has been shown that o
1-3
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only needs to consider the situation wherej is linear @19#.
Furthermore, it is well established that a sufficiently lar
neural network with a single hidden layer@such as Eq.~7!# is
capable of modeling arbitrary nonlinearity@19#. In most
cases we find that it is sufficient to setj(x)5x. However for
data that is highly non-Gaussian we have found that cho
ing j such thatj(x) is Gaussian distributed~mean 0, stan-
dard deviation 1! aids the nonlinear fitting procedure.

Unlike many other implementations of neural network
we have included constant and linear terms explicitly in b
Eqs.~6! and~7!. This is because we are interested only in t
time series prediction problem. Historically and aesthetica
one should not resort to nonlinear modeling unless lin
methods are inadequate. Therefore, we provide both po
bilities and choose that which fits the data best. Typically o
expects a combination of linear and nonlinear terms:m.0
andn.0.

B. Fitting the neural network to the data

The functional forms~6! and~7! are similar and one may
suspect that the model selection algorithm should procee
a manner similar to@2#. Certainly, provided one can compu
Eq. ~4! and solve Eq.~3!, the estimation of description lengt
is no different. However, we are still faced with the proble
of fitting the various linear and nonlinear model paramete
and determining~recursively! the optimal model of sizek.
For this purpose we extend the algorithm previously
scribed for Eq.~6!.

~I! Let Q (0)5$1,@yi 21# i ,@yi 22# i , . . . ,@yi 2d# i% be the set
of all possible constant and linear terms, letF (0)5B be the
empty ~null! matrix and letk50. In what followsF (k) is a
matrix consisting of the evaluation of thek ~selected! neu-
rons and affine terms on the data.

~II ! Compute the weightsLk5@l1 l2 •••lk# such thate
5y2LkF

(k) is minimal. Initially, Lk is empty ande5y.
~III ! Generate a set of candidate nonlinear neuronsQ (k)

such thatQ (k)#$f(x•c2r )ucPRd, r PR% ~i.e., choose a
set of candidate centersc and radiir ).

~IV ! SelectuPQ (0)øQ (k) such thatu( iu(yi)ei u is maxi-
mal ~i.e., choose the basis function that fits the current e
best!.

~V! Let

F (k11)5F F (k)

@u~yd11!u~yd12!•••u~yN!#
G .

~VI ! Compute the weightsLk11 such that e5y
2Lk11F (k11) is minimal.

~VII ! Given Fk115@f1f2•••fk11#T find i (1< i<k
11) such that

U(
,

f i~y,!e,U,U(
,

f j~y,!e,U
for all j (1< j <k11) ~i.e., find the term in the curren
model that contributes theleast!.

~VIII ! If i 5k11 then incrementk, otherwise set
06670
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F (k)5@f1f2•••f i 21f i 11•••fk11#T ,

wheref j is the j th row of the (k11)3d matrix F (k11) ~i.e.,
if the last neuron addednow contributes the least then en
large the model, otherwise remove the neuron that does
least!.

~IX ! If necessary, recompute the weightsLk and the
model prediction errorse.

~X! Compute the description lengthM (k)1E(k). If we
have reached the minimum then stop, otherwise go to s
~III !.

The major distinction between this algorithm and that p
posed in@2# is that the candidate basis functions~neurons!
are recomputed for each model expansion. By expending
additional effort@step~III !# all candidate functions are muc
better fits to the current model error.

The least mean square estimates of the linear basis f
tion weights are computed in three different places in t
algorithm@steps~II !, ~VI !, and~IX !# and for each value ofk.
Although this calculation is not overly expensive it can
minimized by utilizing a QR factorization@18#. This also
aids in the computation of Eq.~4!.

Step~IV ! selects from amongst the current host of can
dates the best fit to the current error, and step~VII ! rejects
the current worst neuron in the model. Only when the n
rons selected in steps~IV ! and ~VII ! differ does the model
expand. This helps with the nonlinearity of the problem. O
ten a combination of two basis functions,neither of which
are the best fit to the current error, provide a good fit to
error. If the resultant model was found to still be ill-fitting
deeper recursion may be implemented. In all our numer
calculations we found that this single level of recursion w
sufficient. We note in passing that an optional step~VIIIa !
could be added to apply back propagation~or some similar
procedure! to further optimize the parameters of the model
sizek. However, the computational cost of such an addit
could be substantial.

