Return-Map-Based Approaches for Noncoherent Detection in Chaotic Digital Communications

Abstract—In this brief, simple noncoherent detection methods for chaos-shift-keying (CSK) modulation are proposed. By exploiting some deterministic property of the two chaotic maps, the proposed methods recover the digital message through simple decision algorithms. Specifically, the proposed methods exploit the difference in the return maps of the signals representing the digital symbols. Two specific algorithms are discussed, namely a regression-based algorithm and a probability-based algorithm. Simple tent maps are used for illustration. The bit-error-rate under additive white Gaussian noise is studied by computer simulations.

Index Terms—Chaos-based communication, digital communication, error probability, least-squares regression, noncoherent detection, return maps.

I. INTRODUCTION

In a chaos-shift-keying (CSK) communication system, \(M \) digital symbols are represented by chaotic signals generated from \(M \) dynamical systems or from one system with \(M \) different parameter values [1], [2]. In the binary case, i.e., \(M = 2 \), the transmitted signal essentially switches between two chaotic signals, which are generated from two dynamical systems or from one dynamical system having a parameter switched between two values, according to the digital symbol to be represented. Detection can take either a coherent form or a noncoherent form. In coherent detection, the receiver is required to reproduce the same chaotic signals sent by the transmitter, often through a “chaos synchronization” process which is unfortunately not easily implemented with sufficient robustness [3]. Once reproduced, the digital symbols can be recovered by standard correlation detection [4]–[7]. In noncoherent detection of CSK, however, the receiver does not have to reproduce the chaotic signals. Rather, it makes use of some distinguishable property of the chaotic signals to determine the identity of the digital symbol being transmitted. The most commonly exploited distinguishable property has been the bit energy [8], [9]. However, when bit energy is chosen as the distinguishable property, detection can be accomplished easily by intruders, jeopardizing the security of the system.

For a differential CSK system, it has been shown that suitable exploitation of the determinism of the chaotic signals can lead to improved performance [10]. In this brief, we consider noncoherent detection of CSK, and in particular, we make use of the built-in determinism of the chaotic signals for demodulation. In particular, the return map is used to distinguish the digital symbols. Specific algorithms are developed, based on simple regression and probability calculation. Illustrative examples are given using the return maps as the chaotic generator, and computer simulations are used to evaluate the bit-error rate (BER) of the proposed detection methods.

II. THE CSK SYSTEM

We consider a simple CSK system, in which the transmitter sends a signal consisting of chaotic signals extracted from two chaos genera-
particular, we consider the simple case where the parameter p appears explicitly as a multiplier to a common function $H(.)$, i.e.

$$\begin{align*}
\hat{a}_{n+1} &= pH(\hat{a}_n) \\
\hat{b}_{n+1} &= -pH(\hat{b}_n),
\end{align*}$$

As an example, consider the chaotic maps employing the tent maps $f(x) = 1 - 2|x - (1/2)|$ and $g(x) = 2|x - (1/2)|$ for all $x \in S = (0, 1)$. The corresponding common form is given by

$$H(x) = \frac{1}{2} - 2|x|$$

and $p = 1$. Here, the transformed domain and range are $S' = (-1/2, 1/2)$. See Fig. 4(a).

Likewise, for the logistic maps $f(x) = 4x(1-x)$ and $g(x) = 1 - 4x(1-x)$, with $S = (0, 1)$, the corresponding common form, with $S' = (-1/2, 1/2)$, is

$$H(x) = (x - \frac{\sqrt{2}}{4})(x + \frac{\sqrt{2}}{4})$$

and $p = 4$ in this case. See Fig. 4(b).

The detection approach involves first collecting the points (y_n, y_{n+1}) for each bit. Then, the T transformation mentioned in the previous section is performed on these points, such that the resulting return map resembles either the curve $y = pH(x)$ or $y = -pH(x)$ under noise-free transmission, depending upon the transmitted bit m_k being “0” or “1.” It should be noted that since the transmitter (as defined above) already removes the dc offset, the transformation may need to be adjusted to take into account the dc offset. For the two examples given above, no transformation is needed in the receiver because it is automatically done with the removal of the dc offset.

