
The Annals of Applied Probability
2017, Vol. 27, No. 2, 960–1002
DOI: 10.1214/16-AAP1222
© Institute of Mathematical Statistics, 2017

OPTIMAL CONSUMPTION UNDER HABIT FORMATION IN
MARKETS WITH TRANSACTION COSTS AND

RANDOM ENDOWMENTS
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The Hong Kong Polytechnic University

This paper studies the optimal consumption via the habit formation pref-
erence in markets with transaction costs and unbounded random endowments.
To model the proportional transaction costs, we adopt the Kabanov’s multi-
asset framework with a cash account. At the terminal time T , the investor can
receive unbounded random endowments for which we propose a new def-
inition of acceptable portfolios based on the strictly consistent price system
(SCPS). We prove a type of super-hedging theorem using the acceptable port-
folios which enables us to obtain the consumption budget constraint condi-
tion under market frictions. Following similar ideas in [Ann. Appl. Probab. 25
(2015) 1383–1419] with the path dependence reduction and the embedding
approach, we obtain the existence and uniqueness of the optimal consumption
using some auxiliary processes and the duality analysis. As an application of
the duality theory, the market isomorphism with special discounting factors
is also discussed in the sense that the original optimal consumption with habit
formation is equivalent to the standard optimal consumption problem without
the habits impact, however, in a modified isomorphic market model.

1. Introduction. The study of consumption habit formation in financial eco-
nomics dates back to [15] and [28]. It has been observed that the von Neumann–
Morgenstern utilities cannot reconcile the well-known magnitude of the equity
premium (see [25] and [4]). Instead, the habit formation preference takes care of
both the current consumption choice and its history pattern. Due to its time nonsep-
arable structure, a small change in the consumption can cause a large fluctuation in
consumption net of the subsistence level, which may explain the sizable excess re-
turns on risky assets in equilibrium models. Likewise this new preference can shed
some light on the quantitative explanation of consumer’s psychology in the context
of the consumption behavior with investment opportunities. For instance, many
empirical studies and psychological reports reveal that the consumer’s satisfaction
level and risk tolerance sometimes rely more on recent changes than the absolute
levels. This preference has thereby been a surge in models for which the smooth
consumption is more beneficial than the marked increase, such as the household
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consumption and other types of expenditures with commitment. In addition, as
pointed out in [11], habit formation allows the model to match the response of real
spending to monetary policy shocks and this new preference can also more accu-
rately replicate the gradual decline of inflation during a disinflation. The diverse
applications of this path-dependent preference motivate our research in general
incomplete market models.

Mathematically, the habit formation preference is defined by E[∫ T
0 U(t, ct −

F(c)t ) dt], where U : [0, T ] × (0,∞) → R. The accumulative process
(F (c)t )t∈[0,T ], called the habit formation or the standard of living process, de-
scribes the consumption history impact. The conventional definition (see [8] and
[9]) of F(c)t is given by the recursive equation

dF(c)t = (
δtct − αtF (c)t

)
dt,

F (c)0 = z,

where the discounting factors (αt )t∈[0,T ] and (δt )t∈[0,T ] are assumed to be nonneg-
ative optional processes and the given real number z ≥ 0 is called the initial habit.
In the present paper, the consumption habits are assumed to be addictive in the
sense that ct ≥ F(c)t for all t ∈ [0, T ]. Therefore, the consumption rate shall never
fall below the standard of living level. This addictive path-dependent preference
has been proposed as the new paradigm in the literature and extensively studied
over the past few decades; see among [2, 8–10, 26, 31] and [32].

In frictionless incomplete semimartingale markets, [32] recently solved this op-
timization problem using the convex duality approach. In [32], the complexity
caused by the path dependence can be reduced by working on the auxiliary primal
processes as well as the auxiliary dual processes. However, the stochastic factors
(αt )t∈[0,T ] and (δt )t∈[0,T ] appeared as some shadow random endowments in the
formulation of the auxiliary optimization problem. In addition, in virtue of the
case when α and δ are unbounded, the auxiliary dual process cannot be guaran-
teed to be integrable. By making the asymptotic growth assumption of the utility
function at both x → 0 and x → ∞, [32] managed to modify the proofs of the du-
ality theory in [16] in a delicate way to deal with the shadow random endowment.
By the idea of embedding, the existence and uniqueness of the optimal consump-
tion under habit formation are consequent on the duality theory for the auxiliary
time-separable problem.

In the presence of transaction costs, the existence of the optimal consumption
with habit formation in general market models, however, is still an open prob-
lem. From a financial point of view, it is natural to investigate the consumption
streams under the influence of habit formation constraints as well as the trading
frictions. Intuitively speaking, both the preservation of the standard of living and
transaction costs will potentially entail negative impacts on the trading frequency
and suggest to allocate more wealth to retain the smooth consumption. However,
we expect that these effects are implicit and complicated. To begin with, this paper
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aims to investigate this open problem by building the theoretical foundation of the
existence and uniqueness of the optimal solution. In some concrete models, the
study of the interplay of the habit formation and transaction costs as well as the
sensitivity analysis of the consumption streams will be left as future projects.

In this paper, we shall follow Kabanov’s multiple assets framework with a cash
account in which the proportional transaction costs are modeled via a nonnega-
tive matrix. The investor can choose the intermediate consumption from the cash
account and will receive unbounded random payoffs at the terminal time T from
some contingent claims. It is worth noting that the Bipolar relationship plays an
important role in the duality approach. In frictionless markets (see [32]), the Bipo-
lar result relies on the consumption budget constraint which is taken as granted
due to the optional decomposition theorem; see [24]. This inequality characteriza-
tion of the consumption processes suggests us to define the correct auxiliary set
and the auxiliary dual set in [32]. Unfortunately, the optional decomposition the-
orem is no longer valid in our framework since the semimartingale property and
the stochastic integral theory are missing in general models with transaction costs.
In addition, the conventional admissible portfolios are defined carefully based on
the convex solvency cones and the strictly consistent price system (SCPS); see
[19, 20] and [3] and the numéraire-based version by [14]. In the existing litera-
ture, it is required that each admissible portfolio process is bounded from below
by a constant. Under different conditions, some super-hedging theorems can be
obtained using the corresponding admissible strategies. This definition of admis-
sible portfolios becomes inappropriate when unbounded random endowments are
taken into account. In frictionless markets, [16] and [33] used the acceptable port-
folio with a process lower bound and proved a type of super-hedging theorem for
some workable contingent claims. The key ingredient in this definition is that the
set of equivalent local martingale measures (ELMM) such that the given maximal
element in the set of wealth processes is a uniformly integrable martingale is dense
in the set of all ELMM with respect to the norm topology of L1(�,F,P). In our
framework, one natural way to modify this definition is to consider the maximal
element in the set of admissible portfolios for transaction costs as the lower bound.
Nevertheless, this result fails in general as the maximal element is not a uniformly
integrable martingale under any SCPS; see some counterexamples in [17] in the
discrete time setting. Since the definition of working portfolios is even more com-
plicated in continuous time models, it is reasonable to believe that the maximal
element from the admissible portfolios is not a wise choice. On the other hand,
if we choose an arbitrary process as the lower bound, the primal set in the dual-
ity theory is not necessarily closed. Evidently, unbounded random final payoffs
prohibit us to apply the well established result in the literature, that is, the super-
hedging theorem using admissible portfolios. To summarize the new challenges in
the current work, the issues of an appropriate definition of working portfolios and
the consumption budget constraint using new portfolios need to be addressed.
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Our first contribution to the existing literature is to propose an innovative defi-
nition of acceptable portfolio processes. It is important to note that each SCPS can
be equivalently written as a pair of (Q, S̃) where S̃ is a local martingale under Q.
Despite the fact that the stock price process S may not be a semimartingale, each S̃

is. Hence, we can define the maximal element from the stochastic integrals using
S̃ from SCPS, and apply it as the process lower bound in a proper way for the
self-financing portfolios with transaction costs. This definition is expected to be
more complicated, however, we provide some handy criterions to check whether
the portfolio process is acceptable or not. It is not surprising that the most chal-
lenging work in this paper is the proof of the super-hedging theorem. Comparing
with [24], it has been pointed out that we are lack of semimartingale properties and
the optional decomposition theorem. On the other hand, our result differs from [3]
since a more complicated definition of working portfolios is required in this paper.
Fortunately, under our careful choice of acceptable portfolios, the super-hedging
result can still be verified. Without consumption behavior, the super-hedging theo-
rem is interesting for its own sake. Using this result, we can also work on the mul-
tivariate utility maximization problem defined on multiple stocks with unbounded
random endowments; see [1]. In Assumption 3.2 and Theorem 3.2 of [1], we can
relax the condition that the random endowment E ∈ L∞.

Another main contribution of the current work is to build the rigorous duality
theory in the model with transaction costs, unbounded random endowments and
consumption habit formation. Our result extends the well-known duality theories
in [3] to the scenario with habit formation constraints as well as in [16] to the mar-
ket frictions caused by transaction costs. To begin with, the consumption budget
constraint provides an inequality characterization of the set of all financeable con-
sumption strategies. By introducing the auxiliary primal process (c̃t )t∈[0,T ] where
c̃t = ct − F(c)t and the auxiliary dual process (�t )t∈[0,T ] defined via the SCPS,
we can follow and modify the ideas and proofs in [32] to apply the convex duality
approach for an abstract optimization problem. It is worth pointing out that the
mathematical approach for habit formation may allow us to consider some related
economic problems such as the consumption with durable goods under transaction
costs. Our general result is also the first step to examine the equilibrium theorem
for habit formation preference with market frictions.

As an interesting observation from the duality theory and consumption budget
constraint, this paper also aims to discuss the market isomorphism between the
markets with consumption habit formation and the markets without habit memo-
ries similar to [31], however, trading in both markets will incur transaction costs.
For some special discounting factors (αt )t∈[0,T ] and (δt )t∈[0,T ], our original opti-
mization problem is equivalent to a standard time-separable utility maximization
problem on consumption under the change of numéraire in the isomorphic mar-
ket with modified random endowments. Two special examples are presented that
the external numéraire process will even vanish in the isomorphic optimal con-
sumption problem. This market isomorphism provides a shortcut to examine the
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optimal consumption strategy under habit influences in this paper using the results
on standard optimal consumption under transaction costs in the existing literature.
In particular, if the shadow price process also exists for the given asset price pro-
cess and transaction costs, the market isomorphism into the shadow price model
will enable us to obtain closed-form feedback formula for the optimal consumption
choice.

The rest of the paper is organized as follows: Section 2 introduces the mar-
ket model with transaction costs and unbounded random endowments, however,
without intermediate consumption behavior. We propose the new definition of ac-
ceptable portfolio appropriate for market frictions using SCPS. The super-hedging
theorem for a family of workable contingent claims is derived. Section 3 is de-
voted to the case with intermediate consumption and addictive habit formation.
To reduce the path dependence, we define the auxiliary primal space Ā(x, q, z),
the enlarged space Ã(x, q, z) and the auxiliary dual space M̃. The original prob-
lem is embedded into an abstract time separable optimization problem with some
shadow random endowments. In Section 4, we formulate the auxiliary dual prob-
lem in which the random endowments can be hidden. The main theorem is stated
in the end together with some corollaries. For special choices of discounting fac-
tors, the market isomorphism result is investigated in Section 5. Section 6 presents
proofs of all main results in previous sections.

2. Market model without intermediate consumption.

2.1. Market model and mathematical set up. We consider a financial market
with one cash account and d risky assets. The cash account is assumed to satisfy
S0

t ≡ 1,∀t ∈ [0, T ], which serves as the numéraire. Risky assets are modeled by a
d-dimensional strictly positive process (St )t∈[0,T ] = (S1

t , . . . , Sd
t )t∈[0,T ] on a given

filtered probability space (�,F,F= (Ft )t∈[0,T ],P), where the filtration F satisfies
the usual conditions. The maturity time is given by T .

(St )t∈[0,T ] may not be a semimartingale in general. To simplify our notation,
we take F = FT . Trading the risky assets incurs transaction costs. We define a
nonnegative (1+d)× (1+d)-matrix � = (λij )0≤i,j≤d with each λij ≥ 0 to model
the proportional factor of costs that one has to pay if exchanging the ith into the
j th asset. Clearly, λi0 = 0 for any 0 ≤ i ≤ d as S0 is the cash account. It is natural
(see [29] and [3]) to impose that for 0 ≤ i, j, k ≤ d the following holds:(

1 + λij )≤ (1 + λik)(1 + λkj ).
The transaction cost coefficients � may be constant or may depend on t and ω

in an adapted way. In this paper, we make the same assumption as in [3] that the
bid-ask process

π
ij
t (ω) �

(
1 + λ

ij
t (ω)

)Sj
t (ω)

Si
t (ω)

, 0 ≤ i, j ≤ d,
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is càdlàg for all 0 ≤ i, j ≤ d . The (1 + d) × (1 + d) matrix 
 = (πij )0≤i,j≤d is
called a bid-ask matrix.

We are working in the Kabanov’s framework, which is centered on the idea
of cone-valued processes. The solvency cone K̂ is defined as a convex polyhedral
cone in R1+d spanned by the unit vectors ei , 0 ≤ i ≤ d and vectors (1+λij )Sj

Si e
i −

ej , 0 ≤ i, j ≤ d . The convex cone −K̂ should be interpreted as those portfolios
available at price zero. A cone K̂ is called proper if K̂ ∩ (−K̂) = {0}. In this
paper, we shall assume that the cones K̂t and K̂t− are proper and contain R1+d+
(efficient friction). In addition, we make the assumption that FT = FT − and 
T =

T − a.s. The cones (K̂t )t∈[0,T ] induce a natural order among R1+d -valued random
variables. In particular, for any stopping time τ and let X, Y be two Fτ -measurable
random variables. We denote X 
τ Y if X − Y ∈ L0(K̂τ ,Fτ ). Here, we define
L0(K̂τ ,Fτ ), short as L0(K̂τ ), the cone of all K̂τ -valued Fτ -measurable random
variables. Following the previous notation, it is clear that L0(R1+d+ ) ⊂ L0(K̂T ).