We have not yet described how the candidate basis fu
tions are generated in step~III !. This step is extremely im-
portant and the procedure outlined in@2# is not sufficient.
When one considers sigmoidal functions forx@1, f(x)
'1 and for x!21, f(x)'21. Therefore, the region o
interest isxP@21,1#, and we choosec and r so that$zi•c
2r u i 5d11,d12, . . . ,N%ø@21,1#ÞB. To achieve this we
selectc such that^zi•c& iP@21,1#. The offset termr may
then either be selected randomly~for excessively large prob
lems! or computed via a nonlinear optimization routine. F
a moderate number of basis functions we have found th
standard Newton-Rapheson steepest descent algorithm@18#
rapidly converges to a local minimum and provides sign
cantly improved results.

C. Why the architectures are different

We have already observed that the formulas~6! and ~7!
are very similar—one simply replaces (iz2ci)/r with z•c
2r . However, there are some fundamental difference
tween radial basis functions of the form~6! and neural net-
works ~7!. As we have described in the previous section,
1-4
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TABLE I. Estimates of correlation dimension for data and models. The correlation dimension is shown for the data, iterated
predictions of the same length, and 50 noisy simulations. For the five data sets described in Sec. IV~all contaminated with either experi
mental or artificial noise! we show the length of time seriesN, embedding parameters used to estimate the correlation dimension (de andt),
MSE of the nonlinear models2, number of linear~m! and nonlinear~n! parameters of the optimal model, and correlation dimensiondc

estimates. The correlation dimension estimates are shown for the time series data~‘‘data’’ !, a model simulation~‘‘model’’—an iterated model
prediction with no noise!, and mean and standard deviation of 50 noisy simulations~‘‘surrogates’’!. The noise level is either 20% or 50%
of the model MSE.

dc ~surrogates!
System de t N s2 m n dc ~data! dc ~model! 0.2s2 0.5s2

Ikeda 2 1 500 0.035 451 0 25 1.4207 0.039 667 1.340960.064 116 1.238860.080 872
Rössler 3 1 500 0.3198 2 12 1.6029 1.4763 1.519160.050 691 1.631660.065 429
Sunspots 2 1 271 1.167 1 14 1.3597 0.918 89 1.139460.171 34 1.104760.279 47
Infant respiration 4 5 1200 0.057 865 1 12 2.3799 1.7539 2.044160.36466 1.949760.58539
Chaotic laser 3 1 1000 0.015 707 2 145 1.616 1.6605 1.620760.13326 1.659560.1312
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fitting procedures one typically applies differ tremendous
Generally, the parameters of a radial basis function are fi
using a surface approximation paradigm. Conversely, ne
networks are typically ‘‘trained’’ using procedures either i
spired or motivated by neurobiology. Although we do not u
these standard back propagation and training techniq
here, we do find that new techniques~described in Sec. III B!
are required to fit neural networks well.

The reason for this is related to a more fundamental
tinction between the two types of functions. Because ne
networks are formed from the dot productz•c, a single basis
function in Rd for d.1 will always have divergent measur
@24#. Conversely, for radial basis functions

S E
Rd
UfS iz2ci

r D UdzD 1/p

,`

@if r .0 and as usualf(x)→0 asx→`]. In other words,
neural networks are composed of infinitely long ‘‘ridges’’
Rd and radial basis functions are finite ‘‘bumps.’’ Each rad
basis function has only local effect, while every neuron~for
d.1) is global~this is independent of ones choice off and
depends only on the form of the argument!. Note that, the
convergence theorems obtained for neural networks there
do not necessarily extend to radial basis function netwo
nor vice versa. Specifically, application of minimum descr
tion length for radial basis function modeling does not imp
that the same method will work for neural networks. As w
have found, different parameter estimation procedures
required.