Under noisy conditions, the points on the collected and transformed return map appear scattered, but to a certain extent (depending upon the noise level) remain close to the curves $y = \pm pH(x)$. A typical reconstructed return map is shown in Fig. 5. Our detection is formulated on the basis of a regression algorithm which aims to find the best fit of the curve

$$y = q_k H(x)$$

(10)

to the points of the return map for the kth bit. The regression here is to estimate the parameter q_k such that the set of points is closest to the above curve in a least-square sense (see the Appendix). Once q_k is found, the decision rule can be as simple as

$$\hat{m}_k = \begin{cases} 0, & \text{if } q_k > 0 \\ 1, & \text{otherwise.} \end{cases}$$

(11)

Remarks: The essence of the transformation T is to allow the two chaotic maps to be written with only one parameter which “strongly” characterizes the map. If the map is written in terms of two or more parameters, then these parameters will jointly characterize the map. Thus, the estimated value of any one parameter may not provide sufficient characterization of the particular chaotic map in order to allow accurate decision to be made as to which map has been sent. Hence, with only one parameter characterizing the map, the detection can be more accurately done.

B. Probability Approach

In this subsection, we present an alternative approach for detection. The basis is still the return map, but the algorithm is based on maximizing the a posteriori probability.
the first symbol, i.e., \(m_k \). Note that this is simply the return map constructed for the first bit. We decode the incoming chaotic signal block by selecting the symbol that would maximize the \textit{a posteriori} probability given \(V \), i.e.,

\[
\hat{m}_1 = \arg \max_{m_k} \text{Prob}(m_1 \text{ is sent} | V).
\]

As the \textit{a posteriori} probability is not convenient to calculate, the Bayes’ rule is applied to \(\text{Prob}(m_1 \text{ is sent} | V) \) to obtain

\[
\text{Prob}(m_1 \text{ is sent} | V) = \frac{p(V|m_1 \text{ is sent})}{p(V)} \times \text{Prob}(m_1 \text{ is sent})
\]

where \(p(\cdot) \) denotes the probability density function. Hence, (12) can be re-written as

\[
\hat{m}_1 = \arg \max_{m_1} p(V|m_1 \text{ is sent})
\]

because \(\text{Prob}(0 \text{ is sent}) = \text{Prob}(1 \text{ is sent}) = 1/2 \) and \(p(V) \) is independent of \(m_1 \). In this detection scheme, we assume that \(v_i \) and \(v_j \) are independent for \(i \neq j \). Thus, \(p(V|m_1 \text{ is sent}) \) in (14) can be expressed as

\[
p(V|m_1 \text{ is sent}) = \prod_{i=1}^{N-1} p(v_i|m_1 \text{ is sent}).
\]

It should be pointed out that with this assumption, we effectively neglect the interdependence between the observation vectors, and thus the probability of an error occurring is expected to be larger than that of the optimal case studied by Hasler and Schimming [5], [6].

We also assume that in each of the observation vectors \(v_i = (y_i, y_{i+1}) \) \((i = 1, 2, \ldots, N - 1) \), the initial condition of the chaotic signal \(s_i \) that gives rise to \(y_i \) is randomly selected from the chaotic range of the map according to the natural invariant probability density of the chaotic map. Now, suppose a "0" is sent, i.e., \(m_1 = 0 \), and the corresponding iterative map is \(f \). Hence, we have

\[
p(v_i|m_1 \text{ is sent} = 0)
\]

\[
= \int_{-\infty}^{\infty} p(v_i|m_1 \text{ is sent} = 0, s_i) \rho_f(s_i) ds_i
\]

\[
= \int_{-\infty}^{\infty} \frac{1}{2\pi\sigma_n^2} \times \exp \left(\frac{(y_i - s_i)^2 + (y_{i+1} - \rho_f(s_i))^2}{2\sigma_n^2} \right) \rho_f(s_i) ds_i
\]

\[
= \frac{1}{2\pi\sigma_n^2} \int_{-\infty}^{\infty} \rho_f(x) \times \exp \left(\frac{(y_i - x)^2 + (y_{i+1} - \rho_f(x))^2}{2\sigma_n^2} \right) dx
\]

where \(\rho_f(x) \) and \(\sigma_n^2 \) denote the natural invariant probability density of \(f \) and variance of noise (noise power), respectively. Similarly, when a
“1” is sent and the corresponding iterative map is g, it is readily shown that

$$p(\mathbf{r}_i | 1 \text{ is sent}) = \frac{1}{2\pi\sigma_n^2} \int_{-\infty}^{\infty} \rho_g(x) \times \exp\left(-\frac{(y_i - x)^2 + (y_{i+1} - g(x))^2}{2\sigma_n^2}\right) dx \quad (17)$$

where $\rho_g(x)$ represents the probability density of g. Note that since the transmitted signal contains no dc bias, the maps f and g should be chosen or translated appropriately such that they consistently contain no dc offset. The decision rule is simply given by

$$\hat{n}_1 = \begin{cases} 0, & \text{if } \prod_{i=1}^{N-1} p(\mathbf{r}_i | 0 \text{ is sent}) > \prod_{i=1}^{N-1} p(\mathbf{r}_i | 1 \text{ is sent}) \\ 1, & \text{otherwise.} \end{cases} \quad (18)$$

The same detection algorithm applies to all other bits.