Given a cone K̂ in R1+d , its positive polar cone is defined by

K̂∗ �
{
w ∈ R1+d : 〈v,w〉 ≥ 0,∀v ∈ K̂

}
.

DEFINITION 2.1. An adapted R1+d+ \ {0}-valued, càdlàg process Z = (Z0
t ,

Z1
t , . . . ,Z

d
t )t∈[0,T ] with Z0

0 = 1 is called a numéraire-based consistent price sys-
tem for the transaction costs � if Z0 is a martingale, Zi is a local martingale
for i = 1, . . . , d and Zt ∈ K̂∗

t a.s. for every t ∈ [0, T ]. Moreover, Z will be
called a numéraire-based strictly consistent price system if for every [0, T ] ∪ {∞}-
valued stopping time τ , Zτ ∈ int(K̂∗

τ ) a.s. on {τ < ∞} and for every predictable
[0, T ] ∪ {∞}-valued stopping time σ , Zσ− ∈ int(K̂∗

σ−) a.s. on {σ < ∞}. The set
of all numéraire-based consistent price systems (resp., strictly consistent price sys-
tems) will be denoted by Z (resp., Zs ). For simplicity, we write (S)CPS to mean
numéraire-based (strictly) consistent price system.

In this paper, we will make the standing assumption.

ASSUMPTION 2.1. Existence of a SCPS: Zs �= ∅.

REMARK 1. Equivalently, each SCPS can be represented by a pair (Q, S̃)

where Q is equivalent to P and (S̃t )t∈[0,T ] = (S̃1
t , . . . , S̃d

t )t∈[0,T ] is a d-dimensional
local martingale under Q; see [19, 29] and [20]. (Q, S̃) is related to Z ∈ Zs by
setting dQ

dP
= Z0

T and S̃i
t = Zi

t /Z
0
t for i = 1, . . . , d and t ∈ [0, T ].

The following definitions are based on the above equivalent representation.

DEFINITION 2.2. Denote Ss := {(Z1/Z0, . . . ,Zd/Z0) : (Z0,Z1, . . . ,Zd) ∈
Zs}. For each fixed S̃ ∈ Ss , we define

Ms(S̃) �
{
Q : dQ

dP
= Z0

T where
(

Z1

Z0 , . . . ,
Zd

Z0

)
= S̃,Z ∈Zs

}
.
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Similarly, for each fixed S̃ ∈ Ss , we define

Zs(S̃) �
{
Z = (

Z0,Z1, . . . ,Zd) : Z ∈ Zs where
(

Z1

Z0 , . . . ,
Zd

Z0

)
= S̃

}
.

Clearly, indexed by S̃ ∈ Ss , Zs(S̃) can be regarded as a partition of the set Zs and
Ms(S̃) = {Q : dQ

dP
= Z0

T ,where Z ∈ Zs(S̃)}. We also denote Ms �⋃
S̃∈Ss Ms(S̃)

and it follows that Ms = {Q : dQ
dP

= Z0
T ,where Z ∈Zs}.

From now on, the market is enlarged by allowing trading N European con-
tingent claims at time t = 0 with the final cash payoff ET = (E i

T )1≤i≤N . We de-
note q = (qi)1≤i≤N as static holdings in contingent claims ET . By allowing q to
take negative values, without loss of generality, we can assume that E i

T ≥ 0 for
1 ≤ i ≤ N . Each E i

T may be unbounded, however, it is assumed throughout the
paper that

∑N
i=1 E i

T is integrable uniformly with respect to all SCPS Zs in the
following sense.

ASSUMPTION 2.2.

(2.1) lim
m→∞ sup

Z∈Zs
E

[〈((
N∑

i=1

E i
T

)
1{∑N

i=1 E i
T >m}, 0̄

)
,ZT

〉]
= 0,

where 0̄ is the d-dimensional zero vector.

REMARK 2. The condition (2.1) implies the finite super-hedging price of
the random endowments under SCPS, that is, supZ∈Zs E[〈(∑N

i=1 E i
T , 0̄),ZT 〉] =

supQ∈Ms EQ[∑N
i=1 E i

T ] < ∞. If we require that ET ∈ L∞, Assumption 2.2 holds
trivially. In the present work, Assumption 2.2 guarantees the super-hedging result
holds for all Z ∈Zs .

To deal with unbounded random endowments, the set of admissible portfolios
with constant lower bounds is generally too small and is required for an exten-
sion to the set of acceptable portfolios with some stochastic thresholds in the cash
account. To fit into the framework with transaction costs, we need to modify the
definition of acceptable portfolio (see [6] and [16] in the frictionless market) by
taking into account of all SCPS. Since each S̃ ∈ Ss is a Q-local martingale, it fol-
lows that S̃ is a semimartingale under the physical probability measure P. Given
the initial wealth a > 0, for each P-semimartingale S̃ ∈ Ss , let X (S̃, a) be the set
of nonnegative wealth processes in the S̃-market; that is,

X (S̃, a) = {
X ≥ 0 : Xt = a + (H · S̃)t , where H is predictable

and S̃-integrable, t ∈ [0, T ]}.
A wealth process in X (S̃, a) is called maximal, denoted by Xmax,S̃ , if its terminal

value X
max,S̃
T cannot be dominated by that of any other processes in X (S̃, a).
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LEMMA 2.1. Under Assumption 2.2, there exists a constant a > 0 such that
for each S̃ ∈ Ss , there exists a maximal element X̂max,S̃ ∈ X (S̃, a) and

∑N
i=1 E i

T ≤
X̂

max,S̃
T .

DEFINITION 2.3. Given Assumption 2.1, an R1+d -valued process V =
(V 0

t , V 1
t , . . . , V d

t )t∈[0,T ] is called a self-financing portfolio process (see [3]) with
transaction costs � if it satisfies the following properties:

(1) V is predictable and P-a.e. path of V has finite variation.
(2) For every pair of stopping times 0 ≤ σ ≤ τ ≤ T , we have

(2.2) Vτ − Vσ ∈ −K̂σ,τ P-a.s.,

where

K̂σ,τ (ω) � conv
( ⋃

σ(ω)≤t<τ(ω)

K̂t (ω)

)

with the bar closure taken in R1+d for each ω ∈ �.

REMARK 3. As pointed out in Rásonyi’s example in [27], since the bid-ask
processes are assumed to be càdlàg, we have to take care of both left and right
jumps of portfolio processes (Vt )t∈[0,T ]. Therefore, predictable processes are nat-
ural choices to model (Vt )t∈[0,T ]. If the stopping time τ is predictable, three values
Vτ−, Vτ and Vτ+ can be different. �Vτ = Vτ − Vτ− and �+Vτ = Vτ+ − Vτ can
model a jump immediately before time τ and a jump at time τ , respectively. The
condition that P-a.e. path of V has finite variation is made for some mathemat-
ical convenience. But the financial intuition behind it is that a portfolio process
having trajectories with infinite variation would lead to infinitely large transaction
costs paid by the investor. Consequently, we only consider self-financing portfolios
given in Definition 2.3.

DEFINITION 2.4. A self-financing portfolio V is called admissible (nu-
méraire-based) if it additionally satisfies (see Definition 13 of [14]):

(3) There is a threshold a > 0 such that VT + (a, 0̄) ∈ L0(K̂T ) and 〈Vτ +
(a, 0̄),Zτ 〉 ≥ 0 P-a.s. for all [0, T ]-valued stopping time τ and for every SCPS
Z ∈ Zs , where 0̄ is the d-dimensional zero vector.

Instead, a self-financing portfolio V is called acceptable (numéraire-based) if it
satisfies the following property:

(3′) There exists a constant a > 0 such that for each S̃ ∈ Ss , there exists a

maximal element Xmax,S̃ ∈ X (S̃, a) with VT + (X
max,S̃
T , 0̄) ∈ L0(K̂T ) and 〈Vτ +

(Xmax,S̃
τ , 0̄),Zτ 〉 ≥ 0 P-a.s. for all [0, T ]-valued stopping time τ and for every

Z ∈Zs(S̃).
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Denote the set of all acceptable dynamic portfolio processes by Vacpt and set

Vacpt
x �

{
V ∈ Vacpt : V0 = x = (

x0, x1, . . . , xd)},
for some initial position x ∈ R1+d .

REMARK 4. It is clear that every admissible portfolio process is acceptable
since each constant a > 0 is a maximal element in X (S̃, a). To see this, we no-
tice that for each S̃ ∈ Ss , there exists Q ∼ P such that S̃ is a Q-local martingale.
Therefore, we can conclude that each S̃ is a semimartingale; see Theorem 7.2 of
[5] for locally bounded S̃ and Theorem 1.3 of [21] for nonnegative S̃. In addition,
the semimartingale S̃ satisfies No Free Lunch with Vanishing Risk condition; see
Theorem 1.1 of [7]. Hence, there is no maximal element in X (S̃, a) which domi-
nates the constant a.

However, the definition above seems abstract in general since it involves all
SCPS. In the next examples, we will provide some conditions easy to check such
that the self-financing portfolio V is indeed acceptable.

EXAMPLE 2.1. If there exists a nonnegative P-martingale W with a �
supQ∈Ms EQ[WT ] < ∞ such that VT + (WT , 0̄) ∈ L0(K̂T ) and 〈Vτ + (Wτ , 0̄),

Zτ 〉 ≥ 0 P-a.s. for all [0, T ]-valued stopping times τ and for all SCPS Z ∈ Zs , we
can conclude that the self-financing portfolio V is acceptable. To see this, by fol-
lowing the same argument of Lemma 2.1, we get that for each S̃ ∈ Ss , there exists

a maximal element Xmax,S̃ ∈ X (S̃, a) such that WT ≤ X
max,S̃
T . Moreover, for each

S̃ ∈ Ss , we also know that (X
max,S̃
t −Wt)t∈[0,T ] is a supermartingale under P since

each Xmax,S̃ is a P-supermartingale. It follows that Xmax,S̃
τ − Wτ ≥ 0 P-a.s. for all

[0, T ]-valued stopping times τ . By passing the inequality to V and the fact that
L0(R1+d+ ) ⊂ L0(K̂T ), we can verify that all conditions of the acceptable portfolio
are satisfied.

EXAMPLE 2.2. Let S be a strictly positive semimartingale and the transaction
cost λij = λ ∈ (0,1) be a fixed constant for all 0 ≤ i ≤ d and 1 ≤ j ≤ d . It is well
known that for each S̃ ∈ Ss , we have

(1 − λ)Si
t < S̃i

t < (1 + λ)Si
t , P-a.s. 1 ≤ i ≤ d, t ∈ [0, T ].

Therefore, for any fixed constant k > 0, we obtain that for any constant a > (1 −
λ)k

∑d
i=1 Si

0 and all [0, T ]-valued stopping time τ ,

0 < a +
∫ τ

0
(1 − λ)k1̄dSu < a +

∫ τ

0
k1̄dS̃u,

where 1̄ is the d-dimensional identity vector, which leads to

0 < a + (1 − λ)k

d∑
i=1

(
Si

τ − Si
0
)
< a +

∫ τ

0
k1̄dS̃u.



HABIT FORMATION AND TRANSACTION COSTS 969

For each fixed S̃ ∈ Ss , we can choose Xmax,S̃ ∈ X (S̃, a) such that X
max,S̃
T ≥ a +∫ T

0 k1̄dS̃u. It is easy to see that (a + ∫ t
0 k1̄dS̃u)t∈[0,T ] is a local martingale, hence

supermartingale, under all Q ∈ Ms(S̃). Meanwhile, by Theorem 5.7 of [7], for
any Xmax,S̃ ∈ X (S̃, a) there exists some Q∗ ∈ Ms(S̃) such that Xmax,S̃ is a UI
martingale under Q∗. Thus, it follows that Xmax,S̃

τ ≥ a + ∫ τ
0 k1̄dS̃u Q∗-a.s. for all

[0, T ]-valued stopping times. Since Q∗ is equivalent to P, we deduce that Xmax,S̃
τ ≥

a + ∫ τ
0 k1̄dS̃u holds P-a.s.

Let us denote Bt � a + (1 − λ)k
∑d

i=1(S
i
t − Si

0) for t ∈ [0, T ]. It follows that

for each S̃ ∈ Ss , there exists an Xmax,S̃ ∈ X (S̃, a) such that

Bτ < Xmax,S̃
τ , P-a.s.

Therefore, in this market, if the self-financing portfolio V satisfies the conditions:
VT + (BT , 0̄) ∈ L0(K̂T ) and 〈Vτ + (Bτ , 0̄),Zτ 〉 ≥ 0 P-a.s. for all [0, T ]-valued
stopping time τ and for all SCPS Z ∈Zs , the above argument implies that V is an
acceptable portfolio process.

We now proceed to show a type of super-hedging theorem for some workable
contingent claims using acceptable portfolios. The next assumption is required to
exclude some trivial cases.

ASSUMPTION 2.3. For any nonzero vector q ∈ RN , the random variable q ·ET

is not replicable in the market under SCPS.

Denote H(x, q) the set of acceptable portfolio processes with initial position
x ∈ R1+d whose terminal value dominate the payoff (−q · ET , 0̄), that is,

(2.3) H(x, q)�
{
V : VT + (q · ET , 0̄) ∈ L0(K̂T ),V ∈ Vacpt

x

}
, (x, q) ∈K,

where the effective domain K is defined by

(2.4) K� int
{
(x, q) ∈ R1+d+N : H(x, q) �= ∅

}
.

2.2. Super-hedging result for some workable contingent claims. Let us con-
sider the abstract set

C(x, q) �
{
g ∈ L0+

(
R1+d) : VT + (q · ET , 0̄)

− g ∈ L0(K̂T ),V ∈H(x, q)
}
, (x, q) ∈ K.

The following result first gives a characterization of the elements in C(x, q)

using all SCPS.