Furthermore, as a consequence of the localization of
dial basis functions and non-localization of neurons, ev
radial basis function network can be simulated by so
~multilayer perceptron! neural network, but the converse
not always true@23#. Therefore, the class of functions th
can be fitted to arbitrary precision by Eq.~6! is a subset of
those that can be fitted by Eq.~7!. We must stress that thi
result only applies when one requiresarbitrary precision.
For most real applications to time series data this is nei
required nor necessarily desirable. There are numerous
amples of applications for which radial basis models ha
out-performed neural network methodologies~and of course,
06670
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vice versa!. Specifically, for time series prediction, sinc
f(x)→0 asx→` for radial basis functions, one can ensu
that trajectories~iterated predictions! of Eq. ~6! will remain
bounded. The same is not true for neural networks. Howe
the loss of stability of neural networks appears to be b
anced by our computational results in Sec. IV showing su
rior approximation for chaotic dynamical systems.

IV. APPLICATION TO TIME SERIES DATA

In this section we present the application of this algorith
on two test systems~Sec. IV A! and three experimental dat
sets ~Sec. IV B!. The test systems we consider are t
Rössler system and the Ikeda map, both with the addition
dynamic noise. We then describe the application of t
method to experimental recordings of infant respiration@25#,
the famous sunspot time series@26#, and the chaotic lase
data utilized in the 1992 Santa Fe time series competi
@11,27#.

To provide a quantitative comparison to previous pu
lished results we compute mean square error~MSE! and nor-
malized mean square error~NMSE!. The MSE is given by
^ei

2&. Similarly, NMSE is ^ei
2&/s2 where s2 is the actual

variance of the data~over the predicted range!. However, as
we will demonstrate later, MSE and NMSE are not ve
good measures of how well the model captures the dyn
ics. To quantify the structure of the data and that of t
model we compare estimates of correlation dimension@28#
for the data and model simulations~both with and without
stochastic perturbations!. By repeatedly generating iterate
noise driven predictions, one obtains an ensemble of poss
trajectories, and a corresponding ensemble of correlation
mension estimates. As described in@4# these may be consid
ered as a nonlinear surrogate hypothesis test@29# and we
quote the mean and standard deviation of the correlation
mension estimates for the surrogates. Table I summar
these results.

A. Computational experiments

Before considering systems with unknown dynamics a
noise we examine the behavior of this modeling algorithm
time series generated from two well known dynamical s
tems.
1-5
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1. The Ikeda map

The simplest test we apply is reconstruction of the Ike
map with the addition of various levels of dynamic noise.
dynamicnoise we mean that system noise is added to
dynamicsprior to prediction of the succeeding state. T
Ikeda equations are given by

xt11511m~xt cosu t2yt sinu t!,

yt11511m~xt sinu t1yt cosu t!,

u t50.42
6

11xt
21yt

2
.

The bifurcation parameterm50.7 provides chaotic dynam
ics. We choose to examine this map because the re
structed dynamics are much more complex than those
either the logistic map or the He´non map. Figure 2 show
500 points of this map both in original and reconstruc
coordinates. For trajectories of length 500, in the absenc
noise, the modeling algorithm was able to accurately rep
duce the delay reconstructed attractor.

FIG. 2. The Ikeda map. Five hundred points of the Ikeda m
are shown, both in original coordinates (xt ,yt) ~upper panel! and
reconstructed coordinates (xt ,xt11) ~lower panel!. Reconstruction
of this map ~lower panel! is considerably less trivial than th
equivalent reconstruction for either the logistic or He´non maps.
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In virtually all real systems deterministic dynamics a
corrupted by some dynamic noise~noise that is intrinsic to
the dynamics rather than added afterwards!. We therefore
repeat the Ikeda simulation with the addition of Gauss
random variates to each scalar component at each itera
The standard deviation of the variates are set at 10% of
the standard deviation of the data. For this level of noise F
3 shows the attractor reconstructed from the original data
attractors reconstructed from noiseless model simulation
length 500. One can see that from this short and noise
tion of data the basic features of the attractor have b
extracted. Table I reveals that the noise free trajectory
stable limit cycle. However, the limit cycle does lie on th
true attractor~Fig. 3!. Furthermore, the addition of dynami

