Generation of 64-QAM Signals Using a Single Dual-Drive IQ Modulator Driven by 4-level and Binary Electrical Signals

Shuangyi Yan1, Dawei Wang1, Yuliang Gao2, Chao Lu1, Alan Pak Lau2, Yupeng Zhu1, Yongheng Dai3 and Xiaogeng Xu3

1Photonics Research Center, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong
2Photonics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong
3Huawei Technologies Co., Ltd., Shenzhen, P.R. China

nechoyan@gmail.com

Abstract: A simple square 64-QAM generation technique using a commercially available dual-drive IQ modulator driven by four-level and binary electrical signals is proposed. Polarization multiplexed (PM) 64-QAM signals at 20Gbaud/s are experimentally demonstrated.

OCIS codes: (060.5060) Phase modulation; (060.1660) Coherent communications; (060.2330) Fiber optics communications;

1. Introduction

Optical transport networks have been evolving continuously to deliver more than 100Gbit/s per channel in response to the sharp increase of the network capacity demand. Coherent detection technologies with high order modulation format such as 16-QAM have become the potential candidate to realize 400Gb/s per channel transmission. For the next target bit rate of 1Tbit/s per channel, most of the research interests focus on the combination of many carriers to form a ‘super channel’ using CO-OFDM or Nyquist WDM [1-2]. High spectral-efficiency formats such as 64-QAM at high baud rate are essential to reduce the number of carriers.

Unfortunately, generating 64-QAM signals at tens of Gbaud/s is no easy task, not to mention the practicality aspects of such generation techniques. 64-QAM signals can be generated using an integrated complex optical modulator in parallel structure [3], or in serial structure [4]. However, the complex structures of the 64-QAM modulators make them difficult to fabricate and they are far from commercially available. Another more common method to generate 64-QAM signals is to drive a single-drive IQ modulator with eight-level electrical signals. This can be achieved by using digital-to-analog converters (DAC) [5], electrical-optical-electrical (E-O-E) method [6], high power 3-bit DACs [7], or electrical resistive components such as combiners and attenuators [8]. Compared with typical binary signals or four-level driving signals used in 16-QAM transmitters, eight-level signals are more sensitive to intensity noises which can be introduced by impedance mismatches, signal reflections, etc. When the baud rate increases, obtain high quality eight-level electrical driving signals become much more challenging.

In this paper, we propose and experimentally demonstrated a 20 Gbaud/s square polarization multiplexed (PM)-64-QAM transmitter using a commercially available dual-drive IQ modulator driven by four-level signals and binary signals. The reduced number of driving signal levels renders this technique more practical and easier to be realized in a high baud rate transmitter.

2. Operating Principle

The operating principle of the proposed 64-QAM transmitter is shown in Fig. 1. A commercially available dual-drive nested IQ modulator is used as the external modulator. Each MZM in the dual-drive IQ modulator is a dual-drive MZM (DD-MZM), driven by a four-level signal and a binary signal for each RF input port as shown in Fig. 1(a). As a result, two independent eight-level amplitude- and phase-shift keying (8-APSK) signals are synthesized to modulate the I and Q components of the optical carrier. Then the 64-QAM signal is generated by adding the I and Q components together.
Fig. 1 Operation principle of the proposed 64-QAM transmitter using dual-drive IQ modulator driven by four-level and binary signals. (a) 64-QAM generation with IQ modulator; (b) Phasor representation for 8-APSK generation with DD-MZM.