LEMMA 2.2. Given Assumptions 2.1, 2.2, if (x, q) ∈ K, for any g ∈ C(x, q),
we have

(2.5) E
[〈g,ZT 〉]≤ 〈x,Z0〉 +E

[〈
(q · ET , 0̄),ZT

〉]
, ∀Z ∈ Zs .
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REMARK 5. In [16] without transaction costs, the authors only require the
super-hedging condition of the random endowments, that is, supQ∈ME[|E i

T |] < ∞
for all 1 ≤ i ≤ N . Due to the special property of stochastic integrals, they can prove
the inequality similar to (2.2) with the subset M′ of all equivalent local martingale
measures M, which depends on the random endowments ET ; see Lemma 4 and
Lemma 5 in [16]. Moreover, the subset M′ is enough for them to build the bipolar
results for conjugate duality.

In models with transaction costs, the definition of acceptable portfolios is more
delicate. We can similarly define a subset M̄s(S̃) using the given random en-
dowment such that each X̂max,S̃ found in Lemma 2.1 is a true martingale under
Q ∈ M̄s(S̃). However, this set is no longer appropriate for our model since each ac-
ceptable portfolio needs some different lower bound Xmax,S̃ for all [0, T ]-stopping
time τ , and Xmax,S̃ is not necessarily a martingale under M̄s(S̃).

To deal with this issue, we need to avoid the subset trick in [16] and prove the
super-hedging result for the whole set Zs . To this end, we have to make the As-
sumption 2.2 which is stronger than the conventional super-hedging requirement
that supZ∈Zs E[〈(∑N

i=1 |E i
T |, 0̄),ZT 〉] < ∞.

The next result, on the other hand, gives a criteria to check if the given process
is in the set C(x, q) or not.

LEMMA 2.3. Let Assumption 2.1 hold. Let g be an R1+d -valued, FT -
measurable random vector such that there exists a constant a > 0 and for each S̃ ∈
Ss , there exists a maximal element Xmax,S̃ ∈ X (S̃, a) such that g + (X

max,S̃
T , 0̄) ∈

L0(K̂T ). If

(2.6) E
[〈g,ZT 〉]≤ 〈x,Z0〉, ∀Z ∈ Zs,

where x ∈R1+d , there exists V ∈ Vacpt
x such that VT − g ∈ L0(K̂T ).

REMARK 6. Lemmas 2.2 and 2.3 together provide a super-hedging theorem
for some workable contingent claims using acceptable portfolios. Without the in-
termediate consumption, we can also study the multi-variate utility maximization
problem on the terminal wealth defined on each asset with unbounded random
endowments similar to [1]. Moreover, using the acceptable portfolios, we can pos-
sibly perform the sensitivity analysis of marginal utility-based prices with respect
to a small number of random endowments, similar to [23], however under propor-
tional transaction costs. Some potential extensions in these directions are sched-
uled as future research projects.

3. Market model with consumption and habit formation.

3.1. Set up. In this section, we adopt the financial market model with pro-
portional transaction costs and unbounded random endowment as in Section 2. In
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addition, we start to assume that the agent can also choose an intermediate con-
sumption from the cash account S0 during the investment horizon. The consump-
tion rate process is denoted by (ct )t∈[0,T ]. To simplify the notation, starting from
t = 0, we assume that the investor holds initial wealth V0 = (x, 0̄) with x ∈ R, that
is, the initial position in the cash account is x ∈ R and the initial position in each
risky asset account is 0.

DEFINITION 3.1. Given Assumptions 2.1, 2.2 and 2.3 and let (x, 0̄, q) ∈ K,
the consumption process (ct )t∈[0,T ] is called (x, q · E)-financeable if there exists
a self-financing and acceptable portfolio V ∈ H(x, q), defined in (2.3), such that
V0 = (x, 0̄) and VT + (− ∫ T

0 ct dt + q · ET , 0̄) ∈ L0(K̂T ). Denote Cx,q·ET
the set of

all (x, q · ET )-financeable consumption processes.

PROPOSITION 3.1 (Consumption Budget Constraint). Let Assumptions 2.1,
2.2 and 2.3 hold. Let (x, 0̄, q) ∈ K which is defined in (2.4). We have that the
process c ∈ Cx,q·ET

if and only if

(3.1) E

[∫ T

0
ctZ

0
t dt

]
≤ x +E

[〈
(q · ET , 0̄),ZT

〉]
, ∀Z ∈ Zs .

In the present paper, we are interested in the time nonseparable preference on
consumption which takes into account the path-dependence feature of the con-
sumption behavior. In particular, we introduce the consumption habit formation
process F(c)t given by the exponentially weighted average of the agent’s past
consumption integral and the initial habit

F(c)t = ze− ∫ t
0 αv dv +

∫ t

0
δse

− ∫ t
s αv dvcs ds, t ∈ [0, T ],

where the constant z ≥ 0 is called the initial habit. In general, the discounting
factors α and δ are assumed to be nonnegative optional processes which are al-
lowed to be unbounded. However, for the concern of integrability, it is assumed
that

∫ t
0 (δu − αu)du < ∞ a.s. for each t ∈ [0, T ].

This paper is interested in the conventional scenario that the consumption habit
is addictive in the sense that ct ≥ F(c)t , ∀t ∈ [0, T ], that is, the investor’s current
consumption rate shall never fall below the standard of living process.

The investor’s preference is represented by a utility function U : [0, T ] ×
(0,∞) → R, such that, for every x > 0, U(·, x) is continuous on [0, T ], and for
every t ∈ [0, T ], the function U(t, ·) is strictly concave, strictly increasing, contin-
uously differentiable and satisfies the Inada conditions:

(3.2) U′(t,0)� lim
x→0

U′(t, x) = ∞, U′(t,∞)� lim
x→∞U′(t, x) = 0,

where U′(t, x) � ∂
∂x

U(t, x). For each t ∈ [0, T ], we extend the definition of the
utility function by U(t, x) = −∞ for all x < 0, which is equivalent to the addictive
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habit formation constraint ct ≥ F(c)t . The convex conjugate of the utility function,
is defined by

V(t, y)� sup
x>0

{
U(t, x) − xy

}
, y > 0.

Following [32], we make assumptions on the asymptotic behavior of U at both
x = 0 and x = ∞.

ASSUMPTION 3.1. The utility function U satisfies the Reasonable Asymp-
totic Elasticity (RAE) condition both at x = ∞ and x = 0, that is,

(3.3) AE∞[U] = lim sup
x→∞

(
sup

t∈[0,T ]
xU′(t, x)

U(t, x)

)
< 1

and

(3.4) AE0[U] = lim sup
x→0

(
sup

t∈[0,T ]
xU′(t, x)

|U(t, x)|
)

< ∞.

Moreover, in order to get some inequalities uniformly in time t , we shall assume

(3.5) lim
x→∞

(
inf

t∈[0,T ] U(t, x)
)

> 0

and

(3.6) lim
x→0

(
sup

t∈[0,T ]
U(t, x)

)
< 0.

The RAE conditions (3.3) and (3.4) are not restrictive. For instance, the well-
known discounted log utility function U(t, x) = e−βt logx and the discounted
power utility function U(t, x) = e−βt xp

p
(p < 1 and p �= 0) satisfy the conditions

(3.3) and (3.4). Actually, if the utility function has the finite lower bound condition
inft∈[0,T ] U(t,0) > −∞, the condition (3.4) is verified. On the other hand, it is

also easy to check that the utility function U(t, x) = −e
1
x does not satisfy the con-

dition (3.4) and the utility function U(t, x) = x
logx

does not satisfy the condition
(3.3). Moreover, the extra conditions (3.5) and (3.6) are also not restrictive. In-
deed, the utility function satisfies RAE conditions (3.3) and (3.4) if and only if its
affine transform a +bU(t, x) satisfies RAE conditions (3.3) and (3.4) for arbitrary
constants a, b > 0.

As in [32], we denote O as σ -algebra of optional sets relative to the filtra-
tion (Ft )t∈[0,T ], and let dP̄ = dt × dP be the measure on the product space
(� × [0, T ],O) defined as

P̄[A] = EP

[∫ T

0
1A(t,ω)dt

]
, for A ∈O.
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We denote by L0(� × [0, T ],O, P̄) [L0(� × [0, T ]) for short] the set of all ran-
dom variables on the product space with respect to the optional σ -algebra O en-
dowed with the topology of convergence in measure P̄. And from now on, we
shall identify the optional stochastic process (Yt )t∈[0,T ] with the random variable
Y ∈ L0(� × [0, T ]). We also define the positive orthant L0+(� × [0, T ],O, P̄)

[L0+(� × [0, T ]) for short] as the set of Y = Y(t,ω) ∈ L0 such that

Y ≥ 0, P̄-a.s.

At this point, for any (x, 0̄, q) ∈ K and any z ≥ 0, we can define the set of all
(x, q ·ET )-financeable consumption processes with habit formation constraint as a
set of random variables on the product space by

A(x, q, z) �
{
c ∈ L0+

(
� × [0, T ]) : ct ≥ F(c)t ,∀t ∈ [0, T ] and c ∈ Cx,q·ET

}
=
{
c ∈ L0+

(
� × [0, T ]) : ct ≥ F(c)t ,∀t ∈ [0, T ] and

E

[∫ T

0
ctZ

0
t dt

]
≤ x +E

[
q · ET Z0

T

]
,∀Z ∈ Zs

}
.

However, the set A(x, q, z) may be empty for some values (x, 0̄, q) ∈ K and
z ≥ 0 in virtue of the constraint. We shall restrict ourselves to the effective domain
L̄ which is defined as the union of the interior of the set such that A(x, q, z) is not
empty and the boundary {(x, q, z) ∈RN+2 : (x, 0̄, q) ∈ K and z = 0}:

L̄� int
{
(x, q, z) ∈ RN+2 : (x, 0̄, q) ∈ K, z > 0 such that A(x, q, z) �=∅

}∪{
(x, q, z) ∈ RN+2 : (x, 0̄, q) ∈ K and z = 0

}
.

From the definition, L̄ includes the special case of zero initial habit, that is, z = 0.
By choosing (x, q, z) ∈ L̄, we can now define the preliminary version of our

primal utility maximization problem by

(3.7) u(x, q, z)� sup
c∈A(x,q,z)

E

[∫ T

0
U
(
t, ct − F(c)t

)
dt

]
, (x, q, z) ∈ L̄.

It is important to impose the following additional conditions on the discounting
factors αt and δt , which are essential for the well-posedness of the primal utility
optimization problem.

ASSUMPTION 3.2. The nonnegative optional processes (αt )t∈[0,T ] and
(δt )t∈[0,T ] are assumed to satisfy:

(i) For any nonzero vector (q, z) ∈ RN+1, the random variable −z ×∫ T
0 e

∫ t
0 (δv−αv) dv dt + q · ET is not replicable under SCPS.
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(ii) We have

(3.8) sup
Z∈Zs

E

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
< ∞.

(iii) There exists a constant x̄ > 0 such that

(3.9) E

[∫ T

0
U−(t, x̄e− ∫ t

0 αv dv)dt

]
< ∞.

REMARK 7. If stochastic discounting processes (αt )t∈[0,T ] and (δt )t∈[0,T ]
are assumed to be bounded, conditions (3.8) and (3.9) will be satisfied. Con-
dition (3.8) is the well-known super-hedging property of the random variable∫ T

0 e
∫ t

0 (δv−αv) dv dt in the original market.

The following lemma gives an explicit characterization of the domain L̄.

LEMMA 3.1. Under Assumptions 2.1, 2.2 and the condition (3.8), the effective
domain L̄ can be rewritten as

L̄ =
{
(x, q, z) ∈ RN+2 : z ≥ 0 and

x +E
[
q · ET Z0

T

]
> zE

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
,∀Z ∈ Zs

}
.

3.2. Path dependence reduction. To deal with the path-dependence structure
in the optimization problem, we will follow the trick in [32] and define the auxil-
iary process c̃t = ct − F(c)t , t ∈ [0, T ]. Denote the set of all auxiliary processes
by

Ā(x, q, z) �
{
c̃ ∈ L0+

(
� × [0, T ]) :

(3.10)
c̃t = ct − F(c)t ,∀t ∈ [0, T ], c ∈ A(x, q, z)

}
.

The following lemma is a consequence of its definition.

LEMMA 3.2. For each fixed (x, q, z) ∈ L̄, there is a one to one correspon-
dence between sets A(x, q, z) and Ā(x, q, z), and for all (x, q, z) ∈ L̄, we have
Ā(x, q, z) �= ∅.

For each SCPS Z ∈ Zs , we introduce the following important auxiliary optional
process:

�t �Z0
t + δtE

[∫ T

t
e
∫ s
t (δv−αv) dvZ0

s ds
∣∣∣Ft

]
, ∀t ∈ [0, T ],
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and define the set of all these auxiliary processes by

M̃�
{
� ∈ L0+

(
� × [0, T ]) :

(3.11)

�t �Z0
t + δtE

[∫ T

t
e
∫ s
t (δv−αv) dvZ0

s ds
∣∣∣Ft

]
,∀t ∈ [0, T ],Z ∈ Zs

}
.

Since stochastic discounting processes δ and α are assumed to be unbounded in
general, under condition (3.8), the auxiliary dual process � is well defined; how-
ever, it is not necessarily integrable.

The next equivalent characterization of set Ā(x, q, z) is crucial to reduce the
path dependence feature and embed our problem into an auxiliary abstract opti-
mization problem on the product space.

LEMMA 3.3. For (x, q, z) ∈ L̄, we can rewrite Ā(x, q, z) as

Ā(x, q, z) =
{
c̃ ∈ L0+

(
� × [0, T ]) :

E

[∫ T

0
c̃t�t dt

]
≤ x − zE

[∫ T

0
w̃t�t dt

]
+E[q · ET �T ],∀� ∈ M̃

}
,

where w̃t � e
∫ t

0 (−αv) dv for t ∈ [0, T ].
In order to build the conjugate duality, we need to enlarge the effective domain

L̄ to a natural domain, otherwise the constraint on the domain will affect the def-
inition of the correct dual problem. First, the primal set Ā(x, q, z) needs to be
enlarged to the following abstract version:

Ã(x, q, z) �
{
c̃ ∈ L0+

(
� × [0, T ]) :

E

[∫ T

0
c̃t�t dt

]
≤ x − zE

[∫ T

0
w̃t�t dt

]
+E[q · ET �T ],∀� ∈ M̃

}
,

where now (x, q, z) ∈RN+2. Second, we need to consider the enlarged domain L
L� int

{
(x, q, z) ∈ RN+2 : Ã(x, q, z) �= ∅

}
.