p
FIG. 3. Reconstruction Ikeda map from a noisy trajectory. T

noisy model data~top panel! and the iterated noise free predictio
from a model of these data~lower panel, solid dots! are shown. The
model generated dynamic behavior exactly equivalent to the o
nal data. Even in the absence of noise the attractor produced
the model prediction is as ‘‘noisy’’ as that from the noisy data. T
expected noise free dynamics are shown in Fig. 2. Comparing
sample and out-sample predictions, this model appears to overfi
data. A second model which does not overfit the data~in-sample and
out-sample MSE: 1.2531023 and 2.1531023) produced a high
order periodic orbit~lower panel, open circles!. The two models
contained 91 and 25 nonlinear ‘‘neurons,’’ respectively. Correlat
dimension estimates for the overfit model were equivalent to
data; for the smaller model these estimates are shown in Table
1-6
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noise produces trajectories very similar to the original da
With models built from larger data sets, or lower noise lev
the quality of the simulations improves and one obtains
expected chaotic dynamics.

2. The Rössler system

The second computational simulation we wish to consi
is a chaotic flow. The Ro¨ssler system is given by

ẋ52y2z,

ẏ5x1ay,

ż5b1z~x2c!.

For a50.398, b52, andc54 the system exhibits ‘‘single
band’’ chaos. We integrated these equations with step
0.5 adding dynamic noise to each component at each
~and then using the noisy coordinates for the integration
the next time step! to generate 500 points of the system
From this noisy data we constructed a neural network mo
~the optimal model had only 12 ‘‘neurons’’! using the meth-
ods described in Sec. III. Figure 4 shows the original emb
ded data, the reconstruction from a noise free simulation
the model and the clean attractor~computed in the absenc
of noise!. One can clearly see that the main features of t

FIG. 4. Reconstruction Ro¨ssler system from a noisy trajector
The noisy model data~top panel! and the iterated noisy free predic
tion from a model of these data~bottom panel solid dots! are
shown. Also shown in the bottom panel is a comparable noise
simulation of this system~open circles!. The model generated dy
namic behavior equivalent to the differential equations in the
sence of noise~Table I!. In-sample and out-sample MSE~0.101 and
0.250! were comparable.
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chaotic system are reproduced from the model of this sh
and noisy time series segment. Table I confirms that the
relation dimension estimates for the data and surrogates w
comparable. Underestimation of correlation dimension
this data~and possibly the experimental systems in the n
section! is due to the finite short and noisy time serie
Larger, noise free data produced more accurate estim
Irrespective of this, the importance of Table I is as acom-
parison of statistic values@5#. With higher noise levels or
shorter time series we found that the reconstructed dynam
did not satisfactorily mimic the true behavior. For longer
less noisy data segments we found that performance
proved.

B. Experimental data

We now present the application of this algorithm to da
from three experimental systems: the Wolf annual suns
time series@25#, experimental recordings of infant respira
tion @26#, and the chaotic laser data utilized in the 1992 Sa
Fe time series competition@11,27#. We have deliberately se
lected these three sources of data because each of them
been the focus of considerable attempts to model the dyn
ics.

1. Sunspots

The annual sunspot count time series has been the su
of substantial interest in both the physics and statistics c
munities. Tong@26# describes models of this time series u
ing both autoregressive~AR! and self-exciting threshold au
toregressive ~SETAR! models. Judd and Mees hav
subsequently shown that superior predictive performance
be achieved with nonlinear radial basis function mod
@2,31#.

For fairness of comparison we transform the raw d
according to

yt°2Ayt1121. ~8!

This transformation was selected by Tong to improve
performance of linear models with this highly non-Gauss
distributed data. Table II compares the mean sum of squ
prediction error achieved with our algorithm and the me
ods proposed by Tong@26# and Judd and Mees@2#.

Our main interest is not in the MSE, but in dynamic pe
formance. Linear models described by Tong@26# behave as a
stable focus. The nonlinear methods described by Judd
Mees produce either stable foci@2# or a stable periodic orbit
@31#. Figure 5 shows that the algorithm described here g
erates chaotic dynamics that closely resemble the orig
time series. In Table I we observed fractional correlation
mension in both the data and model simulations. Furth
more, prediction over a longer time horizon shows that
methods described here perform better than the alternat

The iterated model prediction shown in Fig. 5 exhib
dynamics remarkably similar to those observed in the hist
cal data. By comparison, linear models clearly cannot c
ture the long term~nonlinear! dynamics. Radial basis mode
described in@2,31# exhibit stable periodic orbits and onl

e

-
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approximate the true dynamics when driven by high dim
sional noise. Although the predictions of Fig. 5 are quali
tively plausible, we do not claim them to be quantitative
accurate. Table II clearly shows that the neural netw
model behaves poorly for short term prediction. We are c
tainly not claiming to predict the observed values for t
entire first half of this century.