IV. SIMULATION RESULTS AND COMPARISONS

The performance of the proposed detection methods is evaluated by computer simulations. We use the simple tent maps [Fig. 4(a)] for chaos generation, and we present the BER of the system for a range of spreading factors. Results for the two cases, corresponding to the regression-based and probability-based algorithms, are presented separately. For consistency we adopt the usual definition of E_b/N_0 throughout the sequel, i.e.

$$E_b = \frac{1}{N_b} \sum_{n=1}^{N_b} \sigma_n^2 \quad \text{and} \quad \frac{E_b}{N_0} = \frac{N}{2} \left(\frac{\sigma_n^2}{\sigma_n^2 + \eta^2} \right) \quad (19)$$

where N_b is the number of bits simulated, N is the spreading factor (number of chips per bit), σ_n^2 is the signal power and η^2 is the noise power.

Fig. 6. BER (log scale) versus E_b/N_0 using the proposed regression-based detection. Spreading factor $N = 10, 20, 40,$ and 100. Thick dash line corresponds to DCSK with $N/2 = 10$ which doubles the bandwidth requirement of our $N = 10$ case, and thick dot–dash line corresponds to DCSK with $N/2 = 5$ which requires same bandwidth as our $N = 10$ case.

For the regression-based detection, Fig. 6 shows the plots of the BER versus the usual E_b/N_0. For comparison we show the performance of the most widely studied noncoherent DCSK system with $N = 2$ and 20 [11], [12]. It is fairer to compare the DCSK system for $N = 20$ with our case for $N = 10$, since half of the chips in DCSK are used as reference, though the DCSK with $N = 20$ doubles the bandwidth requirement [13].

Next, we study the effect of varying the spreading factor N. From the simulation results, we may conclude that for constant E_b/N_0, the BER reaches a minimum for a certain spreading factor, as shown in Fig. 7. This behavior occurs typically in noncoherent detection and can be explained as follows. For small N, detection accuracy is poor due to insufficient data points. Thus, detection improves as N increases. However, as N increases, the noise level increases accordingly for constant E_b/N_0, causing deterioration of the performance. For small N, the advantage that can be gained from increasing data points is more significant than the corresponding deterioration due to increased noise level. However, for large N, the noise admitted becomes excessive, and the advantage that can be gained from increasing data points becomes insignificant, causing overall deterioration of the performance.

B. Probability Approach

The tent maps are again employed to generate the chaotic sequences. In Fig. 8, the BERs versus E_b/N_0 are shown. We observe that for
low $E_b/\overline{N_0}$ values, using smaller spreading factors (e.g., 4 or 8) gives slightly better BER, whereas larger spreading factors produces comparatively lower BER for higher $E_b/\overline{N_0}$. In Fig. 9, we plot the BERs versus the spreading factor in log scale. As in the regression-based detection method, for constant $E_b/\overline{N_0}$, the BER achieves a minimum for a certain spreading factor. In this example, the minimum BERs are obtained with a spreading factor of about 10 for $E_b/\overline{N_0} = 12$, 14, and 16 dB.

It should be noted that the proposed detection methods represent only two particular possibilities of exploiting the return-map features, and they may not represent the most effective algorithm for detection. Nonetheless, our purpose is to demonstrate detection possibilities by suitably exploiting the chaotic determinism.

V. CONCLUSION

In this brief, we introduce methods for demodulating CSK signals, exploiting the built-in determinism of chaotic signals. We demonstrate in this brief, two methods exploiting the return maps for recovering the digital message carried by a CSK signal. The algorithm involves either a simple regression process or probability calculation. We conclude this brief by reiterating that methods based on detecting deterministic properties are still not exhausted and further improvement is possible for noncoherent detection based on this category of methods.

APPENDIX

LEAST SQUARES ESTIMATE OF PARAMETER

The basic problem in the regression approach is to fit a curve of the form $y = q H(x)$ to a set of data points $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$. The fitting objective is to minimize the residual sum of squares, defined as

$$SS = \sum_{i=1}^{n} [y_i - q H(x_i)]^2$$

where q is the parameter to be estimated. From elementary calculus, we set the partial derivative of the residual sum of squares with respect to q to zero [14], i.e.,

$$\frac{\partial SS}{\partial q} = 0.$$

Expanding this, we get

$$\sum_{i=1}^{n} 2H(x_i) [y_i - (q H(x_i))] = 0.$$

The estimate of q is thus given by the following formula:

$$q = \frac{\sum_{i=1}^{n} y_i H(x_i)}{\sum_{i=1}^{n} H(x_i)^2}.$$

REFERENCES