The next result shows that the set L is indeed the enlargement of the effective
domain L̄.

LEMMA 3.4. We can characterize the set L equivalently by

L = int
{
(x, q, z) ∈ RN+2 :

x +E
[
q · ET Z0

T

]− zE

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
≥ 0,∀Z ∈ Zs

}
.
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Based on the abstract primal set Ã(x, q, z), we define the auxiliary primal utility
maximization problem by

(3.12) ũ(x, q, z)� sup
c̃∈Ã(x,q,z)

E

[∫ T

0
U(t, c̃t ) dt

]
, (x, q, z) ∈ L.

From the definition of Ā(x, q, z) for (x, q, z) ∈ L̄ and Ã(x, q, z) for (x, q,

z) ∈ L, Lemma 3.1 and Lemma 3.4 imply that L̄ ⊂ L. If we restrict (x, q, z) ∈
L̄ ⊂ L, the following equivalence holds:

Ā(x, q, z) = Ã(x, q, z).

The equivalence between value functions follows, that is,

u(x, q, z) = ũ(x, q, z).

Moreover, (c∗
t )t∈[0,T ] is the optimal solution for u(x, q, z) if and only if

(c̃∗
t )t∈[0,T ] = (c∗

t − F(c∗)t )t∈[0,T ] is the optimal solution for ũ(x, q, z). There-
fore, we embedded our path-dependent utility maximization problem (3.7) into
the auxiliary abstract utility maximization problem (3.12) without habit forma-
tion, however, with the additional shadow random endowment w̃.

4. The dual problem and main results. Similar to [16] and [32], we first
introduce the set R

R� ri
{
(y, r) ∈ RN+2 : xy + (−z, q) · r ≥ 0 for all (x, q, z) ∈ L

}
,

where (−z, q) · r � −zr0 +∑N
i=1 qiri for r = (r0, . . . , rN) ∈ RN+1.

For any (y, r) ∈ R, we define the dual set Ỹ(y, r) as a proper extension of the
auxiliary set M̃ by

Ỹ(y, r) �
{
� ∈ L0+

(
� × [0, T ]) : E[∫ T

0
c̃t�t dt

]
≤ xy + (−z, q) · r

for all c̃ ∈ Ã(x, q, z) and (x, q, z) ∈ L
}
.

The auxiliary dual utility maximization problem to (3.12) can now be formu-
lated as

(4.1) ṽ(y, r)� inf
�∈Ỹ(y,r)

E

[∫ T

0
V (t,�t ) dt

]
, (y, r) ∈ R.

Our main result is stated as the following theorem on the existence of optimal
solutions to the abstract optimization problems and the conjugate duality between
two value functions.

THEOREM 4.1. Let Assumptions 2.1, 2.2, 2.3, 3.1 and 3.2 hold. Moreover, let
ũ(x, q, z) < ∞ for some (x, q, z) ∈ L. Then we have:
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(i) The function ũ(x, q, z) is (−∞,∞)-valued on L and ṽ(y, r) is (−∞,∞)-
valued on R. The conjugate duality of value functions ũ and ṽ holds:

ũ(x, q, z) = inf
(y,r)∈R

(
ṽ(y, r) + xy + (−z, q) · r), (x, q, z) ∈ L,

ṽ(y, r) = sup
(x,q,z)∈L

(
ũ(x, q, z) − xy − (−z, q) · r), (y, r) ∈R.

(ii) The optimal solution �∗(y, r) to the problem (4.1) exists and is unique for
all (y, r) ∈R.

(iii) The optimal solution c̃∗(x, q, z) to the problem (3.12) exists and is unique
for all (x, q, z) ∈ L. Moreover, there exists a representation in the equivalent class
such that c̃∗

t (x, q, z) > 0, P-a.s. for t ∈ [0, T ].
(iv) The super-differential of ũ maps L into R, that is, ∂ũ(x, q, z) ⊂ R for

(x, q, z) ∈ L. In addition, if (y, r) ∈ ∂ũ(x, q, z), c̃∗(x, q, z) and �∗(y, r) are re-
lated by

�∗
t (y, r) = U ′(t, c̃∗

t (x, q, z)
)
, or c̃∗

t (x, q, z) = I
(
t,�∗

t (y, r)
)
, t ∈ [0, T ],

E

[∫ T

0
c̃∗
t (x, q, z)�∗

t (y, r) dt

]
= xy + (−z, q) · r.

(v) If we restrict the choice of initial wealth x, initial holding q and initial
habit formation z such that (x, q, z) ∈ L̄ ⊂ L, the optimal solution c∗(x, q, z) to
the primal utility maximization problem (3.7) exists and is unique. In addition, we
have that for any t ∈ [0, T ],

c̃∗
t (x, q, z) = c∗

t (x, q, z) − F
(
c∗)

t (x, q, z), or

c∗
t (x, q, z) = c̃∗

t (x, q, z) +
∫ t

0
δse

∫ t
s (δv−αv) dvc̃∗

s (x, q, z) ds + ze
∫ t

0 (δv−αv) dv.

REMARK 8. For (x, q, z) ∈ L̄ ⊂ L, if the optimal solution �∗(y, r) of the
auxiliary dual problem (4.1) lies in the auxiliary dual set M̃ defined in (3.11), that
is, there exists a SCPS Z0,∗(y, r) such that

�∗
t (y, r) = Z

0,∗
t (y, r)

(4.2)

+ δtE

[∫ T

t
e
∫ s
t (δv−αv) dvZ0,∗

s (y, r) ds
∣∣∣Ft

]
, ∀t ∈ [0, T ],

the optimal consumption can be explicitly expressed by this SCPS Z∗(y, r) ∈ Zs

that

c∗
t (x, q, z) = ze

∫ t
0 (δv−αv) dv

+ I

(
t,Z

0,∗
t (y, r) + δtE

[∫ T

t
e
∫ s
t (δv−αv) dvZ0,∗

s (y, r) ds
∣∣∣Ft

])
(4.3)
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+
∫ t

0
δse

∫ t
s (δv−αv) dvI

(
s,Z0,∗

s (y, r)

+ δsE

[∫ T

s
e
∫ l
s (δv−αv) dvZ

0,∗
l (y, r) dl

∣∣∣Fs

])
ds, t ∈ [0, T ].

The impact of transaction costs on the optimal consumption stream is hidden im-
plicitly in the definition of the dual set M̃ in (3.11) and the choice of the SCPS
Z0,∗(y, r) in the decomposition form (4.2). For general problems, we cannot con-
clude that the optimal consumption is monotone in terms of the transaction costs
�. Moreover, we can also observe that the optimal consumption depends intri-
cately on discounting factors α and δ. For instance, if δ increases, that is, the con-
sumption history has more weights in the F(c∗), the first term of the right-hand
side of (4.3) increases but the second term of (4.3) decreases and it is unclear if the
third term of (4.3) is monotone or not.

In general, the dual optimizer �∗(y, r) may not be in the set M̃, and hence
�∗(y, r) does not necessarily have the decomposition form in (4.2) with a SCPS
Z0,∗(y, r). However, the dual optimizer may still have a nice decomposition form.
In particular, we can derive the following special example with explicit properties
on the optimal strategy.

COROLLARY 4.1. Let us consider the market models with constant discount-
ing factors δ and α and the logarithmic utility function U(t, x) = logx. For the
dual optimizer �∗(y, r), define the process

Y ∗
t (y, r)� �∗

t (y, r) − δtE

[∫ T

t
�∗

s (y, r)e
∫ s
t (−αv) dv ds

∣∣∣Ft

]
, ∀t ∈ [0, T ].

If the process (Yt )t∈[0,T ] is a strictly positive martingale, we have

�∗
t (y, r) = Y ∗

t (y, r)
(4.4)

+ δtE

[∫ T

t
e
∫ s
t (δv−αv) dvY ∗

s (y, r) ds
∣∣∣Ft

]
, ∀t ∈ [0, T ],

and the corresponding optimal consumption strategy is given explicitly by

c∗
t (x, q, z)

(4.5)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ze(δ−α)t + δ − α

Y ∗
t (y, r)(δe(δ−α)(T −t) − α)

+
∫ t

0

δ − α

Y ∗
s (y, r)

δe(δ−α)(t−s)

(δe(δ−α)(T −s) − α)
ds, δ �= α,

z + 1

Y ∗
t (y, r)

1

1 + δ(T − t)
+
∫ t

0

1

Y ∗
s (y, r)

δ

1 + δ(T − s)
ds, δ = α,
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for t ∈ [0, T ], where (y, r) satisfies xy + (−z, q) · r = T . The corresponding opti-
mal habit formation or standard of living process is

F
(
c∗(x, q, z)

)
t

(4.6)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ze(δ−α)t +

∫ t

0

δ − α

Y ∗
s (y, r)

δe(δ−α)(t−s)

(δe(δ−α)(T −s) − α)
ds, δ �= α,

z +
∫ t

0

1

Y ∗
s (y, r)

δ

1 + δ(T − s)
ds, δ = α.

In addition, we have the following the properties:

(i) If δ − α > 0 or δ = α > 0, the standard of living process (F (c∗)t )t∈[0,T ] is
an increasing process in terms of time t .

(ii) If α = 0 and δ or T is sufficiently large, the optimal consumption strategy
asymptotically behaves like c∗

t (x, q, z) ≈ zeδt , t ∈ [0, T ], hence it almost satisfies
the consumption ratcheting constraint, that is, the consumption process is increas-
ing in terms of time t .

(iii) If δ − α ≥ 0, the process (c∗
t (x, q, z)Y

0,∗
t (y, r))t∈[0,T ] is a submartingale.

If Y ∗
0 = 1, there exists a probability measure Q∗ ∼ P such that the optimal con-

sumption (c∗
t (x, q, z))t∈[0,T ] is a submartingale under Q∗ where dQ∗

dP
= Y ∗

T (y, r).

If δ = α = 0, the process (c∗
t (x, q, z)Y

0,∗
t (y, r))t∈[0,T ] is a martingale.

(iv) If Y ∗
0 (y, r) = 1, the optimal initial consumption amount is explicitly given

by

(4.7) c∗
0(x, q, z) =

⎧⎪⎪⎨⎪⎪⎩
z + δ − α

δe(δ−α)T − α
, δ �= α,

z + 1

1 + δT
, δ = α.

REMARK 9. Again, if the dual optimizer happens in the set M̃, we must have
Y ∗(y, r) = Z0(y, r) for some SCPS Z ∈ Zs which also implies that Y ∗

0 (y, r) = 1.
Therefore, assertions (iii) and (iv) of Corollary 4.1 obviously hold for the case
Y ∗(y, r) = Z0(y, r). Nevertheless, the dual optimizer �∗(y, r) may have the de-
composition form (4.4) for some martingale Y ∗(y, r), which is not a SCPS for the
asset price process S and transaction costs �.

5. Market isomorphism in models with transaction costs. The following
assumption on the nonnegative optional discounting factors is mandated in this
section.

ASSUMPTION 5.1. The process (δt − αt)t∈[0,T ] is a deterministic function of
time t .
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Consider the same asset price process S with the transaction costs �. The next
theorem states an important observation that our utility maximization with habit
formation is equivalent to a standard time-separable utility maximization on con-
sumption in the modified market model with the change of numéraire and new
random endowments.

PROPOSITION 5.1. Let Assumption 5.1 hold. Given the initial wealth x > 0
and initial habit z ≥ 0, the original optimization problem (3.7) is equivalent to the
following time separable utility maximization problem on consumption under the
change of numéraire:

(5.1) û(x, q, z)� sup
ĉ∈Â(x,q,z)

E

[∫ T

0
U

(
t,

ĉt

Gt

)
dt

]
.

Here, we consider the same underlying asset price process S and transaction costs
�. The set Â(x, q, z) is the set of all (x,NT )-financeable consumption processes
with the new random endowments NT � q · ET − z

∫ T
0 e

∫ t
0 (−αv) dvGt dt and the

external auxiliary process

(5.2) Gt � 1 + δt

∫ T

t
e
∫ s
t (δv−αv) dv ds, t ∈ [0, T ].

In particular, the optimal consumption c∗(x, q, z) with habit formation for problem
(3.7) satisfies

c∗
t (x, q, z) = ĉ∗

t (x, q, z)

Gt

+
∫ t

0
δse

∫ t
s (δv−αv) dv ĉ∗

s (x, q, z)

Gs

ds + ze
∫ t

0 (δv−αv) dv, t ∈ [0, T ],

where ĉ∗(x, q, z) is the optimal consumption in the utility maximization problem
(5.1) with the numéraire Gt and new random endowments NT .

In special cases, the numéraire process (Gt)t∈[0,T ] may not affect the utility
maximization problem in Proposition 5.1, and hence the isomorphic optimization
problem becomes a classical optimal consumption problem. We list below two
examples to illustrate the simplicity of the isomorphic problems.