2. Infant respiration

Radial basis models built with minimum descriptio
length have previously been tested with infant respirat
data@4#. These data are recordings of instantaneous abdo
nal cross section of human infants during normal sleep. It

TABLE II. Mean free run prediction error for the annual sunsp
count time series. Mean sum of the square of the prediction e
for models of the sunspot time series produced with five differ
modeling techniques are reported. Values marked with * are th
reported in@2#; † denotes a typical result from an equivalent mod
employing the methods described by@2# ~we do not have access t
the earlier model!. All other results are computed directly. Follow
ing Tong@26#, the AR~9! and reduced AR~RAR! models are com-
puted from the untransformed data. Applying the transformation~8!
produced similar results. The SETAR model is described in@30#.

MSE
Model 1980–1988 1980–2002

AR~9! 334* 416
SETAR 413* 1728
RAR 214* 291
Radial basis 306* 489†

Neural network 625 356
06670
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been shown that these data are not consistent with a li
noise process@25# and that the data areconsistent withthe
hypothesis of deterministic chaos. However, nonlinear ra
basis models of these data typically behave as a noise dr
periodic orbit @4#. While this result is consistent with th
conclusions of@25#, it is perhaps unsatisfactory that the on
deterministic structure that one may extract from these d
is a periodic motion. It has recently been observed tha
certain circumstances complex period doubling phenome
may be used to describe this data@32#. This is an attractive
observation, but the phenomenon has not been observed
sistently in all such data using the methods described in@32#.

In this section we apply the modeling algorithm describ
in this paper to several recordings of infant respiration.
each case we find that the MDL best model of this d
exhibits chaotic dynamics and the free run behavior of
model behaves qualitatively similar to the data. Figure 6
picts a representative data set and simulation. In Table I
see that correlation dimension fornoisysimulations are com-
parable to the data~but not without noise!. Perhaps this is
further evidence of the stochastic behavior left unmodeled
our algorithms~a similar observation was made in@25#!.

3. Chaotic laser dynamics

Our final test system is data from a chaotic laser exp
ment. This data was utilized in the 1992 Santa Fe time se
competition. From a large number of potential modeling
gimes a nearest neighbor technique@27# and a neural net-
work model were found to perform best@12#.

We utilize the same data as described in@12,27# to build a
model using the algorithm described in Sec. III. Initial mod
results were relatively poor. We found that transforming t
data so that it was normally distributed prior to modeli
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FIG. 5. The annual sunspo
count. The actual sunspot coun
and iterated predictions from a
neural network model of these
data ~the model is described in
Table I!. The top panel shows the
actual sunspot count for each ye
of the period 1920–2000. The bot
tom panel shows a noiseless fre
run ~iterated! prediction for the
model of these data over a perio
of 80 years~1980–2060!. Actual
known values are also show
~circles! for the years 1980–2000
The free run prediction does no
fit the dynamics exactly, but it
does provide a good model of th
dynamics. Qualitative features ar
common to both panels. The an
nual sunspot count is a dimension
less quantity derived from the
number of sunspots observe
throughout that year~see@26#!.
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FIG. 6. Human infant respiration. The top panel shows the short term prediction from infant respiration data. True data are de
circles; the model prediction is a solid line. The second and third panels show longer representative segments of both the ori
~second panel! and the MDL-best neural network model~Table I! free-run prediction. The model is built from the data shown in the sec
panel and the free-run prediction is generated without any additional noise. In this example the model simulation does not exhibit
variation present in the data. All other features are comparable: the same irregular asymmetric wave form and frequent variation in
are present in both the data and simulation, and both had correlation dimension exceeding 2. The measured abdominal area is p
to the cross sectional area, but the units of measurement are arbitrary and have been rescaled to have a mean of zero and a stand
of one @25#.
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produced far superior results. We believe that this data
sufficiently non-Gaussian so that the assumption thatj(x)
5x in Eq. ~7! is inappropriate. We are forced to impose
arbitrary transformation to aid the modeling algorithm a
improve results. In Table III we quantitatively compare o
prediction results to those presented in@12,27#.