The phasor representation for the 8-APSK generation in the I-arm of the IQ modulator is shown in Fig. 1(b). The DD-MZM is operated in push-pull mode and biased at the null point. Binary signals with amplitude V_{bin} and four-level signals are used to drive the DD-MZM. The four-level signals can be obtained by combining two binary signals with different amplitudes denoted as V_H and V_L with $V_H > V_L$. For square 64-QAM generation, eight equidistant signal points on the constellation diagram should be generated in parallel with the I- or Q-axis. Under our proposed transmitter configuration, the eight signal points generated do not exactly stay in a line. Rather, each four of them lies on a circle. Nonetheless, we can neglect any penalty resulting from such deviation from the ideal constellation when the driving signals are considerably smaller than the half-wave voltage V_π. Simulation results show that the driving signals chosen in our experiments will induce a < 1 dB penalty compared with the standard square 64-QAM constellation. Alternatively, optimal decision boundaries based on maximum likelihood or other metrics can be used to improve detection performance [9-10]. In this case, the driving amplitude requirements for 64-QAM signal generation can be graphically represented in Fig. 1(b) as $l=1.5d$, and $L=2d$. These requirements can be analytically expressed as

$$\sin \left(\frac{V_H + V_L}{2V_\pi} \right) = 3\sin \left(\frac{V_H - V_L}{2V_\pi} \right) \quad \text{and} \quad \sin \left(\frac{V_{bin}}{2V_\pi} \right) = 6\sin \left(\frac{V_H - V_L}{2V_\pi} \right).$$

(1)

For small driving signals, such requirements can simply be written as $V_{bin} = 4V_L$ and $V_H = 2V_L$. In this case, eight constellation points along the I-axis can be obtained in the I-arm of the IQ modulator as shown in Fig. 1(b). Similarly, eight constellation points can also be obtained along the Q-axis and the overall 64-QAM signal can be generated by adding two 8-APSK signals in the I and Q-arms.

3. Experimental Results

Fig. 2 shows the experimental setup for the proposed 64-QAM signal generation technique. An external cavity laser (ECL) with about 100 kHz linewidth is used as the transmitter and the local oscillator. The dual-drive IQ modulator (FTM79600Ex, from Fujitsu) is driven by two 4-level electrical signals and two binary electrical signals. The 20Gbit/s binary signals are obtained by multiplexing two 10 Gbit/s data streams. The four-level electrical signals are generated with a 4-level signal generator by feeding two 20 Gbit/s electrical data streams. All the driving signals are de-correlated with each other by introducing 1 ns extra delay. The amplitudes of the driving signals are adjusted according to equation (1). The generated 20Gbaud/s 64-QAM signals are amplified by an EDFA and are then launched into a PDM emulator, which consists of a polarization controller, polarization beam splitter/combiner (PBS/PBC) and an optical delay line, to realize PM-64-QAM. Different amounts of ASE noise are loaded to the signals to realized different OSNR values.
Fig. 2 Experimental setup for the proposed 64-QAM signal generation technique. Binary electrical signals and 4-level electrical signals are used to drive the dual-drive IQ modulator.

On the receiver side, the signals are coherently detected with a polarization-diversity receiver. Part of the CW light of the transmitter ECL is used as the local oscillator, thus realizing self-homodyne detection. The electrical signals are then sampled for analog-to-digital (A/D) conversion using a real-time oscilloscope (16GHz bandwidth, 50Gs/s sampling rate) and processed offline to perform normalization, polarization demultiplexing, carrier phase estimation [11], 681-tap LMS filter for performance optimization followed by standard symbol detection and bit-error ratio (BER) estimation.

Fig. 3 shows the received signal distributions and the corresponding optical spectrum of the 64-QAM signals with an OSNR (in 0.1 nm) of 38dB. The 20dB bandwidth of the 64-QAM signal is about 0.28nm. The back-to-back performance of the proposed 64-QAM generation technique is investigated and Fig. 3(c) shows the BER vs. OSNR obtained from our experimental setup. The required OSNR to achieve BER = 2.4E-2 (20% SD-FEC threshold) is about 27 dB using our proposed 64-QAM generation technique. It should be noted that required OSNR can be further reduced with higher bandwidth and low-noise real-time sampling scope.

4. Conclusions

We demonstrated a simple 64-QAM signal generation technique using four-level and binary electrical signals to drive a dual-drive IQ modulator. Experimental results for a 20 Gsymbols/s (240Gbit/s) system demonstrated the technique’s feasibility and potential as a simpler and more practical 64-QAM transmitter in future coherent communication links.