COROLLARY 5.1. Let us consider the logarithmic utility function U(t, x) =
logx. Under Assumption 5.1, the original utility maximization problem with habit
formation (3.7) is equivalent to the isomorphic utility maximization problem on
consumption

û(x, q, z)� sup
ĉ∈Â(x,q,z)

E

[∫ T

0
U(t, ĉt ) dt

]
−E

[∫ T

0
U(t,Gt) dt

]
,
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where Â(x, q, z) is defined the same as in Proposition 5.1. Therefore, it is enough
to consider the standard utility maximization problem

π(x, q, z) = sup
ĉ∈Â(x,q,z)

E

[∫ T

0
U(t, ĉt ) dt

]
.(5.3)

Moreover, we have

c∗
t (x, q, z) = ĉ∗

t (x, q, z)

Gt

+
∫ t

0
δse

∫ t
s (δv−αv) dv ĉ∗

s (x, q, z)

Gs

ds

+ ze
∫ t

0 (δv−αv) dv, t ∈ [0, T ],
where ĉ∗(x, q, z) is the optimal consumption of the problem (5.3) in the isomorphic
market with random endowments NT = q · ET − z

∫ T
0 e

∫ t
0 (−αv) dvGt dt .

COROLLARY 5.2. If the numéraire process (Gt)t∈[0,T ] is a martingale with
G0 = 1, under Assumption 5.1, the original utility maximization problem with
habit formation (3.7) is equivalent to the standard isomorphic utility maximiza-
tion problem on consumption

(5.4) u(x, q, z) = sup
c̃∈Ā(x,q,z)

E

[∫ T

0
U(t, c̃t ) dt

]
,

where Ā(x, q, z) defined in (3.10) is the set of all (x,RT )-financeable consumption
processes in the isomorphic market with the asset price process (St )t∈[0,T ] and

transaction costs �, where RT � q · ET − z
∫ T

0 e
∫ t

0 (−αv) dv dt . Moreover, we have

c∗
t (x, q, z) = c̃∗

t (x, q, z)

+
∫ t

0
δse

∫ t
s (δv−αv) dvc̃∗

s (x, q, z) ds + ze
∫ t

0 (δv−αv) dv, t ∈ [0, T ],

where c̃∗(x, q, z) is the optimal consumption of the problem (5.4) in the isomorphic
market with random endowments RT .

The market isomorphism reduces the complexity of the path-dependence sig-
nificantly as it is enough to find the optimal consumption in the new market model
without habit formation constraint. It is worth noting that if there exists a shadow
price process Ŝ for the asset price process S and transaction costs �, the market
isomorphism can be carried out in the frictionless shadow price market with the
underlying price process Ŝ, which can even permit some closed-form feedback
consumption strategies with habit formation and transaction costs.
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6. Proofs of main results.

6.1. Proofs of main results in Section 2.

PROOF OF LEMMA 2.1. For each S̃ ∈ Ss , Assumption 2.2 implies that

a � sup
Q∈Ms (S̃)

EQ

[
N∑

i=1

E i
T

]
< ∞.

According to the general duality result between terminal wealth and equivalent
local martingale measures in the frictionless market with the stock price S̃ (see
[22]), it follows that there exists a nonnegative wealth process (Xt)t∈[0,T ] =
(a + (H · S̃)t )t∈[0,T ] ∈ X (S̃, a) such that XT ≥∑N

i=1 E i
T . If X itself is a maximal

element in X (S̃, a), the conclusion holds obviously. Otherwise, as X is not a max-
imal element, there exists some portfolio Ĥ such that XT ≤ X̂T = a + (Ĥ · S̃)T .
Without loss of generality, we can assume X̂ is the maximal element in X (S̃, a)

and the conclusion still holds. �

PROOF OF LEMMA 2.2. By the definition of set C(x, q), for any g ∈ C(x, q),
there exists a V ∈ X (x, q) such that VT + (q · ET , 0̄) − g ∈ L0(K̂T ), hence it is
enough to show that

(6.1) E
[〈
VT + (q · ET , 0̄),ZT

〉]≤ 〈x,Z0〉 +E
[〈
(q · ET , 0̄),ZT

〉]
, ∀Z ∈ Zs .

By Remark 1, it is equivalent to prove that for each fixed S̃ ∈ Ss ,

(6.2) EQ

[
V 0

T +
d∑

i=1

S̃i
T V i

T + q · ET

]
≤ 〈x,Z0〉 +EQ[q · ET ], ∀Q ∈ Ms(S̃).

The definition of acceptable portfolio implies that there exists a > 0 and for
each fixed S̃ ∈ Ss , there exists a maximal element Xmax,S̃ ∈ X (S̃, a) such that

(6.3)
〈
Vτ + (Xmax,S̃

τ , 0̄
)
,Zτ

〉≥ 0, P-a.s.,∀Z ∈ Zs(S̃)

for all [0, T ]-valued stopping time τ . For this choice of Xmax,S̃ , we can rewrite

EQ

[
V 0

T +
d∑

i=1

S̃i
T V i

T + q · ET

]

= EQ

[
V 0

T +
d∑

i=1

S̃i
T V i

T + X
max,S̃
T − X

max,S̃
T + q · ET

]
(6.4)

= EQ

[
V 0

T +
d∑

i=1

S̃i
T V i

T + X
max,S̃
T

]
−EQ[Xmax,S̃

T

]+EQ[q · ET ].
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Theorem 5.2 of [6] states that for each fixed semimartingale S̃ ∈ Ss , the set

M′(S̃)�
{
Q ∈ Ms(S̃) : Xmax,S̃ is a UI martingale under Q

}
is nonempty and dense in Ms(S̃) with respect to the norm topology of L1(�,F,

P). Therefore, we can first prove the inequality (6.2) for all Q ∈ M′(S̃) instead of
Q ∈ Ms(S̃). By (6.4) and the fact that Xmax,S̃ is a UI martingale under Q ∈ M′(S̃),
it is sufficient to show that

(6.5) EQ

[
V 0

T +
d∑

i=1

S̃i
T V i

T + X
max,S̃
T

]
≤ 〈x,Z0〉 + a, ∀Q ∈ M′(S̃).

However, since V is a self-financing portfolio, Lemma 2.8 of [3] implies that
〈V,Z〉 is a local supermartingale for all Z ∈ Zs , and hence V 0

t + ∑d
i=1 S̃i

t V
i
t

is a local supermartingale under all Q ∈ M′(S̃). Again, since Xmax,S̃ is a UI

martingale under Q ∈ M′(S̃), we obtain that V 0
t +∑d

i=1 S̃i
t V

i
t + X

max,S̃
t is also

a local supermartingale under Q ∈ M′(S̃). Moreover, by (6.3), we have that
Z0

τ (V
0
τ +∑d

i=1 S̃i
τ V

i
τ + Xmax,S̃

τ ) ≥ 0, P-a.s. for all [0, T ]-valued stopping time τ

where Z0
T = dQ

dP
. It follows that V 0

t +∑d
i=1 S̃i

t V
i
t + X

max,S̃
t is a true supermartin-

gale under Q ∈ M′(S̃) and (6.5) holds true.
Define βT � V 0

T +∑d
i=1 S̃i

T V i
T + q · ET . Since VT + (q · ET , 0̄) ∈ L0(K̂T ), we

get 〈VT + (q · ET , 0̄),ZT 〉 ≥ 0 for all Z ∈ Zs . It thereby follows that for any Q ∈
Ms(S̃), we have βT Z0

T ≥ 0, P-a.s. where Z0
T = dQ

dP
. The monotone convergence

theorem implies that for any Q ∈ Ms(S̃), the following holds:

EQ[βT ] = EP[βT Z0
T

]= lim
m→∞EP[βT 1{βT ≤m}Z0

T

]= lim
m→∞EQ[βT 1{βT ≤m}].

The density property of M′(S̃) in Ms(S̃) in the norm topology of L1 guarantees
the existence of a sequence of Qn ∈ M′(S̃) such that (6.5) holds. It follows that

lim
m→∞EQ[βT 1{βT ≤m}] = lim

m→∞ lim
n→∞EQn[βT 1{βT ≤m}]

≤ lim
n→∞EQn[βT ] ≤ 〈x,Z0〉 + lim

n→∞EQn[q · ET ].
It is clear that for any m > 0 and each 1 ≤ i ≤ N , we have

E i
T 1{E i

T >m} ≤
N∑

i=1

E i
T 1{∑N

i=1 E
i
T >m}, P-a.s.

The assumption that E i
T ≥ 0 a.s. under P implies E i

T ≥ 0 a.s. under Q ∈ Ms(S̃), it
follows that

(6.6) lim
m→∞ sup

Q∈Ms (S̃)

EQ[E i
T 1{E i

T >m}
]= 0, 1 ≤ i ≤ N.
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By (6.6) as well as the Moore–Osgood theorem (see Theorem 5, page 102 of
[12]) and the monotone convergence theorem, we deduce that

lim
n→∞EQn[E i

T

]= lim
n→∞ lim

m→∞EQn[E i
T 1{E i

T ≤m}
]= lim

m→∞ lim
n→∞EQn[E i

T 1{E i
T ≤m}

]
= lim

m→∞EQ[E i
T 1{E i

T ≤m}
]= EQ[E i

T

]
, 1 ≤ i ≤ N,

which gives

lim
n→∞EQn[q · ET ] = EQ[q · ET ].

As a consequence, (6.2) holds for any Q ∈ Ms(S̃). Since S̃ ∈ Ss is arbitrary,
(6.1) is verified which completes the proof of (2.5). �

Fix a constant â > 0 and denote Vacpt
0,â

the set of all acceptable portfolios V with

zero initial wealth V0 = (0, 0̄) and for each S̃, there exists a X̂max,S̃ ∈ X (â, S̃) with

VT + (X̂
max,S̃
T , 0̄) ∈ L0(K̂T ). The following lemma asserts that the total variation

of the element in Vacpt
0,â

remains bounded in probability.

LEMMA 6.1. Let Assumption 2.1 hold. For each â > 0, there exists a proba-
bility measure Q∼ P and a constant C > 0 such that for all V ∈ Vacpt

0,â
,

EQ[‖V ‖T

]≤ Câ.

PROOF. For a fixed SCPS Z ∈ Zs , there exists a S̃ ∈ Ss such that Z ∈
Zs(S̃). From the definition of acceptable portfolios, we can find a constant

â > 0 and Xmax,S̃ ∈ X (S̃, â) such that VT + (X
max,S̃
T , 0̄) ∈ L0(K̂T ) and 〈Vτ +

(Xmax,S̃
τ , 0̄),Zτ 〉 ≥ 0 a.s. for all [0, T ]-valued stopping time τ and for all Z ∈

Zs(S̃).
Similar to Lemma 2.8 of [3], applying the integration by parts formula, we get

〈Vt ,Zt 〉 =
∫ t

0
Vu dZu +

∫ t

0
ZuV̇

c
u d
∥∥V c

∥∥
u +∑

u≤t

Zu−�Vu +∑
u<t

Zu�+Vu,

where the first integral on the right-hand side is a local martingale since V is pre-
dictable with finite variation, and hence locally bounded; see Proposition A.11 of
[13]. Thus, there exists a sequence of stopping times τn ↗ T such that

∫ τn

0 Vu dZu

is a martingale. Moreover, as V is locally bounded, without loss of generality, we
can assume that |Vτn | ≤ n. By taking the expectation, we arrive at

E

[
−
∫ τn

0
ZuV̇

c
u d
∥∥V c

∥∥
u − ∑

u≤τn

Zu−�Vu − ∑
u<τn

Zu�+Vu

]
= −E

[〈Vτn,Zτn〉
]
.
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The self-financing condition and Lemma 2.8 of [3] imply that the process on the
left-hand side is nonnegative. Fatou’s lemma gives that

E

[
−
∫ T

0
ZuV̇

c
u d
∥∥V c

∥∥
u − ∑

u≤T

Zu−�Vu − ∑
u<T

Zu�+Vu

]
≤ −E

[〈Vτn,Zτn〉
]
, ∀n ∈ N.

For the right-hand side, it is clear from the tower property and martingale prop-
erty of Z that

−E
[〈Vτn,Zτn〉

]= −E
[〈Vτn,ZT 〉].

For the fixed Z ∈ Z(S̃), S̃ ∈ Ss and the stochastic lower bound Xmax,S̃ in the
definition of V , we consider the set of measures

M′(S̃) �
{
Q ∈ Ms(S̃) : Xmax,S̃ is a UI martingale under Q

}
.

The density property of M′(S̃) in Ms(S̃) implies the existence of a sequence of
Qm ∈ M′(S̃) such that Qm converges to Q in the norm topology of L1 where
dQ
dP

= ZT . Let us define the sequence Zm by

Z
m,0
t = E

[
dQm

dP

∣∣∣Ft

]
,

Z
m,i
t = Zi

t , i = 1, . . . , d, t ∈ [0, T ].
As |Vτn | ≤ n, it is clear that

−E
[〈Vτn,ZT 〉]= − lim

m→∞E
[〈
Vτn,Z

m
T

〉]= − lim
m→∞E

[〈
Vτn,Z

m
τn

〉]
.

Following the proof of Lemma 2.2, we obtain that 〈V,Zm〉 is a true supermartin-
gale since 〈V,Zm〉 is a local supermartingale by Lemma 2.8 of [3] and it is also
bounded below by the UI martingale 〈(Xmax,S̃ , 0̄),Zm〉. It follows that

− lim
m→∞E

[〈
Vτn,Z

m
τn

〉] ≤ − lim
m→∞E

[〈
VT ,Zm

T

〉]≤ lim
m→∞E

[〈(
X̂

max,S̃
T , 0̄

)
,Zm〉]

= lim
m→∞E

[
X̂

max,S̃
T Z

m,0
T

]= â.

Putting all pieces together, we can deduce that

(6.7) E

[
−
∫ T

0
ZuV̇

c
u d
∥∥V c

∥∥
u − ∑

u≤T

Zu−�Vu − ∑
u<T

Zu�+Vu

]
≤ â.

For the fixed Z ∈ Zs , let us define the random variable α(Z) � ε(Z) ×
inft∈[0,T ] |Zt |1+d where

(6.8) ε(Z) � esssup
{
η ∈ L0(R+,FT ) : Zt ∈ η- int K̂∗

t ,∀t ∈ [0, T ] a.s.
}
.
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Lemma 3.1 of [3] states that P(ε(Z) > 0) = 1 and also inft∈[0,T ] |Zt |1+d > 0 a.s.
The inequality (6.7) implies that

E
[
α(Z)‖V ‖T

]≤ â.