Figure 7 depicts representative results of the mode
algorithm with the inclusion of this static nonlinear transfo
mation of the data. We note that the qualitative behavior
this model is comparable to the best modeling results

TABLE III. Mean free run prediction error for the chaotic las
data. NMSE for models of the laser time series produced with th
different modeling techniques are reported. NMSE are compu
for 100 point free run predictions initiated at datum number 10
2180, 3870, 4000, and 5180~these initial conditions are those s
lected in@27#!. Values marked with * are those reported in@27#.

NMSE
Model 1000 2180 3870 4000 5180

Sauer@27# 0.027* 0.065* 0.487* 0.023* 0.160*
Wan @12# 0.077* 0.174* 0.183* 0.006* 0.111*
MDL-neural network 0.066 0.061 0.086 0.479 0.03
06670
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Sauer@27# and Wan@12#. Sauer’s model utilized a neare
neighbor technique@27# and therefore does not provide a
actual estimate of the equations of motion~one cannot dif-
ferentiate a nearest neighbor prediction!. In @12# user inter-
vention is required to produce a plausible prediction. T
dynamic behavior depicted in Fig. 7 is produced direc
from the data. The NMSE of our modeling algorithm is n
substantially better than those of@12,27#, but the qualitative
behavior is better and the algorithm therefore provides eq
tions of motion that are a more plausible model for the u
derlying dynamics. Table I confirms that the behavior of d
and model simulations~with and without noise! are remark-
ably similar. Perhaps indicating that this system~unlike that
in the previous section! is completely~or largely! determin-
istic.

The model prediction in Fig. 7 is typical of our result
But, we observed that small changes in the initial conditio
of a model ~less than 0.01% of the data values! greatly
changed the NMSE prediction error over the next 100 da
Using the expected values we were able to optimize the
tial condition of the model and obtained improved ‘‘predi
tions.’’ Of course, these are not true predictions as they
quire knowledge of the actual trajectory. Rather, we
providing a maximum likelihood estimate~MLE! of the ini-

e
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FIG. 7. Chaotic laser dynamics. Free-run prediction~solid line! and actual data~circles! for a MDL-best model of the chaotic laser dat
The prediction error is shown as a dotted line~NMSE of 0.0955!. The simulated performance is qualitatively comparable to those prese
in @12#. However, the neural network model described in@12# ‘‘breaks down’’ soon after the collapse of the laser. We found that the ne
network model was large and highly chaotic; tiny changes in the initial conditions yielded substantial variation in the model predictio
model evidently exhibits extremely sensitive dependence on initial conditions and the uncertainty of this simulation as a pred
therefore great. The laser intensity takes values from 0 to 255~i.e., the units of measurement are arbitrary!.
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tial state given the observed trajectory. For that MLE va
we compute a modelsimulation, the deviation between th
actual observed value and the MLE of the initial state
substantially less than the coarse grain digitization of
model. Therefore, initial states that are indistinguishable
the experimental apparatus exhibit wildly varying perfo
mance. Such variation in prediction draws into doubt
significance of the relative small quantitative difference o
served in the NMSE depicted in Table III. We prefer only
conclude that the model produced by this algorithm provid
quantitatively realistic simulations, which for the corre
choice of initial condition could shadow the true trajector

V. CONCLUSION

Neural networks have a happy history of producing go
~and sometimes not so good! results in situations where th
number of parameters exceeds the number of available
~@12# provides a good example of both cases!. However, this
is not a contradiction of the statistical view thatN data points
may only be used to fit~at most! N parameters. The impor
tant consideration is the precision with which one choose
specify each parameter. Assuminginfinite precision of every
observation and parameter, a~linear, linearly independent!
problem withN observations is overdetermined if the num
ber of parametersk is less thanN. Conversely ifk>N the
problem is underdetermined and one can achieve an arbi
fit to the data. By terminating the training of a network b
fore optimization one obtains parameters with a relativ
low precision and one is therefore able to specify a la
number of themk.N. However, because parameter optim
zation is a nonlinear problem this premature terminat
leads to a local minima—very often repeated application w
yield a different local minima and different model behavio
One then simply chooses the model that performs best on
training data.

In an attempt to address this problem, predictive MD
@15,16# and other information theoretic model selection c
teria @13# have been suggested in the literature. Howev
none of these techniques consider theprecisionwith which
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parameters must be specified. Because the MDL crite
described here computes the precision of the parameters
has a much fairer estimate of the best model of a partic
data set. Furthermore, this avoids the need to waste~often
rare or valuable! data during cross validation@10#.

We cannot prove that this algorithm will work best fo
any given data set. For any particular data set we actu
expect this algorithm to be sub-optimal. However, theo
shows that the functional form~7! is adequate for any non
linearity and, with sufficiently larged andk, it will capture
the dynamics of a sufficiently long time series. Assuming
time seriesis sufficiently long~let N0 be the minimum such
length, so thatN.N0 is sufficient!, then there existsd0 and
k0 such that the neural network~7! captures the required
nonlinearity. We rely on heuristic techniques to determined0
and MDL selection criteria is used to findk0. If N,N0 then
we have insufficient data to find the optimal model with th
approach. In some situations other modeling algorithms m
perform better: for example, a global polynomial model m
model polynomial nonlinearities well. However, forN,N0
MDL selection will still find the best model sizek(d,N)
given the available data.

To justify our failure to find the optimal model in ever
case, we note that the combinatorial nature of this prob
means that there is no known polynomial time algorithm
find a solution. One need only note that a restricted vers
of our MDL nonlinear model selection problem can be rec
as the knapsack problem@33#. We therefore conclude that i
is highly unlikely that an efficientgenericalgorithm exists
for estimating the best neural network~or basis function!
model of a given data set.

It is interesting to note that many of the modeling resu
presented here~most notably those of the chaotic laser d
namics! exhibit the~expected! sensitive dependence on in
tial conditions. This sensitivity is sufficient to generate
wide variety of dynamic evolution within the experiment
precision of the raw data. The data are digitized as 10
integers. However, change in initial condition of less th
0.001~in each component! provided indistinguishable initia
conditions but NMSE over the prediction range of 100 v
1-10
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ues varies between the optimal results shown in Table III
NMSE greater than 1. Therefore, if this model is an accur
representation of the dynamics in question, then compa
NMSE over this horizon is irrelevant because of the exc
sive uncertainty in the initial conditions. One should test h
well the model captures the dynamics. NMSE~either one
step or iterates as in Tables II and III! is a poor measure o
dynamic fit. The correlation dimension or other dynamic
variants are far better~see Table I! @5#.

We do not emphasize the predictive power of this alg
rithm. Each of the systems tested was potentially chaotic.
demonstrated for the laser data that prediction from
model was poor because of the sensitive dependence on
tial conditions and possible undersampling of the origi
experiment. However, in each of the experimental syste
we found that the qualitative behavior of model simulatio
was highly accurate. Realistic chaotic dynamics were
served for the sunspot time series. Simulations of infant
pirations appear indistinguishable from real data. Fina
simulations from models of the Santa Fe laser data exhib
the same features as the data and achieved~for optimal se-
lection of initial conditions! free-run prediction that ex
ceeded previous results. Comparing dynamic invariants
the data and model simulations showed good agreem
y
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~Table I! and provided a fairer and more useful test
‘‘goodness’’ of the models.

Finally, we note that model prediction errors of test and
data observed for the simulated systems were not exa
equal. We have observed, for MDL-best models a slight,
systematic overfitting of the data. The one-step in-sam
MSE values quoted in Figs. 3 and 4 were systematica
lower than the corresponding out-sample MSE. This is du
a flaw in the current algorithm. To alleviate computation
burden we assumed that the only significant parametersLk
were the linear ones (l0 ,l1 , . . . ,lk). While this is clearly
only an approximation it seems to produce adequate res
For the case of radial basis models it was found that
additional expense of computing the full description leng
provided only a slight advantage for the final model@4#. It is
likely that the improvement in neural network models a
forded by the full calculation would also be marginal.
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