Similar to the proof of Lemma 3.2 of [3], for the fixed Z ∈ Zs , we can then
define C � E[α(Z)] and dQ

dP
� α(Z)

C
, and the conclusion holds. �

Denote Ax = {VT : V ∈ Vacpt
x } the set of all contingent claims attainable with

initial position x ∈ R1+d . We will modify the closedness under Fatou convergence
to fit into our framework in the following way.

DEFINITION 6.1. The set Ax is said to be relatively Fatou closed if for any
fixed â > 0 and for each S̃ ∈ Ss with one fixed maximal element X̂max,S̃ ∈ X (S̃, â)

such that there exists a sequence V n ∈ Vacpt
x satisfying V n

T + (X̂
max,S̃
T , 0̄) ∈ L0(K̂T )

for each S̃ ∈ Ss converges almost surely to a FT -measurable random variable VT ,
we have that VT ∈ Ax holds.

REMARK 10. The new terminology we choose here comes from the fact
that the converging sequence (V n)n∈N has to satisfy the lower bound condition

V n
T + (X̂

max,S̃
T , 0̄) ∈ L0(K̂T ) relatively to the fixed maximal elements X̂max,S̃ for

each S̃. The definition of relatively Fatou closed is more restrictive than the Fatou
closedness. If a set is relatively Fatou closed, then it is obviously Fatou closed since
each constant â > 0 is one maximal element in the set X (S̃, â) for all S̃ ∈ Ss . We
need this stronger condition on the set due to the complexity caused by the defini-
tion of acceptable portfolios. The relatively Fatou closedness in the end will help
us to deduce the characterization of the set Ax using some explicit dual elements.

LEMMA 6.2. Under Assumption 2.1, the set Ax is relatively Fatou closed.

PROOF. The conclusion holds if and only if we can show A0 is relatively
Fatou closed since it is easy to see that V ∈ Vacpt

0 if and only if V + x ∈ Vacpt
x .

Therefore, we will only prove that A0 is relatively Fatou closed.
Given â > 0 and for each S̃ ∈ Ss , choose and fix a maximal element X̂max,S̃ ∈

X (S̃, â). Let V n be a sequence in Vacpt
0 satisfying V n

T + (X̂
max,S̃
T , 0̄) ∈ L0(K̂T )

for all S̃ ∈ Ss , so we get V n ∈ Vacpt
0,â

. Assume that V n
T converges a.s. to some FT

measurable random variable X ∈ L0(R1+d). According to Lemma 6.1 and Propo-
sition 3.4 of [3], there exists a sequence of convex combinations of V n still denoted
by V n which converges to some finite variation, predictable process V pointwise.

Hence, we immediately get VT = X and VT +(X̂
max,S̃
T , 0̄) ∈ L0(K̂T ) for all S̃ ∈ Ss .

It is easy to check that condition (2.2) holds, and hence V is a self-financing port-
folio process. It is enough to prove that it is an acceptable portfolio process. For
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each S̃ ∈ Ss , we consider any Ẑ ∈ Zs(S̃) and the maximal element X̂max,S̃ , for any
t ∈ [0, T ], we have

〈
V n

t + (X̂max,S̃
t , 0̄

)
, Ẑt

〉= (
V

0,n
t +

d∑
i=1

S̃i
t V

i,n
t + X̂

max,S̃
t

)
Ẑ0

t , and

〈
Vt + (X̂max,S̃

t , 0̄
)
, Ẑt

〉= (
V 0

t +
d∑

i=1

S̃i
t V

i
t + X̂

max,S̃
t

)
Ẑ0

t ,

where we have Ẑ0
t = E[dQ̂

dP
|Ft ] and Q̂ ∈ Ms(S̃).

For the same S̃ ∈ Ss , we now consider the maximal element Xmax,S̃,n in the
definition of each acceptable portfolio V n as the lower bounded. Define the set

M′(S̃, n)�
{
Q ∈ Ms(S̃) : Xmax,S̃,n is a UI martingale under Q

}
.

It follows that there exists a sequence of Qm ∈ M′(S̃, n) converging to Q̂ as
m → ∞ in the norm topology of L1 under P. By passing to the subsequence if
necessary, we deduce that Z

0,m
t converges to Ẑ0

t P-a.s. for all t ∈ [0, T ] where
Z

0,m
t = E[dQm

dP
|Ft ]. Therefore, for any t ∈ [0, T ], the following holds:(

V
0,n
t +

d∑
i=1

S̃i
t V

i,n
t + X̂

max,S̃
t

)
Ẑ0

t = lim
m→∞

(
V

0,n
t +

d∑
i=1

S̃i
t V

i,n
t + X̂

max,S̃
t

)
Z

0,m
t .

On the other hand, for each fixed Q ∈ M′(S̃, n), similar to the proof of Lemma 6.1,
we obtain that (V

0,n
t +∑d

i=1 S̃i
t V

i,n
t )Z

0,m
t is a true supermartingale. Also, we have

the stochastic integral X̂max,S̃ is a supermartingale under Qm, hence X̂max,S̃Z0,m

is another supermartingale. It follows that for any [0, T ]-valued stopping time τ ,(
V 0,n

τ +
d∑

i=1

S̃i
τ V

i,n
τ + X̂max,S̃

τ

)
Z0,m

τ

≥ E

[(
V

0,n
T +

d∑
i=1

S̃i
T V

i,n
T + X̂

max,S̃
T

)
Z

0,m
T

∣∣∣Fτ

]
.

We know that V n
T + (X̂

max,S̃
T , 0̄) ∈ L0(K̂T ) which yields that (V

0,n
T +∑d

i=1 S̃i
T ×

V
i,n
T + X̂

max,S̃
T )Z

0,m
T ≥ 0, P-a.s., and therefore Fatou’s lemma leads to(

V 0,n
τ +

d∑
i=1

S̃i
τ V

i,n
τ + X̂max,S̃

τ

)
Ẑ0

τ ≥ E

[(
V

0,n
T +

d∑
i=1

S̃i
T V

i,n
T + X̂

max,S̃
T

)
Ẑ0

T

∣∣∣Fτ

]
.
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Since V n also converges to V pointwise, again by V n
T + (X̂

max,S̃
T , 0̄) ∈ L0(K̂T ) and

Fatou’s lemma, we obtain that(
V 0

τ +
d∑

i=1

S̃i
τ V

i
τ + X̂max,S̃

τ

)
Ẑ0

τ ≥ E

[(
V 0

T +
d∑

i=1

S̃i
T V i

T + X̂
max,S̃
T

)
Ẑ0

T

∣∣∣Fτ

]
.

Therefore, we can see that (V 0
τ +∑d

i=1 S̃i
τ V

i
τ + X̂max,S̃

τ )Ẑ0
τ ≥ 0, P-a.s. which is

equivalent to 〈Vτ + (X̂max,S̃
τ , 0̄), Ẑτ 〉 ≥ 0, P-a.s. for all [0, T ]-valued stopping time

τ and any Ẑ ∈ Zs(S̃). In conclusion, it is proved that the limit process V is an
acceptable portfolio with the constant â > 0 and X̂max,S̃ ∈ X (S̃, â) which verifies
the fact that A0 is relatively Fatou closed. �

LEMMA 6.3. For each fixed n ∈ N, let us define the set of truncated terminal
liquidation values An

x � {Y : Y = VT 1{|VT |≤n},VT ∈Ax}. In addition, we consider
the set A∞

x �⋃n∈NAn
x . We have the following characterization:

A∞
x =

{
Y ∈ L∞

r

(
R1+d,FT

) :
(6.9)

E
[〈Y,η〉]≤ sup

VT ∈A∞
x

E
[〈VT ,η〉],∀η ∈ L1(K̂∗

T ,FT

)}
,

where L∞
r (R1+d,FT ) is the set of all R1+d -valued and FT -measurable random

vectors Y ∈ L∞ such that there exists a > 0 and for each S̃, there exists an

Xmax,S̃ ∈ X (S̃, a) with Y + (X
max,S̃
T , 0̄) ∈ L0(K̂T ).

PROOF. For any constant κ > 0 and for each ξ ∈ {ξ : ‖ξ‖∞ ≤ κ}, we can al-

ways find the constant a = κ + 1 and for each S̃ ∈ Ss , we can choose X
max,S̃
t ≡

a ∈ X (S̃, a) for all t ∈ [0, T ] so that ξ + (X
max,S̃
T , 0̄) ⊆ L0(R1+d+ ) ⊆ L0(K̂T ).

In addition, for any VT ∈ Ax and the corresponding Xmax,S̃ , we claim that

VT 1{|VT |≤n} + (X
max,S̃
T , 0̄) ∈ L0(K̂T ). To see this, it is noted that

VT 1{|VT |≤n} + (
X

max,S̃
T , 0̄

) ≥ VT 1{|VT |≤n} + (Xmax,S̃
T , 0̄

)
1{|VT |≤n}

(6.10)
= (

VT + (Xmax,S̃
T , 0̄

))
1{|VT |≤n} ∈ L0(K̂T ).

Therefore, a bounded sequence convergent a.s. is also relatively Fatou convergent.
Lemma 6.2 states that Ax is relatively Fatou closed, and thus it is straightforward to
derive that an intersection of A∞

x with ball {ξ : ‖ξ‖∞ ≤ κ} is closed in probability
for every κ > 0. By the classical result (see Proposition 5.5.1 of [18]), A∞

x is weak∗
closed [i.e., closed in σ(L∞,L1)]. Following the same argument of Theorem 5.5.3
of [18], we obtain that (6.9) holds true. �
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PROOF OF LEMMA 2.3. It has been proved that Ax is relatively Fatou closed,
and we now proceed with the verification that A∞

x is relatively Fatou dense in Ax .

To this end, let us consider any VT ∈ Ax with the constant â > 0 and X̂max,S̃ ∈
X (S̃, â) for each S̃ ∈ Ss . We need to show the existence of a sequence V n

T ∈ A∞
x

satisfying V n
T + (X̂

max,S̃
T , 0̄) ∈ L0(K̂T ) for all S̃ ∈ Ss as well as V n

T → VT a.s. Fix
VT and similar to Theorem 4.1 of [3], we consider the sequence of V n

T defined by

V n
T = VT 1{|VT |≤n}.

It is clear that V n
T ∈ An

x ⊂ A∞
x . Following the same argument in (6.10), it is also

easy to see that V n
T + (X̂

max,S̃
T , 0̄) ∈ L0(K̂T ) for all S̃ ∈ Ss for each n ∈ N. More-

over,

VT −L∞ ⊆ A∞
x ,

for all VT ∈ A∞
x .

As A∞
x is relatively Fatou dense in Ax , we can try to characterize elements in

Ax using (6.9). For any Y ∈ Ax , we can find a constant a > 0 and for each S̃ there

exists an Xmax,S̃ ∈ X (S̃, a) such that Y + (X
max,S̃
T , 0̄) ∈ L0(K̂T ). It follows that

there exists a sequence Yn ∈ A∞
x such that Yn + (X

max,S̃
T , 0̄) ∈ L0(K̂T ) and Yn

converges to Y a.s. Therefore, Fatou’s lemma leads to

E
[〈
Y + (

X
max,S̃
T , 0̄

)
, η
〉]

(6.11)
≤ sup

VT ∈A∞
x

E
[〈VT ,η〉]+E

[〈(
X

max,S̃
T , 0̄

)
, η
〉]
, ∀η ∈ L1(K̂∗

T

)
.

The second expectation on the right-hand side is well defined since X
max,S̃
T ≥ 0

a.s. On the other hand, suppose that Y + (X
max,S̃
T , 0̄) ∈ L0(K̂T ), we can construct

Yn = Y1{|Y |≤n} ∈ L∞ such that Yn relatively Fatou converges to Y . Moreover, by
(6.11), we can deduce that each Yn satisfies E[〈Yn, η〉] ≤ supVT ∈A∞

x
E[〈VT ,η〉]

for all η ∈ L1(K̂∗
T ,FT ). So Yn ∈ A∞

x ⊆ Ax . The fact that Ax is relatively Fatou
closed yields that Y ∈Ax .

It follows from the above argument that the set Ax can be rewritten as

Ax =
{
Y ∈ L0(K̂T ) : there exists a > 0 and for each S̃ ∈ Ss , there exists an

Xmax,S̃ ∈ X (S̃, a) with Y + (
X

max,S̃
T , 0̄

) ∈ L0(K̂T ) and
(6.12)

E
[〈
Y + (Xmax,S̃

T , 0̄
)
, η
〉]≤ sup

VT ∈A∞
x

E
[〈VT ,η〉]+E

[〈(
X

max,S̃
T , 0̄

)
, η
〉]
,

∀η ∈ L1(K̂∗
T

)}
.
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Pick X /∈ Ax . According to (6.12), for any a > 0 and Xmax,S̃ ∈ X (S̃, a), there
exists η ∈ L1(K̂∗

T ) such that

(6.13) E
[〈
X + (Xmax,S̃

T , 0̄
)
, η
〉]

> sup
VT ∈A∞

x

E
[〈VT ,η〉]+E

[〈(
X

max,S̃
T , 0̄

)
, η
〉]
.

In particular, we can consider X
max,S̃
t ≡ a for t ∈ [0, T ]. Therefore, (6.13) simpli-

fies to be

(6.14) E
[〈X,η〉]> sup

VT ∈A∞
x

E
[〈VT ,η〉].

We can thus define the process Zt = E[η|Ft ], t ∈ [0, t] and obtain E[〈X,ZT 〉] >

〈x,Z0〉 by its definition. Following the same proof of Theorem 4.1 of [3], it is
easy to verify that Zt is a CPS. Let Zs be a SCPS, and for 0 ≤ β < 1 sufficiently
small, the process Z

β
t = βZs

t + Zt is a SCPS. We will have E[〈X,Z
β
T 〉] > 〈x,Z0〉.

According to (2.6), it follows that g ∈ Ax . Therefore, there exists a V ∈ Vacpt
x such

that VT − g ∈ L0(K̂T ). �

6.2. Proofs of main results in Section 3.

PROOF OF PROPOSITION 3.1. If c ∈ Cx,q·ET
, there exists an acceptable port-

folio V ∈ H(x, q) such that〈(∫ T

0
ct dt, 0̄

)
,ZT

〉
≤ 〈VT + (q · ET , 0̄),ZT

〉
, ∀Z ∈ Zs .

Also, for each Z ∈ Zs , we have E[〈(∫ T
0 ct dt, 0̄),ZT 〉] = E[∫ T

0 ct dtZ0
T ]. Using

integration by parts and choosing the localization sequence, we deduce that

E

[〈(∫ T

0
ct dt, 0̄

)
,ZT

〉]
= E

[∫ T

0
ctZ

0
t dt

]
.

Following the proof of Lemma 2.2, we obtain that

E
[〈
VT + (q · ET , 0̄),ZT

〉]≤ x +E
[〈
(q · ET , 0̄),ZT

〉]
, ∀Z ∈ Zs,

and hence (3.1) holds.
On the other hand, for the process c ≥ 0 which satisfies (3.1), let us define

g � (
∫ T

0 ct dt − q · ET , 0̄). By Lemma 2.1, there exists a constant â > 0 and for

each S̃, there exists an X̂max,S̃ ∈ X (S̃, â) such that q · ET ≤ ζ
∑N

i=1 |E i
T | ≤ X̂

max,S̃
T .

It follows that g + (X̂
max,S̃
T , 0̄) ∈ L0(K̂T ). Moreover, by (3.1), we have

E
[〈g,ZT 〉]≤ x = 〈

(x, 0̄),Z0
〉
.

Lemma 2.3 implies the existence of an acceptable portfolio with V0 = (x, 0̄) such
that VT − g = VT + (− ∫ T

0 ct dt + q · ET , 0̄) ∈ L0(K̂T ). Therefore, the conclusion
holds that c ∈ Cx,q·ET

. �
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PROOF OF LEMMA 3.1. We first show that for all (x, 0̄, q) ∈ K and z > 0,

(6.15) x +E
[
q · ET Z0

T

]≥ zE

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
, ∀Z ∈ Zs

if and only if A(x, q, z) �= ∅.
On one hand, for the fixed (x, 0̄, q) ∈ K and z > 0 such that A(x, q, z) �= ∅,

there exists c ∈ L0+ with ct ≥ F(c)t for t ∈ [0, T ] and

E

[∫ T

0
ctZ

0
t dt

]
≤ x +E

[
q · ET Z0

T

]
, ∀Z ∈ Zs .

We claim that this choice ct ≥ c̄t for t ∈ [0, T ] where c̄t ≡ F(c̄)t is the subsistent
consumption process which equals its habit formation process all the time. To see
this, by the definition of F(c)t and the constraint ct ≥ F(c)t , it follows that

dF(c)t ≥ (δtF (c)t − αtF (c)t
)
dt, F (c)0 = z.

Also, we always have

dc̄t = (δt c̄t − αt c̄t ) dt, c̄0 = z,

from which, it can be solved that c̄t = ze
∫ t

0 (δv−αv) dv for t ∈ [0, T ].
By subtraction, it follows that

e
∫ t

0 (δv−αv) dv(F(c)t − c̄t

)≥ 0, t ∈ [0, T ].
It is therefore a consequence that ct ≥ c̄t = ze

∫ t
0 (δv−αv) dv for t ∈ [0, T ], and by

Lemma 3.1, we arrive at (6.15).
Consider (x, 0̄, q) ∈ K and z > 0 such that (6.15) holds. We can always

construct ct ≡ c̄t = ze
∫ t

0 (δv−αv) dv such that ct ≡ F(c)t holds. The definition of
A(x, q, z) and Lemma 3.1 yield that c ∈ A(x, q, z), and hence A(x, q, z) �= ∅.

So far, it has been proved that

int
{
(x, q, z) ∈ RN+2 : (x, 0̄, q) ∈ K, z > 0 such that A(x, q, z) �= ∅

}
=
{
(x, q, z) ∈RN+2 : z > 0 and(6.16)

x +E
[
q · ET Z0

T

]
> zE

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
,∀Z ∈ Zs

}
.

It is enough to show the equivalence clB1 = B2 = B3 for z = 0, where we define

B1 �
{
(x, q) ∈ RN+1 : (x, 0̄, q) ∈ K

}
,

B2 �
{
(x, q) ∈ RN+1 : H((x, 0̄), q

) �= ∅
}
,

B3 �
{
(x, q) ∈ RN+1 : x +E

[
q · ET Z0

T

]≥ 0,∀Z ∈ Zs}.
For the first equality, it is trivial to see that B2 ⊆ clB1. It is enough to verify

that clB1 ⊆ B2. Choose (x, q) ∈ clB1 and let (xn, qn)n≥1 be a sequence in B1
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that converges to (x, q). The assertion of the lemma will follow if we show that
H((x, 0̄), q) �= ∅. Fix V n ∈H((xn, 0̄), qn), n ≥ 1, by Lemma 2.2, we have

E
[〈
V n

T + (qn · ET , 0̄
)
,ZT

〉]≤ xn +E
[〈(

qn · ET , 0̄
)
,ZT

〉]
, ∀Z ∈ Zs .

Since (xn)n≥1 converges to x and (qn)n≥1 converges to q , there exist constants
M1 > 0 and M2 > 0 such that for n large enough, we have xn < M1 and qn < M2.
It follows that when n is large, we have V n ∈ Vacpt

M1
and qn · ET ≤ M2

∑N
i=1 |E i

T |.
Lemma 2.1 asserts that there exits a constant â > 0 and for each S̃, there exists an

X̂max,S̃ ∈ X (S̃, â) such that V n
T + (X̂

max,S̃
T , 0̄) ∈ L0(K̂T ) for n large enough. We

can then apply Lemma 6.1 and Proposition 3.4 of [3], passing if necessary to con-
vex combinations, and assume that V n converges to a finite variation, predictable
process V pointwise. In particular, we obtain that VT + (q · ET , 0̄) ∈ L0(K̂T )

where q � limn→∞ qn. Since q · ET ≤ ζ
∑N

i=1 |E i
T | where ζ = max1≤i≤N |qi |, by

Lemma 2.1 again, there exists a constant a > 0 and for each S̃ ∈ Ss , there exists an

Xmax,S̃ ∈ X (S̃, a) such that VT +(X
max,S̃
T , 0̄) ∈ L0(K̂T ). Moreover, Fatou’s lemma

gives that

E
[〈
VT + (q · ET , 0̄),ZT

〉] ≤ lim
n→∞E

[〈
V n

T + (qn · ET , 0̄
)
,ZT

〉]
≤ lim

n→∞
(
xn +E

[〈(
qn · ET , 0̄

)
,ZT

〉])
= x +E

[〈
(q · ET , 0̄),ZT

〉]
,

for all Z ∈ Zs . It follows that

E
[〈VT ,ZT 〉]≤ x = 〈

(x, 0̄),Z0
〉
, ∀Z ∈ Zs .

By Lemma 2.3, there exits an acceptable portfolio V̂ with V̂0 = (x, 0̄) and V̂T −
VT ∈ L0(K̂T ), hence V̂ ∈ H((x, 0̄), q).

To show B2 ⊆ B3, for the fixed (x, q) ∈ B2, there exists a V ∈ H((x, 0̄), q) and
then Lemma 2.2 leads to

0 ≤ E
[〈VT + q · ET ,ZT 〉]≤ x +E

[〈
(q · ET , 0̄),ZT

〉]
, ∀Z ∈ Zs,

which completes the proof.
If (x, q) ∈ B3, define the FT -random variable g � −q · ET ≥ −ζ

∑N
i=1 |E i

T |,
where ζ = max1≤i≤N |qi |. Under Assumption 2.2, by Lemma 2.1, there exists a

constant a > 0 and for each S̃, there exits an Xmax,S̃ such that (g + Xmax,S̃ , 0̄) ∈
L0(K̂T ). Moreover, we have

E
[
gZ0

T

]= E
[−q · ET Z0

T

]≤ x = 〈
(x, 0̄),Z0

〉
, ∀Z ∈ Zs .

Lemma 2.3 guarantees the existence of an acceptable portfolio V̂ with V̂0 = (x, 0̄)

and V̂T − (g, 0̄) ∈ L0(K̂T ). Therefore, we have V̂T + (q · ET , 0̄) ∈ L0(K̂T ) and
V ∈ H((x, 0̄, q)), which verifies that B3 ⊆ B2. �
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PROOF OF LEMMA 3.3. Set c̃t = ct − F(c)t and it follows that

ct = ze
∫ t

0 (δv−αv) dv + c̃t +
∫ t

0
δse

∫ t
s (δv−αv) dvc̃s ds.

Denote wt � e
∫ t

0 (δvαv) dv . By Fubini–Tonelli’s theorem, we can deduce that

E

[∫ T

0
ctZ

0
t dt

]
= zE

[∫ T

0
wtZ

0
t dt

]

+E

[∫ T

0

(
c̃t +

∫ t

0
δse

∫ t
s (δv−αv) dvc̃s ds

)
Z0

t dt

]

= zE

[∫ T

0
wtZ

0
t dt

]

+E

[∫ T

0
c̃tZ

0
t dt +

∫ T

0
δs c̃s

(∫ T

s
e
∫ t
s (δv−αv) dvZ0

t dt

)
ds

]
(6.17)

= zE

[∫ T

0
wtZ

0
t dt

]

+E

[∫ T

0
c̃tZ

0
t dt +

∫ T

0
δt c̃tE

[∫ T

t
e
∫ s
t (δv−αv) dvZ0

s ds
∣∣∣Ft

]
dt

]

= zE

[∫ T

0
wtZ

0
t dt

]
+E

[∫ T

0
c̃t�t dt

]
.

Following the similar computations in (6.17), we also obtain that

E

[∫ T

0
wtZ

0
t dt

]
= E

[∫ T

0
w̃t�t dt

]
.

At last, it is observed that Z0
T = �T by the definition of �T , and hence E[q ·

ET Z0
T ] = E[q · ET �T ], which completes the proof. �

PROOF OF LEMMA 3.4. It is enough to show that for any (x, q, z) ∈ RN+2,
we have A(x, q, z) �= ∅ if and only if

(6.18) x +E
[
q · ET Z0

T

]− zE

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
≥ 0

holds for all Z ∈ Zs .
If A(x, q, z) �= ∅, by its definition, there exists a ĉ ∈ L0+ such that for any Z ∈

Zs , and hence any � ∈ M̃,

0 ≤ E

[∫ T

0
c̃t�t dt

]
≤ x − zE

[∫ T

0
w̃t�t dt

]
+E[q · ET �T ]

= x − zE

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
+E

[
q · ET Z0

T

]
,
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therefore (6.18) holds trivially. On the other hand, if (6.18) holds, it is enough to
choose ct ≡ 0 ∈ A(x, q, z), which completes the proof. �

6.3. Proofs of main results in Section 4. The proof of the Theorem 4.1 is split
into several results below.

For a vector p = (p0,p1, . . . , pN) ∈ RN+1, we denote Zs(p) the subset of Zs

such that for Z ∈Zs(p),

E

[∫ T

0
e
∫ t

0 (δv−αv) dvZ0
t dt

]
= p0, E

[
E i

T Z0
T

]= pi, 1 ≤ i ≤ N.

Define the set P as the intersection of L with the hyperplane y ≡ 1. Given p ∈ P ,
we can also define the auxiliary set

M̃(p) �
{
� ∈ L0+ : �t = Z0

t + δtE

[∫ T

t
e
∫ s
t (δv−αv) dvZ0

s ds
∣∣∣Ft

]
,

∀t ∈ [0, T ],Z ∈ Zs(p)

}
.

It follows that E[∫ T
0 w̃t�t dt] = p0 and E[E i

T �T ] = pi , 1 ≤ i ≤ N for all � ∈
M̃(p).

LEMMA 6.4. Under all assumptions of Theorem 4.1, the set M̃(p) is not
empty if and only if p ∈ P . In particular,⋃

p∈P
M̃(p) = M̃.

PROOF. Define the set P ′ � {p ∈ RN+1 : M̃(p) �= ∅}. It is sufficient to verify
that P = P ′.

Following the proof of Lemma 8 of [16], it is easy to show the direction P ⊆P ′.
For the other direction, let p ∈ P ′, (x, q, z) ∈ clL and � ∈ M̃(p). We claim the

existence of c̃ ∈ Ã(x, q, z) such that P̄[c̃ > 0] > 0. It then follows that

0 < E

[∫ T

0
c̃t�t dt

]
≤ x + (−z, q) · p.

Since (x, q, z) is chosen arbitrarily from clL, we obtain that p ∈ P .
We now proceed to show that the claim holds. Choose any (x, q, z) ∈ clL and

denote the random variable � � −z
∫ T

0 e
∫ t

0 (δv−αv) dv dt + q · ET . Lemma 3.4 leads
to

x +E
[〈
(�, 0̄),ZT

〉]≥ 0, ∀Z ∈ Zs,

which yields that

x + inf
Z∈Zs

E
[〈
(�, 0̄),ZT

〉]≥ 0.
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By the definition of Ã(x, q, z) and the proof of Lemma 3.3, if all elements c̃ ∈
Ã(x, q, z) satisfy c̃ ≡ 0, we can deduce the existence of one Ẑ ∈ Zs such that

x +E
[〈
(�, 0̄), ẐT

〉]= 0.

It implies that E[〈(�, 0̄), ẐT 〉] = infZ∈Zs E[〈(�, 0̄),ZT 〉]. However, following the
proof of Theorem 2.11 of [30] and part (i) of Assumption 3.2, we can derive that
for any Z ∈Zs

inf
Z∈Zs

E
[〈
(�, 0̄),ZT

〉]
< E

[〈
(�, 0̄),ZT

〉]
< sup

Z∈Zs
E
[〈
(�, 0̄),ZT

〉]
,

which is a contradiction. �

LEMMA 6.5. Let p ∈P; we have M̃(p) ⊆ Ỹ(1,p).

PROOF. The result follows directly by Lemma 3.1 and the definition of M̃(p).
�

LEMMA 6.6. Under all assumptions of Theorem 4.1, for any (x, q, z) ∈ L, a
nonnegative random variable c̃ ∈ L0+(�×[0, T ]) belongs to Ã(x, q, z) if and only
if

(6.19) E

[∫ T

0
c̃t�t dt

]
≤ x + (−z, q) · p, ∀p ∈ P and � ∈ M̃(p).

PROOF. If c̃ ∈ Ã(x, q, z), the inequality (6.19) follows directly by Lemma 3.1
and Lemma 6.4. On the other hand, for any c̃ ∈ L0+(� × [0, T ]) such that (6.19)

holds, we have

sup
�∈M̃

E

[∫ T

0
c̃t�t dt + z

∫ T

0
e
∫ t

0 (−αv) dv�t dt − q · ET �T

]

= sup
p∈P

sup
�∈M̃(p)

E

[∫ T

0
c̃t�t dt + z

∫ T

0
e
∫ t

0 (−αv) dv�t dt − q · ET �T

]

= sup
p∈P

sup
�∈M̃(p)

(
E

[∫ T

0
c̃t�t dt

]
+ (z,−q) · p

)
≤ x.

It is a consequence of the definition of Ã(x, q, z) that c̃ ∈ Ã(x, q, z). �

PROPOSITION 6.1. Under all assumptions of Theorem 4.1, the families
(Ã(x, q, z))(x,q,z)∈L and (Ỹ(y, r))(y,r)∈R have the following properties:



996 X. YU

(1) For any (x, q, z) ∈ L, the set Ã(x, q, z) contains a strictly positive random
variable in L0+(� × [0, T ]). A nonnegative random variable c̃ ∈ L0+(� × [0, T ])
belongs to Ã(x, q, z) if and only if

(6.20) E

[∫ T

0
c̃t�t dt

]
≤ xy + (−z, q) · r, ∀(y, r) ∈ R and � ∈ Ỹ(y, r).

(2) For any (y, r) ∈ R, the set Ỹ(y, r) contains a strictly positive random vari-
able in L0+(� × [0, T ]). A nonnegative random variable � ∈ L0+(� × [0, T ]) be-
longs to Ỹ(y, r) if and only if

(6.21) E

[∫ T

0
c̃t�t dt

]
≤ xy + (−z, q) · r, ∀(x, q, z) ∈ L and c̃ ∈ Ã(x, q, z).

PROOF. We first show that assertion (1) holds. To this end, we choose
(x, q, z) ∈ L. Since L is an open set, there is a constant λ > 0 such that
(x − λ,q, z) ∈ L. Let c̃ ∈ Ã(x − λ,q, z), since w̃t = e− ∫ t

0 αv dv > 0 for t ∈ [0, T ],
for any � ∈ M̃, we obtain that

E

[∫ T

0
c̃t�t dt

]
≤ x − λ − zE

[∫ T

0
w̃t�t dt

]
+E[q · ET �T ].

Under Assumption 3.2, let the constant β � supZ∈Zs E[∫ T
0 e

∫ t
0 (δv−αv) dvZ0

t dt] <

∞ and define the process ρt � λ
β
w̃t > 0 for all t ∈ [0, T ]. For all � ∈ M̃, it follows

that

E

[∫ T

0
ρt�t dt

]
≤ E

[∫ T

0
(c̃t + ρt)�t dt

]

≤ x − λ − zE

[∫ T

0
w̃t�t dt

]
+E[q · ET �T ] + λ

β
E

[∫ T

0
w̃t�t dt

]

≤ x − λ − zE

[∫ T

0
w̃t�t dt

]
+E[q · ET �T ] + λ

≤ x − zE

[∫ T

0
w̃t�t dt

]
+E[q · ET �T ].

The existence of a strictly positive random variable ρ ∈ Ã(x, q, z) is a conse-
quence of the definition of Ã(x, q, z).

Assume that (6.20) holds for some c̃ ∈ L0+. By Lemma 6.5, we have � ∈
M̃(p) ⊂ Ỹ(1,p) for all p ∈ P . Therefore, (6.19) holds, and by Lemma 6.6, we
obtain that c̃ ∈ Ã(x, q, z). Conversely, let c̃ ∈ Ã(x, q, z), the inequality (6.20) fol-
lows by the definition of Ỹ(y, r), (y, r) ∈ R.

For the proof of the assertion (ii), as kỸ(y, r) = Ỹ(ky, kr) for all k > 0 and
(y, r) ∈ R, it is sufficient to consider the case (y, r) = (1,p) for some p ∈ P .
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The existence of a strictly positive Z ∈ Zs(p) implies the existence of a strictly
positive � ∈ M̃(p). Lemma 6.5 again implies that � ∈ Ỹ(1,p) for p ∈ P .

The second part follows directly from the definition of Ỹ(y, r). �

PROOF OF THEOREM 4.1. Once we get the abstract bipolar results in Propo-
sition 6.1, under Assumptions 2.1, 2.2, 2.3, 3.1 and 3.2, the proof closely follows
the arguments of Theorem 4.1 and 4.2 of [32]. �

PROOF OF COROLLARY 4.1. If the process

Y ∗
t (y, r) = �∗

t (y, r) − δtE

[∫ T

t
�∗

s (y, r)e
∫ s
t (−αv) dv ds

∣∣∣Ft

]
is a strictly positive martingale, by using the Fubini theorem and tower property, it
is easy to verify that

�∗
t (y, r) = Y ∗

t (y, r) + δtE

[∫ T

t
e
∫ s
t (δv−αv) dvY ∗

s (y, r) ds
∣∣∣Ft

]
, ∀t ∈ [0, T ].

Moreover, since both δ and α are constants, by changing the order of the condi-
tional expectation and the integral, we get

�∗
t (y, r) = Y ∗

t (y, r)

(
1 + δ

∫ T

t
e(δ−α)(s−t) ds

)

=
⎧⎪⎨⎪⎩Y ∗

t (y, r)

(
δ

δ − α
e(δ−α)(T −t) − α

δ − α

)
, δ �= α,

Y ∗
t (y, r)

(
1 + δ(T − t)

)
, δ = α.

For the logarithmic utility function U(t, x) = logx, we have I (t, x) = 1
x

, and
hence part (v) of Theorem 4.1 implies that the optimal consumption strategy is
given explicitly by (4.5) and the corresponding optimal habit formation process is
given explicitly by (4.6). Part (iv) of Theorem 4.1 also implies that

E

[∫ T

0
c̃∗
t (x, q, z)�∗

t (y, r) dt

]
= E

[∫ T

0
1dt

]
= T = xy + (−z, q) · r.

In addition, the assertion (i) of Corollary 4.1 is an immediate consequence of
the explicit formula (4.6). For the assertion (ii), if α = 0, we get that

c∗
t (x, q, z) = zeδt + 1

Y ∗
t (y, r)eδ(T −t)

+ δeδ(t−T )
∫ t

0

1

Y ∗
s (y, r)

ds.

Since Y ∗(y, r) is strictly positive, it is clear that if the discounting factor δ or the
time horizon T is sufficiently large, the second term and third term on the right-
hand side will be sufficiently small and zeδt will be the leading term. It thereby
follows that c∗

t (x, q, z) ≈ zeδt and it is an increasing process in terms of time t .
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Equivalently, we can conclude that the optimal consumption process satisfies the
ratcheting constraint.

For assertion (iii), if δ − α ≥ 0, it is clear that

c∗
t (x, q, z)Y ∗

t (y, r)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ze(δ−α)tY ∗
t (y, r) + δ − α

(δe(δ−α)(T −t) − α)

+
∫ t

0

(δ − α)Y ∗
t (y, r)

Y ∗
s (y, r)

δe(δ−α)(t−s)

(δe(δ−α)(T −s) − α)
ds, δ > α,

zY ∗
t (y, r) + 1

1 + δ(T − t)

+ 1

Y ∗
t (y, r)

∫ t

0

1

Y ∗
s (y, r)

δ

1 + δ(T − s)
ds, δ = α.

As Y ∗
t (y, r) is a martingale, it is easy to conclude that the product c∗

t (x, q, z)Y
y,r
t

is a submartingale. If we have Y ∗
0 (y, r) = 1, by defining the equivalent probabil-

ity measure dQ∗
dP

= Y ∗
T = �∗

T (y, r), the optimal consumption process c∗(x, q, z)

is a submartingale under the measure Q∗. In the special case that δ = α = 0,
that is, the habit formation process keeps the constant initial habit z, the process
c∗(x, q, z)Y ∗(y, r) is a martingale. Again, if Y ∗

0 (y, r) = 1, the optimal consump-
tion process is a martingale under the probability measure Q∗. Moreover, by the
explicit formula (4.5), if we have Y ∗

0 (y, r) = 1, it is clear that the initial consump-
tion amount is given by (4.7). Therefore, assertion (iv) holds. �

6.4. Proofs of main results in Section 5.

PROOF OF PROPOSITION 5.1. If the process δt − αt is a deterministic func-
tion of time t , the definition of the auxiliary dual set M̃ given in (3.11) can be
significantly simplified as

M̃ = {
� ∈ L0+ : �t = Z0

t Gt ,∀t ∈ [0, T ],Z ∈ Zs},
where the process (Gt)t∈[0,T ] is defined in (5.2).

Equivalently, Lemma 3.3 can be rewritten in terms of SCPS Z ∈Zs by

Ā(x, q, z) =
{
c̃ ∈ L0+ : E

[∫ T

0
c̃tGtZ

0
t dt

]

≤ x − zE

[∫ T

0
w̃tGtZ

0
t dt

]
+E

[
q · ET GT Z0

T

]
,∀Z ∈ Zs

}
.

Recall that Zs is the set of all SCPS for the underlying asset (St )t∈[0,T ] with trans-
action costs � and Ā(x, q, z) is the set of all auxiliary processes (c̃t )t∈[0,T ] that we
define the auxiliary utility maximization problem without habit formation. Propo-
sition 3.1, that is, the consumption budget constraint characterization implies that
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the process (c̃tGt )t∈[0,T ] is the financeable consumption process in the isomorphic
market with the same underlying asset (St )t∈[0,T ] and transaction costs � and with
the initial wealth x and random endowments NT = −z

∫ T
0 w̃tGt dt + q · ET GT .

By the definition of (Gt)t∈[0,T ], we notice that GT = 1 and, therefore, NT can be
simplified as NT = −z

∫ T
0 w̃tGt dt + q · ET . Denote Â(x, q, z) the set of all iso-

morphic consumption processes ĉt = c̃tGt , t ∈ [0, T ], where c̃ ∈ Ā(x, q, z), the
auxiliary time-separable utility maximization problem becomes equivalently to

û(x, q, z) = sup
ĉ∈Â(x,q,z)

E

[∫ T

0
U

(
t,

ĉt

Gt

)
dt

]
,

where the external process (Gt)t∈[0,T ] can be regarded as a discounting process or
a numéraire process and the proof is complete. �

PROOF OF COROLLARY 5.1. Let us consider the logarithmic utility function
U(t, x) = logx. Clearly, the utility maximization problem (5.1) on ĉ ∈ Â(x, q, z)

is equivalent to

û(x, q, z) = sup
ĉ∈Â(x,q,z)

E

[∫ T

0
log(ĉt ) dt

]
−E

[∫ T

0
log(Gt) dt

]
.

It is further equivalent to the standard utility maximization problem on the con-
sumption in the isomorphic market model with random endowments NT

π(x, q, z) = sup
ĉ∈Â(x,q,z)

E

[∫ T

0
log(ĉt ) dt

]
.

�

PROOF OF COROLLARY 5.2. Suppose the external process (Gt)t∈[0,T ] is a
martingale with G0 = 1. Lemma 3.3 leads to

Ā(x, q, z) =
{
c̃ ∈ L0+ : E

[∫ T

0
c̃tGtZ

0
t dt

]

≤ x − zE

[∫ T

0
w̃tGtZ

0
t dt

]
+E

[
q · ET GT Z0

T

]
,∀Z ∈ Zs

}

=
{
c̃ ∈ L0+ : E

[∫ T

0
c̃tZ

0
t dtGT

]

≤ x − zE

[∫ T

0
w̃tZ

0
t dtGT

]
+E

[
q · ET Z0

T GT

]
,∀Z ∈ Zs

}

=
{
c̃ ∈ L0+ : EP̂

[∫ T

0
c̃tZ

0
t dt

]

≤ x − zEP̂

[∫ T

0
w̃tZ

0
t dt

]
+EP̂

[
q · ET Z0

T

]
,∀Z ∈Zs

}
,
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where dP̂
P

= GT . However, we know from the definition that GT = 1 and, there-

fore, P̂ = P which gives the simplified characterization of all auxiliary processes

Ā(x, q, z) =
{
c̃ ∈ L0+ : E

[∫ T

0
c̃tZ

0
t dt

]
(6.22)

≤ x − zE

[∫ T

0
w̃tZ

0
t dt

]
+E

[
q · ET Z0

T

]
,∀Z ∈ Zs

}
.

It is worth noting that the numéraire process (Gt)t∈[0,T ] disappears in the def-
inition of the auxiliary set Ā(x, q, z). Let us consider the isomorphic market
model with stock price (St )t∈[0,T ] and transaction costs � and random endow-
ments RT = −z

∫ T
0 w̃t dt + q · ET . Proposition 3.1 implies that each (c̃t )t∈[0,T ]

is the (x,RT )-financeable consumption process. Therefore, the auxiliary problem
becomes a standard utility maximization on consumption without habit formation,
and we have the equivalence

u(x, q, z) = sup
c̃∈Ā(x,q,z)

E

[∫ T

0
U(t, c̃t ) dt

]
,

where Ā(x, q, z) is the set of all (x,RT )-financeable consumption processes in
the market with the same asset process (St )t∈[0,T ] and transaction costs �, which
completes the proof. �
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